Differential Equations with a Convergent Integer power Series Solution

Mark van Hoeij

AMC Conference TU/e (Algebra Meetkunde and Computation)

July 3, 2014

Let $y \in \mathbb{Q}[[x]]$ and suppose that

- y has a positive radius of convergence
- **2** There are constants $c, n \neq 0$ for which $c \cdot y(n \cdot x) \in \mathbb{Z}[[x]]$.

Then we call *y* a CIS (Convergent near-Integer power Series). Also called: *globally bounded*.

If u_0, u_1, u_2, \ldots an integer sequence then the generating function

$$y := \sum_{n=0}^{\infty} u_n x^n$$

is CIS if it converges. Case of interest: When y satisfies a differential equation of order 2. The database oeis.org contains a huge number of examples. Let $a, b, c \in \mathbb{Q}$ with $c \notin \{0, -1, -2, \ldots\}$. The hypergeometric function

$$h(x) := {}_{2}F_{1}(a,b;c|x) = 1 + \frac{a \cdot b}{c \cdot 1!}x + \frac{a(a+1) \cdot b(b+1)}{c(c+1) \cdot 2!}x^{2} + \cdots$$

 $h(x) \in \mathbb{Q}[[x]].$ CIS $\implies #\{\text{primes in denominators}\} < \infty.$

$$h(x)$$
 is CIS $\iff h(x)$ algebraic or $c \in \mathbb{N}$.

Example:

a, b, $c = \frac{1}{12}, \frac{5}{12}, 1$ (very common) (monodromy group is arithmetic) Then h(x) is CIS (Convergent near-Integer Series). Indeed: $h(1728x) \in \mathbb{Z}[[x]]$.

Let $h(x) = {}_2F_1(a, b; c|x)$. A function y(x) can be expressed in terms of h(x) if it is of the form

$$y(x) = r_0 \cdot h(f) + r_1 \cdot h(f)'$$
 with $f, r_0, r_1 \in \overline{\mathbb{Q}(x)}$

h(x) and hence y(x) satisfies a differential equation of order 2.

If h(x) is CIS (algebraic or $c \in \mathbb{N}$), then y(x) is again CIS \implies produces differential equations with a CIS solution y(x)

Conjecture: If a CIS satisfies a linear differential equation of second order, then it can be expressed in terms of a $_2F_1$ function.

(tested on > 100 examples from oeis.org)

An Example

- A differential operator L = ∂² + a₁∂ + a₀ corresponds to a differential equation y" + a₁ ⋅ y' + a₀ ⋅ y = 0.
- Consider the following differential operator, which has a CIS solution:

$$L := \partial^2 + \frac{\left(27 x^7 - 39 x^5 + 17 x^3 - 5 x - 9 x^4 - 3\right)}{3 x (x^2 - 1)(x^3 - x - 1)(3 x^2 - 1)} \partial - \frac{5 \left(3 x^2 - 1\right)^2}{36 x (x^3 - x - 1)(x^2 - 1)}.$$

• Our algorithm (Kunwar, v.H. 2013) finds the solution:

$$y = \frac{{}_{2}F_{1}\left(\frac{5}{6},\frac{7}{6};1\mid\frac{1}{1+x-x^{3}}\right)}{(1+x-x^{3})^{5/6}} + \frac{35}{36}\frac{x(x^{2}-1)\cdot{}_{2}F_{1}\left(\frac{11}{6},\frac{13}{6};2\mid\frac{1}{1+x-x^{3}}\right)}{(1+x-x^{3})^{11/6}}.$$

• The most important step is finding the **pullback** function $f = 1/(1 + x - x^3)$.

Why the form $r_0h(f) + r_1h(f)'$? The hypergeometric function

$$h(x) := {}_2F_1(a,b;c|x)$$

satisfies a second order equation L(h) = 0 where

$$L:=x(1-x)\partial^2+(c-(a+b+1)x)\partial-ab\ \in \mathbb{Q}(x)[\partial].$$

Like CIS, the form $r_0h(f) + r_1h(f)'$ is closed under:

- Change of variables: If $f \in \mathbb{Q}(x) \mathbb{Q}$ then h(f) satisfies again some equation of order 2.
- Gauge transformation: If $r_0, r_1 \in \mathbb{Q}(x)$ then $r_0h(f) + r_1h(f)'$ satisfies again some equation of order 2.

Two hypergeometric functions (assume: not algebraic)

$$h_1 = {}_2F_1(a_1, b_1; c_1|x), \quad h_2 = {}_2F_1(a_2, b_2; c_2|x)$$

are called *equivalent* $h_1 \sim h_2$ when:

L can be solved in terms of h_1 iff L can be solved in terms of h_2 .

This happens when h_1 can be expressed in terms of h_2 (and vice versa).

$$_{2}F_{1}(\frac{1}{2},\frac{1}{2};1|x) \sim _{2}F_{1}(\frac{1}{8},\frac{3}{8};1|x) \sim _{2}F_{1}(\frac{1}{12},\frac{5}{12};1|x)$$

This equivalence class contains a number of other ${}_2F_1$'s as well. If we want *some* solution, then we need to pick a member from the correct equivalence class, but it does not matter which member.

(it does matter if we care about the *size* of the solution!)

Among the many integer sequences from oeis.org whose generating function is convergent, not algebraic, and satisfies a 2nd order differential equation, *we only observe one equivalence class* (the one whose monodromy group is arithmetic)

Even though oeis.org is very large, and has many integer sequences whose g.f. satisfies a 2nd order equation, for some reason we encounter only one equivalence class:

$$h(x) = {}_{2}F_{1}(\frac{1}{12}, \frac{5}{12}; 1|x).$$

Goal: Given $L \in \mathbb{Q}(x)[\partial]$, order 2, decide if it can be solved in terms of this h(x), and if so, find a solution

$$r_0h(f)+r_1h(f)'$$

(with r_0, r_1, f algebraic functions).

 $L \in \mathbb{Q}(x)[\partial]$, $h = {}_2F_1(\frac{1}{12}, \frac{5}{12}; 1|x)$, find solution:

$$y := r_0 h(f) + r_1 h(f)'$$

In the majority of cases, f is a rational function.

Why? If f is an algebraic function, f needs to be rather special (indeed, more later!) for y to satisfy a 2nd order $L \in \mathbb{Q}(x)[\partial]$.

If f is rational, we have several algorithms:

T. Fang and v.H. V. Kunwar and v.H. v.H. and R. Vidunas V. Kunwar

$$h = {}_{2}F_{1}(\frac{1}{12}, \frac{5}{12}; 1|x)$$

There are $L \in \mathbb{Q}(x)[\partial]$, order 2, with just 5 singularities, and a solution

$$r_0h(f)+r_1h(f)'$$

with f a rational function of degree 18.

Reconstructing such f from just 5 points is non-trivial. To get a fast algorithm, we (V. Kunwar and v.H.) built a table of all $f \in \mathbb{C}(x)$ that can correspond to an equation with 5 singular points.

Our table has hundreds of rational functions, mostly Belyi maps and near-Belyi maps. To prove completeness, we computed combinatorial data, called (near)-dessin d'enfants. We have several algorithms for finding f when $f \in \mathbb{C}(x)$. What if f is not a rational function?

$$u_n := \sum_{k=0}^n \left(\begin{array}{c}n\\k\end{array}\right)^4 \quad \text{G.f.} = \sum_{n=0}^\infty u_n x^n$$

This generating function satisfies a 3'rd order equation, and $\sqrt{G.f.}$ a 2'nd order equation. By the conjecture, that equation should be solvable in terms of hypergeometric functions. Indeed, we can choose *a*, *b*, *c* in the usual equivalence class, and write

$$\sqrt{\mathrm{G.f.}} = r_0 \cdot {}_2F_1(a, b; c|f)$$

for some f. Now f depends on which member of the equivalence class we took, but is never a rational function.

I inserted the following G.f. in oeis.org

$$(\cdots) \cdot {}_{2}F_{1}\left(\frac{1}{8}, \frac{3}{8}; 1 | \frac{4(\sqrt{1+4x} + \sqrt{1-16x})(\sqrt{1+4x} - \sqrt{1-16x})^{5}}{5(2\sqrt{1-16x} + 3\sqrt{1+4x})^{4}}\right)^{2}$$

James Wan's award-winning poster at ISSAC'2013 used this to prove a formula for $1/\pi.$ Now

$$f\in \mathbb{Q}(\sqrt{rac{1+4x}{1-16x}})$$

and yet $L \in \mathbb{Q}(x)[\partial]$. So pullback f is not unique: $\sqrt{-} \mapsto -\sqrt{-}$.

Main idea: Classifying non-uniqueness \implies all non-rational f's.

Suppose f_1, f_2 are algebraic functions, and

$$_{2}F_{1}(\frac{1}{12},\frac{5}{12};1|f_{1}) = r_{0} \cdot _{2}F_{1}(\frac{1}{12},\frac{5}{12};1|f_{2}) + r_{1} \cdot (\cdots)'$$

with f, r_0, r_1 algebraic functions. Can prove: $r_1 = 0$.

Question: What is the relation between f_1 , f_2 ? (classification of non-unique f's).

Answer: The above relation holds for some algebraic r_0 iff f_1, f_2 satisfy

$$\phi_N(1728/f_1, 1728/f_2) = 0$$

for some N, where ϕ_N is the equation of the modular curve $X_0(N)$. (ϕ_N is the algebraic relation between $j(\tau)$ and $j(N\tau)$)

Strategy: For $N = 2, 3, \ldots$ do

- Search for algebraic f_1, f_2 , conjugated over $\mathbb{Q}(x)$, with $\phi_N(1728/f_1, 1728/f_2) = 0$.
- Sompute $L = \partial^2 + a_1 \partial + a_0 \in \mathbb{Q}(x, f_1)[\partial]$ with solution $h(f_1)$.
- Clear the ∂^1 term by multiplying solutions by $\exp(\int a_1/2)$.
- Store the resulting $\partial^2 + r$ in a table if r is in $\mathbb{Q}(x)$.

The solver can use the table to handle algebraic f's. How to make the algorithm complete? First, suppose $[\mathbb{Q}(x, f) : \mathbb{Q}(x)] = 2$.

In this case, f has only two conjugates, say f_1, f_2 .

 $\mathbb{Q}(f_1, f_2)$ is isomorphic to the function field of $X_0(N)$ for some N. To end up with a 2nd differential equation over $\mathbb{Q}(x)$, the field $\mathbb{Q}(f_1, f_2)$ should have a genus-0 subfield of index 2.

So $X_0(N)$ must be rational, elliptic, or hyper-elliptic. Such N's are classified (Ogg 1974), so it should be possible to make the differential solver complete when f is quadratic over the rational functions.

- I Higher degree algebraic functions.
- Proofs.
- Implementations.
- What about hypergeometric functions from other equivalence classes?

Why do they not occur in oeis.org? How to classify their non-rational f's?

- So How to tackle the conjecture? (that if ∑ u_nxⁿ is CIS and satisfies a 2'nd order differential equation, then it can be expressed in terms of hypergeometric functions).
- Ongratulations to Arjeh Cohen!