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ABSTRACT
Let L be a second order differential equation with coefficients
in C(x). The goal of this paper is to find solutions of L in
the form

exp(

∫
r dx) · 2F1(a1, a2; b1; f) (1)

where r, f ∈ Q(x), and a1, a2; b1 ∈ Q.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms; G.4 [Mathematics of Computing]: Mathemati-
cal Software

General Terms
Algorithms

Keywords
Symbolic Computation, Differential Equations, Closed Form
Solutions, Hypergeometric Solutions

1. INTRODUCTION
Consider a second order homogenous linear differential

equation with rational function coefficients Ai ∈ C(x)

A2y
′′ +A1y

′ +A0y = 0. (2)

which corresponds to the differential operator

L = A2∂
2 +A1∂ +A0 ∈ C(x)[∂]

where ∂ = d
dx

. Then (2) is the equation L(y) = 0.

This paper gives a (heuristic1) algorithm to find a solution
of (2) in the form of (1). This form is both more and less
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1For completeness we still need a theorem for “good primes”
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general than in prior work. Less general in the sense that
papers [2], [7] considered 3 transformations instead of the 2
in section 2.3 and more general in the sense that prior work
was restricted to either a specific number of singularities (4
in [9] and 5 in [6]) or specific degrees (degree 3 in [7] and
a degree-2 decomposition in [2]). Moreover, our program
can also find algebraic functions f in (1) (although at the
moment this requires additional user inputs).

We assume that (2) has no Liouvillian solutions (this im-
plies it is irreducible), otherwise one can solve it with Ko-
vacic’s algorithm [5]. The goal of this paper is: Given a sec-
ond order operator Linp ∈ C(x)[∂], regular singular2 with-
out Liouvillian solutions, find a solution of form (1) if it
exists. This means finding a1, a2, b1 ∈ Q and finding trans-
formations (sections 2.3 and 3.2) that send LB to the in-
put equation Linp, where LB is the minimal operator of

2F1(a1, a2; b1;x).
Two crucial steps of this task are: (1) find (candidates for)

a1, a2, b1 and (2) find the pullback function f (after that,
finding r becomes easy). Given a1, a2, b1 (or equivalently,
LB), by comparing quotients of formal solutions of LB and
Linp, we can compute f if we know the value of a certain
constant c. We have no direct formula for c; to obtain it
with a finite computation, we take a prime number `. Then,
for each c ∈ {1, . . . , `− 1} we try to compute f modulo `. If
this succeeds, then we lift f modulo a power of `, and try
reconstruction.

Example 1. Rational Pullback Function

L = 21x(x− 1)(x+ 1)∂2 + (38x2 − 6x− 14)∂ +
20x− 5

7

has a 2F1-type solution

Y (x) = exp (

∫
r dx) · 2F1

(
5

42
,

11

42
;

2

3
; f

)
where

exp(

∫
r dx) = (x+ 1)−

5
21 and f =

4x

(x+ 1)2
(3)

Here the degree of the pullback function f is 2. We can
find this solution with the quotient method in remark 1 be-
low. In the quotient method, the parameters a1, a2, b1 (here
5
42
, 11
42
, 2
3
) and the degree of f (here 2) are taken as an input.

We implemented section 3.2 which computes candidates for

2For details see the section 2.1.



a1, a2, b1 and deg(f) so that a1, a2, b1, and deg(f) no longer
need to be part of the input.

Remark 1. The Quotient Method
The hypergeometric function 2F1( 5

42
, 11
42

; 2
3
, x) is a solution

of the operator

LB = ∂2 +
(29x− 14)

21x (x− 1)
∂ +

55

1764x (x− 1)

LB has two solutions at x = 0,

y1(x) = 2F1

(
5

41
,

11

42
;

2

3
, x

)
= 1 +

55

1176
x+ . . .

y2(x) = x
1
3

(
1 +

475

2352
x+

1941325

19361664
x2 + . . .

)
.

The so-called exponents of LB at x = 0 are the exponents of
x in the dominant terms of y1 and y2, so the exponents are
e0,1 = 0 and e0,2 = 1/3. The minimal operator for y(f) has
these solutions at x = 0:

y1(f) = 1 +
55

294
x− 4939

86436
x2 +

16135823

304946208
x3 + . . . ,

y2(f) = cf · x
1
3

(
1 +

83

588
x+

6805

1210104
x2 + . . .

)
for some constant cf that depends on f . Here the exponents
are again 0, 1

3
. This is because x = 0 is a root of f with

multiplicity e = 1. Let

Y1(x) = exp(

∫
r dx)y1(f) = 1− 5

98
x+

439

9604
x2 + . . . , (4)

Y2(x) = exp(

∫
r dx)y2(f) = cf · x

1
3

(
1− 19

196
x+ . . .

)
.

(5)

(4) and (5) form a basis of solutions of Linp. Here exp(
∫
r dx)

is as the same as in (3). Denote the quotients of the formal
solutions of LB and L by

q =
y1(x)

y2(x)
, Q =

Y1(x)

Y2(x)
=
y1(f)

y2(f)
= q(f),

respectively. It follows that q−1(Q(x)) gives an expansion
of f at x = 0. Given enough terms we can reconstruct f .
However, the following questions occur:

Q1. How many terms are needed to reconstruct f? This is
equivalent to finding a degree bound for f .

Q2. How to find the parameters a1, a2, b1?
Q3. The exponents 0, 1

3
of L at x = 0 only determine Y1

Y2

up to a constant factor (see remark 3 in section 2.3).

This means y1(f)
y2(f)

is only known up to a constant cf .

How to find this constant?
Q4. What if L has logarithmic solutions at x = 0 ?
Q5. What if f is an algebraic function?

We will address these questions in section 3, which contains
the main new results in this paper (the method illustrated
in this remark was already used in [9, section 5.1]).

Example 2. Algebraic Pullback Function

L = ∂2 +
1

4

x4 − 44x3 + 1206x2 − 44x+ 1

(x2 − 34x+ 1)2 x2

has a 2F1-type solution

Y (x) = exp(−1

2

∫
r dx) 2F1(

1

3
,

2

3
; 1; f)

where r =

−x5 + 22 x4 − 55 x3 − 343 x2 + 6 x
(
x2 − 7 x + 1

)√
x2 − 34 x + 1 + 58 x − 1

x
(
x4 − 41 x3 + 240 x2 − 41 x + 1

)
(x + 1)

and f =

−
1

2

−1− 30x + 24x2 − x3 +
(
x2 − 7x + 1

)√
x2 − 34x + 1

1 + 3x + 3x2 + x3
.

Here the pullback function f is an algebraic function. The
algorithm given in this paper can find this solution.

Equations with such solutions are remarkably common,
for instance in the OEIS, the Online Encyclopedia of Integer
Sequences (oeis.org). The implementations of Fang [2] and
Kunwar [6] solve many but not all such equations, which
forms the motivation for this work.

Remark 2. Our current implementation of recovering pull-
back functions should terminate if there is a pullback func-
tion in Q(x). If there is a pullback in Q(x) but not in Q(x),
without additional inputs, the current version of our pro-
gram may enter an infinite loop.

2. PRELIMINARIES

2.1 Differential Operators
Let L =

∑n
i=0 ai∂

i ∈ C(x)[∂]. A point p ∈ C is called
a singularity of L if it is a zero of the leading coefficient
of L or a pole of any other coefficients of L. The point
p = ∞ is called a singularity if p = 0 is a singularity of
L1/x. Here L1/x is the differential operator obtained from
L via a change of variables x 7→ 1

x
(note: x 7→ f sends ∂ to

1
f ′ ∂). If x = p is not a singularity, it is called a regular point
of L. A singularity p ∈ C is called a regular singularity if
(x − p)i an−i

an
is analytic at x = p for 1 ≤ i ≤ n − 1. The

point p = ∞ is a regular singularity if p = 0 is a regular
singularity of L1/x. The differential operator L is said to be
regular singular if all singularities of L are regular singular.

The local parameter of a point p = x ∈ C∪{∞} is defined
by tp = x−p if x 6=∞, and tp = 1

x
otherwise. The exponents

ep,1 and ep,2 at x = p are the powers of tp in the dominant
terms of the formal solutions at x = p, as illustrated in
remark 1. In this paper we restrict to rational exponents.
The exponent difference of L at x = p is ∆(L, p) = |ep,1 −
ep,2|. If a formal solution at x = p involves a logarithm
(a logarithmic singularity), then ∆(L, p) must be an integer
[11, 12].

2.2 Gauss Hypergeometric Function
Let a1, a2, b1 ∈ Q. The operator LB = x(1− x)∂2 + (b1 −

(a1+a2+1)x)∂−a1a2 is called Gauss hypergeometric differ-
ential operator (GHDO). The solution space has dimension
2 because the order is 2. One of the solutions at x = 0 is
the Gauss hypergeometric function, denoted by 2F1, defined
by the Gauss hypergeometric series

2F1(a1, a2; b1;x) =
∞∑
k=0

(a1)k(a2)k
(b1)kk!

xk.

oeis.org


Here (λ)k denotes the Pochammer symbol. It is defined as
(λ)k = λ(λ + 1) . . . (λ + k − 1) and (λ)0 = 1. LB has three
regular singularities: x = 0, x = 1, and x = ∞ with expo-
nents {0, 1− b1}, {0, b1−a1−a2}, and {a1, a2} respectively.
We denote the exponent-differences as α0 = |1 − b1|, α1 =
|b1−a1−a2|, α∞ = |a1−a2|. Let di be∞ if αi ∈ Z, and the
denominator of αi if αi ∈ Q− Z. The so-called Schwarz list
[8] classifies a1, a2, b1 for which LB has Liouvillian solutions.
We will only consider a1, a2, b1 for which LB has no Liouvil-
lian solutions. From the Schwarz list [8] one finds that this
is equivalent to 1

d0
+ 1

d1
+ 1

d∞
< 1.

2.3 Transformations and Singularities
Let L1, L2 ∈ C(x)[∂] be two differential operators of or-

der 2. We consider the following transformations that send
solutions of L1 to solutions of L2.

1. Change of variables: y(x) −→ y(f), f ∈ Q(x).
For L this means substituting (x, ∂) 7→ (f, 1

f ′ ∂).

2. Exp-product: y(x) −→ exp (
∫
r dx)y(x), r ∈ Q(x).

For L this means ∂ 7→ ∂ − r.

These transformations are denoted by
f−→C and

r−→E respec-
tively. A third transformation, called gauge transformation,
was allowed in the algorithms in [2] and [6]. We hope to use
[4] to reduce an equation L that requires a gauge transfor-

mation to an equation L̃ that doesn’t.
Transformations can affect singularities and exponents. If

a transformation
r−→E can send a singular point x = p to

a regular point x = p, then we call x = p a false singu-
larity. We denote Sing(L1) as the set of singularities of L1

except these false singularities. A singularity x = p is a false
singularity if and only if x = p is not logarithmic and the
exponent-difference is 1.

If x = p is a singularity of L1 and if transformation
r−→E

can send L1 to an equation L2 for which all solutions of
L2 are analytic at x = p, then we call x = p a removable
singularity. A point x = p is removable if and only if x = p
is not logarithmic and the exponent-difference is an integer.
Non-removable singularities are called true singularities. A
point x = p is a true singularity if and only if the exponent-
difference is not an integer or x = p is logarithmic.

Remark 3. The quotient method (remark 1 in section 1)
can only use true singularities, otherwise Y1

Y2
would only be

known up to a Möbius transformation instead of a constant.

Theorem 1. [1] Let the GHDO LB have exponent dif-
ferences α0 at x = 0, α1 at x = 1, and α∞ at x = ∞.

Let LB
f−→C Linp. If f(p) ∈ {0, 1,∞}, then Linp has the

following exponent-difference at x = p:

1. α0 · ep if f has a zero at x = p with multiplicity ep,
2. α1 · ep if f − 1 has a zero at x = p with multiplicity ep,
3. α∞ · ep if f has a pole at x = p with order ep.

If f(p) 6∈ {0, 1,∞}, then f maps p to a regular point of
LB (exponent-difference 1). Then the exponent-difference
of Linp at x = p is 1 · ep where ep is the ramification index
of f at x = p (i.e. x = p is a root of f(x) − f(p) with
multiplicity ep). The Hurwitz formula (section 4.1) relates
to the sum of all ep − 1 to the degree of f .

3. ALGORITHM
Problem Description: Given a second order linear dif-

ferential operator Linp ∈ C(x)[∂], irreducible and regular
singular, we want to find a 2F1-type solution of the dif-
ferential equation Linp(y) = 0 of the form of (1). This is
equivalent to finding transformations 1 and 2 from a GHDO
LB to Linp. Therefore, we need to find

1. LB (i.e. find a1, a2, b1),
2. parameters f and r of the change of variables and exp-

product transformations such that LB
f−→C

r−→E Linp.

The general outline is as follows.

Algorithm Outline: find_2f1

Input:
• Linp, a second order differential operator.
• At the moment we only handle coefficients in Q(x). If
f in (1) is algebraic, then our current implementation
needs three more inputs which are

– LB , a candidate GHDO,
– af , an algebraic degree bound for f ,
– df , degree bound for f .

Output:
• A list of basis elements of solutions of Linp in form (1),

or an empty list [ ].

1. Try Kovacic’s algorithm [5]. If there exists Liouvillian
solutions, then return them. The algorithm in [10]
computes Liouvillian solutions in form (1) if Linp is
irreducible.

2. If LB , af , df are not provided in the input, then use
section 3.2 (at the moment this only covers rational
f ’s, i.e. af = 1) to compute candidates for LB and df .

3. For a candidate GHDO LB , compute formal solutions
of LB and Linp at a non-removable singularity (see
remark 3 in section 2.3) up to precision a ≥ 2(af +
1)(df + 1) + 3. Take the quotients of formal solutions
and compute series expansions for q−1 and Q (in order
to compute f = q−1(cQ(x)) in the next step).

4. Choose a good prime number `, and try to find c mod
` by looping c = 1, 2, . . . , `− 1 as in section 4.3. If no
solution is found, then proceed with the next candidate
GHDO (if any) in step 3. If no candidates remain, then
return an empty list [ ].

5. Compute f mod (xa, `) and then use Hensel lifting to
find f mod higher powers of `. After each lifting try
rational reconstruction. If it does not fail, then we
have f .

6. Compute the parameter r of the exp-product transfor-
mation (section 4.5).

7. Return a basis of 2F1-type solutions of Linp.

Step 2 is explained in sections 3.1 and 3.2. Step 3 is the
quotient method, see section 3.3 for more. Steps 5 and 6 are
explained in sections 3.4 and 3.5 respectively.

Remark 5, section 3.2, section 3.4, and section 3.3.2 pro-
vide answers to Q1, Q2, Q3, and Q4 respectively. Remark
7 and section 3.4 answer Q5. Maple codes can be found at
[3].



3.1 General Degree Bound
Let X and Y be two algebraic curves with genus gX and

gY , and let f : X −→ Y be a non-constant analytic map.
The Riemann-Hurwitz formula says

2gX − 2 = deg(f)(2gY − 2) +
∑
p∈X

(ep − 1). (6)

Here p is a branching point and ep is its ramification order.
In this paper f : P1 −→ P1 so gX = gY = 0 and∑

p∈P1
(ep − 1) = 2 deg(f)− 2. (7)

In section 3.1.1 and 3.1.2 we compute a degree bound for
a rational pullback function f from formula (7). In section
3.1.3 we use it to compute a formula for α0 + α1 + α∞, the
sum of the exponent-differences of LB .

3.1.1 Bound for Logarithmic Cases
Let LB be a GHDO with at least one logarithmic singular-

ity. Assume that LB
f−→C

r−→E Linp. Let df = deg(f). The
number of elements in the set T = f−1({0, 1,∞}) can be at
most 3df .

#T =
∑
p∈T

1 =
∑
p∈T

ep − (ep − 1) = 3df −
∑
p∈T

(ep − 1). (8)

From (7), we have

0 ≤
∑
p∈T

(ep − 1) ≤
∑
p∈P1

(ep − 1) = 2df − 2

where the latter sum is taken over all branching points of f .
Hence df + 2 ≤ #T ≤ 3df .

The set of true singularities of Linp is a subset of T and
these two sets do not need to be equal. Points in T come
from (p comes from s when f(p) = s) the singular points
{0, 1,∞} of LB . Such points need not be singular, for in-
stance, if LB has exponents 0, 1/3 at x = 0 and f has a
root p of order ep = 3, then the exponents at x = p will be
3 · {0, 1/3} = {0, 1} and x = p will be a regular point (a
“disappeared singularity”). We define the set of disappeared
singularities as T −Sing(Linp). Logarithmic singularities do
not disappear; if s ∈ {0, 1,∞} is a logarithmic singularity of
LB , then every point p above s is a logarithmic singularity
as well.

Let ndiss be the number of disappeared singularities of
Linp. For a GHDO with exponent differences [0, 1

2
, 1
3
] at

0, 1,∞ respectively, ndiss ≤ 1
2
df + 1

3
df , with equality if and

only if every point above s with exponent difference α = 1
2
,

respectively α = 1
3

disappears (i.e., ep = 2, respectively
ep = 3). So, if the total number of true singularities of Linp
is ntrue, then

ntrue = #T − ndiss =

(
3df −

∑
p∈S

(ep − 1)

)
− ndiss

≥ [3df − (2df − 2)]− ndiss = df + 2− ndiss

≥ df + 2−
(

1

2
df +

1

3
df

)
=

1

6
df + 2

and so

df ≤ 6(ntrue − 2). (9)

Inequality (9) is an upper bound for df in all cases with at
least one logarithmic singularity. This is because 1

2
df + 1

3
df

is an upper bound for the number of disappeared singular-
ities in the logarithmic case (the GHDO cannot have two
singularities with exponent difference 1

2
if it is irreducible,

this makes 1
2
df + 1

3
df the maximum possible value for ndiss

in the logarithmic case).

3.1.2 Bound for Non-Logarithmic Cases
In the non-logarithmic case one could have disappeared

singularities above all three singularities {0, 1,∞} of the
GHDO. The maximal degree bound is achieved at exponent
differences [ 1

2
, 1
3
, 1
7
]. All LB ’s with a higher bound such as

[α0, α1, α∞] = [ 1
2
, 1
3
, 1
6
], [ 1

2
, 1
3
, 1
5
], etc, are either reducible or

appear in Schwarz’s list [8], which means they have Liouvil-
lian solutions.

The maximum number of disappeared singularities for
[ 1
2
, 1
3
, 1
7
] is not ( 1

2
+ 1

3
+ 1

7
)df because that contradicts the

formula (7). The maximum number consistent with (7) is(
1

2
+

1

3

)
df +

1

7− 1

(
2df − 2− 2− 1

2
df −

3− 1

3
df

)
and it leads to

df ≤ 36

(
ntrue −

7

3

)
. (10)

We use inequality (10) as an a priori upper bound for df
for all cases with no logarithmic singularity.

Therefore, an a priori degree bound for a rational pullback
function f is

df ≤

{
6(ntrue − 2), logarithmic case,

36
(
ntrue − 7

3

)
, non-logarithmic case.

(11)

Our algorithm uses this degree bound only as a starting
point; additional restrictions are computed during the algo-
rithm that may lower the degree.

3.1.3 Riemann-Hurwitz Type Formula
The differential operators LB and Linp are in C(x)[∂], i.e.,

they are defined on P1. The function field of P1 is C(P1) ∼=
C(x). Denote DC(P1) = C(x)[∂]. So LB , Linp ∈ DC(P1).

In general, let X be any algebraic curve and C(X) be its
function field. The ring DC(X) := C(X)[∂t] is the ring of
differential operators on X. Here t ∈ C(X) with t′ 6= 0. An
element L ∈ DC(X) is a differential operator defined on the
algebraic curve X.

Theorem 2. Let X, Y be two algebraic curves with genus
gX , gY ; and function fields C(X),C(Y ). Let f : X → Y be
a non-constant morphism with deg(f) = d. The morphism
f corresponds a homomorphism C(Y ) → C(X), which in-
duces a homomorphism DC(Y ) → DC(X). If L1 ∈ DC(Y )

with ord(L1) = 2 and, L2 is the corresponding element in
DC(X), then

2−2gX+
∑
p∈X

(∆(L2, p)− 1) = d(2−2gY +
∑
s∈Y

(∆(L1, s)− 1)).

Proof. Let S ⊂ Y be a finite set and T = f−1(S) such
that Sing(L1) ⊆ S, Sing(L2) ⊆ T , and all branching points
in X are in T . There are infinitely many points in X \T and
for each p ∈ X \T , we have ∆(L2, p) = 1 and ep = 1. There



are infinitely many points in Y \ S and for each s ∈ Y \ S,
we have ∆(L1, s) = 1.

#T =
∑
p∈T

1 =
∑
p∈T

ep −
∑
p∈T

(ep − 1) (12)

= d ·#S −
∑
p∈X

(ep − 1) (13)

= d ·#S − (2gx − 2− d(2gY − 2)). (14)

From (13) to (14) we used (6). Then,∑
p∈X

(∆(L2, p)− 1) =
∑
p∈T

(∆(L2, p)− 1) (15)

=
∑
p∈T

∆(L2, p)−
∑
p∈T

1 (16)

= d
∑
s∈S

∆(L1, s)−#T. (17)

Combine (14) and (17) to obtain∑
p∈X

(∆(L2, p)− 1)

= d
∑
s∈S

∆(L1, s)− d ·#S + (2gx − 2− d(2gY − 2)).

Therefore,

2−2gX+
∑
p∈X

(∆(L2, p)− 1) = d(2−2gY +
∑
s∈Y

(∆(L1, s)− 1)).

(18)

We use differential operators LB , Linp ∈ C(x)[∂]. So X =
Y = P1 and gX = gY = gP1 = 0. Suppose that

LB
f−→C

r−→E Linp

where f : P1 → P1 and LB is a GHDO with exponent differ-
ences [α0, α1, α∞] at {0, 1,∞}. Since the exp-product trans-
formation does not affect exponent-differences, formula (18)
gives us:

2+
∑
p∈P1

(∆(Linp, p)−1) = deg(f)(2+
∑

i∈{0,1,∞}

(αi−1)). (19)

We will use formula (19) in section 3.2.

3.2 Candidate Exponent Differences
This section explains a method of computing exponent

differences for candidate GHDOs.

Remark 4. Consider the operator Linp in example 1. It
has 4 true singularities, so (11) gives us df = 60. For a
candidate LB having exponent differences [α0, α1, α∞], we
have

α0, α1, α∞ ∈ {
a

b
: a ∈ ST ∪ SR ∪ {1}, 1 ≤ b ≤ df}. (20)

Here ST is the set of exponent differences of Linp at its true
singularities and SR is the set of exponent differences of Linp
at its removable singularities. There are 176 elements in the
set (20). This leaves too many candidates for [α0, α1, α∞].
Algorithm find_expdiffs is designed to skip most combi-
nations (formula (19) is particularly effective). In about
0.25 seconds find_expdiffs returns all different candidates:
[ 2
7
, 1
3
, 1
7
, 2], [ 1

7
, 1
3
, 1
2
, 20]. The first candidate gives a pullback

function of degree 2 and the second candidate gives a pull-
back function of degree 20.

Algorithm: find_expdiffs

Input:
• einp, a list of exponent differences of Linp at its true

singularities.
• erem, a (possibly empty) list of exponent differences of
Linp at its removable singularities.

Output:
• List of candidate exponent differences for candidate

GHDOs.

Output is a list of all lists eB = [α0, α1, α∞, d] of
integers or rational numbers where [α0, α1, α∞] is
a list of candidate exponent differences and d is a
candidate degree for f such that:

– For every exponent difference m in einp there ex-
ists e ∈ {1, 2, . . . , d} such that m = eαi for some
i ∈ {0, 1,∞}.

– The multiplicities e are consistent with (7), and
their sums are compatible with d, see the last
paragraph in step 2.

1. Let α1, α2, α3 = α0, α1, α∞. After reordering we may
assume that α1, . . . , αk ∈ Z and αk+1, . . . , α3 /∈ Z for
k ∈ {0, 1, 2, 3}. For each k ∈ {0, 1, 2, 3} we use Cover-

Logs in [3] to compute candidates for α1, . . . , αk ∈ Z.
If α1 + · · ·+αk 6= 0 then algorithm CoverLogs also re-
turns the exact degree df of f (theorem 1 shows that
df (α1 + · · ·+ αk) must be the sum of the logarithmic
exponent differences of Linp). Otherwise, it uses (11)
to compute a degree bound df for f .

2. We will explain only the case where k = 1, which is
the case [α1, α2, α3] = [α0, α1, α∞], where α0 ∈ Z and
α1, α∞ /∈ Z. For other cases (k = 0, 1, 3) see [3].

Let k = 1. So we have α0 ∈ Z. We need to find
rational numbers α1 and α∞.

The logarithmic singularities of Linp come from the
point 0. Non-integer exponent differences of Linp must
be multiples of α1 or α∞. Let SN be the set of non-
logarithmic exponent differences of Linp and SR be
the set of exponent differences of Linp at its removable
singularities. Consider the set

Γ1 =

{
ΓA = {max (SN )

b
: b = 1, . . . , df} if SN 6= ∅,

ΓB = {a
b

: a ∈ SR ∪ {1}, b = 1, . . . , df} otherwise.

α1 (or α∞, but if so, we may interchange them) must
be one of the elements of Γ1. We loop over all elements
of Γ1. Assume that a candidate for α1 is chosen. Let
Ω = SN \ α1Z. Now consider the set

Γ∞ =

{
ΓA ∪ ΓB if Ω = ∅,
{ g
b

: g = gcd (Ω) : b = 1, . . . , df} otherwise.

Now take all pairs (α∞, d) satisfying (19), α∞ ∈ Γ∞,
1 ≤ d ≤ df , with additional restrictions on d, as fol-
lows:

For every potential non-zero value v for one of the αi’s
we pre-compute a list of integers Nv by dividing all
exponent-differences of Linp by v and then selecting
the quotients that are integers. Next, let Dv be the



set of all 1 ≤ d ≤ df that can be written as the sum of
a sublist of Nv. Each time a non-zero value v is taken
for one of the αi, it imposes the restriction d ∈ Dv.
This means that we need not run a loop for α∞ ∈ Γ∞,
instead, we run a (generally much shorter) loop for d
(taking values in the intersection of the Dv’s so far)
and then for each such d compute α∞ from (19). We
also check if d ∈ Dα∞ .

3. Return the list of candidate exponent differences with
a candidate degree, the list of lists [α0, α1, α∞, d], for
candidate GHDOs.

Once we have the list of candidate exponent differences,
then each of the elements of this list gives a candidate GHDO.
If Linp has a 2F1-type solution in form (1), then it is among
the candidate GHDOs that we computed, via a change of
variables and exp-product transformations. This answers
question Q2.

3.3 Quotient Method
In this section, we explain a method to recover the pull-

back function f , which is the most crucial part of our algo-
rithm. We will explain our algorithm for rational pullback
functions. For algebraic pullback functions, the only differ-
ence is the lifting algorithm, which is explained in section
3.4. Before starting this section, note that we can always
compute the formal solutions of a given differential equa-
tion Linp(y) = 0 up to a finite precision.

3.3.1 Non-Logarithmic Case
Let the second order differential equation Linp(y) = 0 be

given. Let LB be a GHDO such that LB
f−→C

r−→E Linp. Let

f : P1
x 7→ P1

z and L1
f−→C L2. If x = p is a singularity of L2

and z = s is a singularity of L1, then we say that p comes
from s when f(p) = s.

After a change of variables we can assume that x = 0 is
a singularity of Linp that comes from the singularity z =
0 of LB . This means f(0) = 0 and we can write f =

c0x
v0(f) (1 + . . . ) where c0 ∈ C, v0(f) is the multiplicity

of 0, and the dots refer to an element in xC[[x]].
Let y1 and y2 be the formal solutions of LB at x = 0. The

following diagram shows the effects of the change of variables
and exp-product transformations on the formal solutions of
LB ,

y1(x)
f−→C y1(f)

r−→E Y1(x) = exp (

∫
rdx)y1(f),

y2(x)
f−→C y2(f)

r−→E Y2(x) = exp (

∫
rdx)y2(f),

where Y1 and Y2 are solutions of Linp.
Let q = y1

y2
be a quotient of formal solutions of LB . The

change of variables transformation sends x to f , and so q to
q(f). Therefore, q(f) will be a quotient of formal solutions
of Linp.

The effect of exp-product transformation disappears un-
der taking quotients. In general, a quotient of formal solu-
tions of LB at a point x = p is only unique up to Möbius
transformations y1

y2
7→ αy1+βy2

γy1+ηy2
.

If x = p has a non-integer exponent difference, then we
can choose q uniquely up to a constant factor c. So if we
likewise compute a quotient Q of formal solutions of Linp,

then we have q(f) = c ·Q(x) for some unknown constant c.
Then

f(x) = q−1 (c ·Q(x)) . (21)

If we know the value of this constant c, then we can com-
pute an expansion for the pullback function f from expan-
sions of q and Q. To obtain c with a finite computation, we
take a prime number `. Then, for each c ∈ {1, . . . , ` − 1}
we try to compute f modulo `. If this succeeds, then we lift
f modulo a power of `, and try reconstruction. Details of
lifting is explained in section 3.4.

Remark 5. Here we should compute the formal solutions
up to a precision a ≥ (af + 1)(df + 1) + 3. This precision is
enough to recover the correct pullback function with a few
extra terms for checking. This answers Q1.

Algorithm: case1 (non-logarithmic case)
Input:
• Linp, a second order differential operator with non-

logarithmic solutions,
• LB , a candidate GHDO,
• df , degree bound for f .
Output:
• The rational pullback function f , or 0 (in this case

there is no rational pullback function).

1. Compute expansions of the formal solutions y1, y2 of
LB and Y1, Y2 of Linp up to precision a ≥ 2df + 5.
Select a prime ` for which these expansions can be
reduced mod `.

2. q ← y2
y1

, Q← Y2
Y1

, then compute q−1.

3. Search for c0 such that c ≡ c0 mod ` by looping over
c0 = 1, . . . , `− 1. If there is no such c0, then return 0.

4. Compute f1 = q−1(c0 ·Q) ∈ Z[x]/(`, xa).

5. Lift3 f1 to fl ∈ Z[x]/(`l, xa) for a suitable l ∈ N, and
then reconstruct the rational pullback function f from
fl (we still need to address remark 2).

6. Return f .

3.3.2 Logarithmic Case
A logarithm may occur in one of the formal solutions of

Linp at x = p if exponents at x = p differ by an integer.
We may assume that Linp has a logarithmic solution at the
singularity x = 0.

Let y1, y2 be the formal solutions of LB at x = 0. Let y1
be the non-logarithmic solution (it is unique up to a mul-
tiplicative constant). Then y2

y1
= c1 · log(x) + h for some

c1 ∈ C and h ∈ C[[x]]. We can choose y2 such that

c1 = 1 and constant term of h = 0. (22)

That makes y2
y1

unique. If h does not contain negative powers
of x then define

g = exp

(
y2
y1

)
= x · (1 + . . . ) (23)

where the dots refer to an element of xC[[x]].

3For details see the section 3.4.



Remark 6. If we choose y2 differently, then we obtain an-

other g̃ = exp
(
y2
y1

)
that relates to g in (23) by g̃ = c1g

c2

for some constants c1, c2. If h contains negative powers of
x, then the formula for g is slightly different (we have not
implemented this case yet).

We do likewise for the formal solutions Y1, Y2 of Linp and
denote

G = exp

(
Y2

Y1

)
= x · (1 + . . . ) . (24)

Write f ∈ C(x) as c0x
v0(f) · (1 + . . . ). Then g(f) = c ·

xv0(f) (1 + . . . ). Note that g,G are not intrinsically unique,
the choices we made in (22) implies that

g(f) = c1 ·Gc2 (25)

for some constants c1, c2. Here c1 = c and c2 = v0(f).
If ∆(Linp, 0) 6= 0, then find v0(f) from ∆(LB , 0)v0(f) =

∆(Linp, 0). Otherwise we loop over v0(f) = 1, 2, . . . , df .
That leaves one unknown constant c. We address this prob-
lem as before, choose a good prime number `, try c =
1, 2, . . . , ` − 1. Then calculate an expansion for f with the
formula

f = g−1
(
c ·Gv0(f)

)
. (26)

Then we lift f modulo a power of `, and try reconstruction.
The discussion in this section answers Q4.

Algorithm: case2 (logarithmic case)
Input:
• Linp, a second order differential operator with at least

one logarithmic solution,
• LB , a candidate GHDO,
• df , degree bound for f .
Output:
• The rational pullback function f , or 0 (in this case

there is no rational pullback function).

1. Compute the exponents of Linp and LB .

2. Compute expansions of the formal solutions y1, y2 of
LB and Y1, Y2 of L up to precision a ≥ 2df + 5. Select
a prime ` for which these expansions can be reduced
mod `.

3. q ← y2
y1

, Q← Y2
Y1

, and compute g and G from (23) and

(24) respectively. Then compute g−1.

4. Select (compute if ∆(Linp, 0) 6= 0, loop otherwise)
v0(f) and search for c0 such that c ≡ c0 mod p by
looping over 1, . . . , `− 1. If there is no such c0 (which
means there is no rational pullback function for this
candidate LB), then return 0.

5. Compute f1 = g−1
(
c0 ·Gv0(f)

)
∈ Z[x]/(`, xa).

6. Lift4 f1 to fl ∈ Z[x]/(`l, xa) for a suitable l ∈ N, and
reconstruct the rational pullback function f from fl
(we still need to address remark 2).

7. Return f .

4For details see the section 3.4.

Remark 7. Algebraic Pullback Functions
Let Linp have a 2F1-type solution in the form (1) where f
is an algebraic function. We do not have a degree bound
for this case, nor the analogue of the algorithm from section
3.2. Therefore, for this case, the current version of our imple-
mentation needs extra inputs: a candidate GHDO, a degree
bound for f , and an algebraic degree bound for f . Then
we can find the algebraic pullback function via the quotient
method. The only difference is the lifting algorithm which
is explained in section 3.4. An algebraic degree bound is
needed for lifting. This remark together with section 3.4
answer question Q5.

3.4 Lifting: Recovering the Pullback Function
We introduce two lifting algorithms, one for rational func-

tions, one for algebraic functions. We explain lifting by us-
ing the formula (21) for the pullback function, which occurs
in the non-logarithmic case. The algorithm for the formula
(26) in the logarithmic case is similar. The discussion in this
section answers Q3.

3.4.1 Lifting for a Rational Pullback Function
By using the formula (21), which is f(x) = q−1 (c ·Q(x)),

we can recover the rational pullback function f , if we know
the value of the constant c. We do not have a direct formula
for c. However, if we know c0 such that c ≡ c0 mod ` for
a good prime number `, then we can recover the pullback
function f . This can be done via Hensel lifting techniques.

Let ` be a good prime number and consider

h : Q −→ Q[x]/(xa)

h(c) ≡ q−1 (c ·Q(x)) mod xa.

By looping on c0 = 1, . . . , `− 1 and trying rational function
reconstruction for h(c0) mod (`, xa), we can compute the
image of f in F`/(xa). If a is high enough, then for correct
value(s) of c0, rational function reconstruction will succeed
and return a rational function A0

B0
mod (`, xa). This c0 is

the one satisfying c ≡ c0 mod `.
Write c ≡ c0 + `c1 mod `2 for 0 ≤ c1 ≤ `−1. Taylor series

expansion of h gives us

h(c) = h(c0 + `c1) ≡ h(c0) + `c1h
′(c0) mod (`2, xa). (27)

Substitute c1 = 0, c1 = 1, respectively, in (27) and compute

h(c0) mod (`2, xa), (28)

h(c0 + `) ≡ h(c0) + `h′(c0) mod (`2, xa). (29)

Subtracting (28) from (29) gives

`h′(c0) ≡ [h(c0 + `)− h(c0)] mod (`2, xa).

Let

S =
{
h(c0) + `c1h

′(c0) : c1 = 0, . . . , `− 1
}
. (30)

Let f = A
B

in characteristic 0. We do not know what A and
B are. However, from applying rational function reconstruc-
tion for h(c0), we obtain A0, B0 with f ≡ A0

B0
mod (`, xa). It

follows that f = A
B
≡ A0

B0
≡ Ec1 mod (`, xa) for an element

Ec1 ∈ S defined in (30). From this equation we have

A ≡ BEc1 mod (`, xa). (31)

Now let

f =
A

B
≡ A0 + `A1

B0 + `B1
mod (`2, xa) (32)



where A1 = a0 + a1x + · · · + adeg(A0)x
deg(A0) and B1 =

b1x+ · · ·+ bdeg(B0)x
deg(B0) are unknown polynomials. Here

we are fixing the constant term of B. If we can find the
unknowns {ai, bj}, then find f mod (`2, xa). Then, from
(31), we have

(A0 + `A1) ≡ (B0 + `B1)[h(c0) + `c1h
′(c0)] mod (`2, xa). (33)

Now, solve the linear equation (33) for unknowns {ai, bj , c1}
in F`, and from (32) find f mod (`2, xa) and c ≡ c0 + `c1
mod `2. Then try rational number reconstruction. If it suc-
ceeds, then check if this rational function is the one that
we are looking for or not (apply change of variables trans-
formation and try to find the parameter of the exp-product
transformation). If it is not, then use the same algorithm to
lift f mod (`2, xa) to mod (`3, xa) (or (`4, xa) if an imple-
mentation for solving linear equations mod `n is available).
After a (finite) (we still need to address remark 2) number
of steps, we can recover the rational pullback function f .

3.4.2 Lifting for an Algebraic Pullback Function
We can also recover algebraic pullback functions with a

very similar method as explained in the previous section.
However, in the algebraic pullback case we need to know an
algebraic degree bound for f . The idea here is to recover the
minimal polynomial of the algebraic pullback function f .

Let df be a degree bound, and af be an algebraic degree
bound for f . Consider the below polynomial in y,

af∑
j=1

Ajy
j mod (`, xa), (34)

with unknown polynomialsAj =
∑df
i=0 ai,jx

i, (j = 1, . . . , af ).
First we need to find the value of c0 such that c0 ≡ c

mod `. Similarly, by looping on c0 = 1, . . . , ` − 1, we can
compute the corresponding f ≡ f` ∈ F`/(xa). For this f`,
the polynomial (34) will be congruent to 0 mod (`, xa) if we
plug f` in y. So, solve the equation

af∑
j=1

Ajf
j
` ≡ 0 mod (`, xa)

in F` and find the unknown polynomials Aj . After finding
c ≡ c0 mod ` and polynomials Aj , then let c ≡ c0 + `c1 mod
`2. Then f` also satisfies the polynomial

af∑
j=1

(Aj + `Ãj)y
j mod (`2, xa).

in F` for unknown polynomials Ãj . Similarly, find the c1 and

unknown polynomials Ãj =
∑df
i=0 ãi,jx

i, (j = 1, . . . , af ).
After a finite number of lifting steps, and rational recon-
struction, we will have the minimal polynomial of an alge-
braic pullback function f .

3.5 Recovering the Parameter of Exp-product
After finding f , we can compute the differential operator

M , such that LB
f−→CM

r−→E Linp. Then we can compare the
second highest terms of M and Linp to find the parameter
r of the exp-product transformation: If M = ∂2 +B1∂+B0

and Linp = ∂2 +A1∂ +A0, then r = B1−A1
2

.

4. FUTURE WORK
We plan to work on finding a method to compute a de-

gree bound and an algebraic degree bound for an algebraic
pullback function as well as finding a method to compute
candidate GHDOs for algebraic cases. We also plan to use
[4] to find a method to reduce equations involving gauge
transformation to equations involving only change of vari-
ables and exp-product transformations.
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