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Algorithms

1 Round 2, round 4. Works for number fields and function fields.
Implemented in several computer algebra systems.

2 Puiseux expansions. Works if there is no wild ramification
(includes function fields of char 0 and char p >> 0).
Implemented in Maple’s algcurves package.

3 Montes algorithm. Number fields and function fields.
Magma implementation can be downloaded online.

4 Frobenius based method. Designed for function field of small
prime characteristic p.
Implemented in Macaulay.



Applications

Consider the following number field:

K = Q[x ]/(98818x6 − 800756x5 + 3495803x4 − 8505211x3 +
15375943x2 − 17721960x + 7848261)

There is an algorithm, POLRED, that can size-reduce this to

K ∼= Q[x ]/(x6 − 5x4 − 21x3 − 23x2 − 12x − 2)

A key step is the computation of an integral basis.



Applications

Let L = Q(x)[y ]/(f ) be the function field of the algebraic curve
C ⊂ P2 defined by:

f = y4 + (−4x2 + 2x + 2)y3 + (8x4 − 7x3 − 2x2 − 2x + 1)y2 +
(−12x6 + 9x5 + 4x4 + x3 − 2x2)y + 9x8 − 9x7 + 3x6 − 6x5 + 4x4

Then: L ∼= Q(u)[v ]/(f̃ )

where f̃ = 3v2 + 4u3 + 24u + 1.

How to find such size-reduction? Again, integral basis is key.



Applications

L = Q(x)[y ]/(large equation) = {functions on C}, want to find:

L ∼= Q(u)[v ]/(small equation).

The main step is to find two functions g , h ∈ L of low degree
(then construct an isomorphism with g , h 7→ u, v).

Functions of low degree are functions C → P1 with few poles
(counting with multiplicity).

To find those, we need an integral basis. If A ⊂ C denote:
OA = {g ∈ L | no poles in A}

We can compute low-degree functions from a basis for OA

and a basis for OAc .



Places on Curves

If P is a regular point on a curve C defined over C, then one can
evaluate functions g ∈ L at the point P, and the result is an
element of P1(C) = C

⋃
{∞}.

One can also compute the valuation of g at the point P:

vP(g) > 0 when g has a root of that order at P

vP(g) =∞ when g = 0

vP(g) < 0 when g has a pole of that order at P

vP(g) = 0 when g(P) 6∈ {0,∞}.

vP(g) > 0 means that g has no pole at P.



Places and Valuations

A discrete valuation on L is an onto map v : L→ Z
⋃
{∞} with

g = 0⇐⇒ v(g) =∞
v(gh) = v(g) + v(h)

v(g + h) > min(v(g), v(h)) for all functions g , h ∈ L.

A non-singular point P corresponds to a valuation
vP : L→ Z

⋃
{∞}.

A singular point can correspond to several valuations (g could go
to 0 on one branch of a double-point and not on the other).

Places = “points on desingularized curve”.

Each place P corresponds precisely to one valuation vP .



Places and Valuations

Let L := Fp(x)[y ]/(f ) and

A := {finite places} = {P with vP(x) > 0}

First consider functions in Fp(x) ⊂ L with no poles in A:

{g ∈ Fp(x) | vP(g) > 0 for all P ∈ A}

This is the ring Fp[x ], and so:

OA := {g ∈ L | vP(g) > 0 for all P ∈ A}

is a Fp[x ]-module.

This module is free (Fp[x ] is a PID) so it has a basis b1, . . . , bn.



Integral basis and singularities

L = Fp(x)[y ]/(f ) and A = {finite places}

OA = {g ∈ L | vP(g) > 0 for all P ∈ A}

is the integral closure of Fp[x ] in L
(the elements of L that satisfy a monic equation over Fp[x ]).

Assume f ∈ Fp[x , y ] is monic in y . Then (starting point):

B := {1, y , y2, . . . , yn−1} ⊂ OA.

B is a basis of OA ⇐⇒ f has no singularities in A.



Integral basis and singularities

Assume f monic in y , so F[x , y ] ⊆ OA

If g ∈ OA and d is the smallest polynomial in Fp[x ] for which
d · g ∈ F[x , y ] then d is the denominator of g .

α is a root of a denominator of an element of OA

⇐⇒
α is the x-coordinate of a singular point
=⇒
α is a root of multiplicity > 2 of the discriminant Resy (f , ∂f∂y )

Step 1: Square-free factor the discriminant. Then determine all
irreducible factors of multiplicity > 2. These are the only factors
that can appear in a denominator.



Local integral basis

For d irreducible with d2|disc we need a local integral basis:

a basis of all g ∈ OA whose denominator is a power of d .

Basic overview (for notational convenience take d = x):

1 b1, . . . , bn := 1, y , . . . , yn−1.

2 Find, if it exists (if not, then done), an Fp-linear combination
s of b1, . . . , bn for which s/x ∈ OA.

3 Replace a suitable bi by s/x .

4 Back to step 2.

Main task: step 2.



Matrix of a basis

Start: B = b1, . . . , bn = 1, y , . . . , yn−1.

Let MB be the n by n matrix over Fp(x) for which bp1
...
bpn

 = MB

 b1
...
bn


Lemma: If MB has entries in Fp[x ] then b1, . . . , bn ∈ OA.

Proof: If there is a pole in A among b1, . . . , bn then the pole order
for bp1 , . . . , b

p
n must be higher!

(that contradicts MB having entries in Fp[x ]).



Linear algebra

 bp1
...
bpn

 = MB

 b1
...
bn


Goal: find c1, . . . , ck−1 ∈ Fp such that

bk − (c1b1 + · · ·+ ck−1bk−1)

x
∈ OA

Idea: b 7→ bp is an Fp-linear, so an equivalent problem is to use
matrix MB to search for c1, . . . , ck−1 ∈ Fp such that

bpk − (c1b
p
1 + · · ·+ ck−1b

p
k−1)

is divisible by xp. =⇒ Fp-linear equations for the ci .



Algorithm (stated locally for the factor x)

1 Construct MB for B := 1, y , . . . , yn−1.

2 Read off linear equations for the ci . If no solution: local basis
is done.

3 If there is a solution, then replace bk by
bk − (c1b1 + · · ·+ ck−1bk−1) and adjust MB accordingly
(with elementary row and column operations).

4 Replace bk by bk/x and adjust MB accordingly (multiply the
k’th column by x , and divide the k ’th row by xp).

5 Return to step 2.

The algorithm is almost the same for Fq with q = ps , except that
one obtains twisted-linear equations. These are turned into
ordinary Fq-linear equations with the inverse of the Frobenius.



Algorithm (treating all factors of the discriminant)

To treat the next multiplicity > 2 factor of the discriminant
one does not need to recompute MB ;
simply continue with the last MB .

The “factor at infinity”:

For the application of finding low-degree functions, it is
important to normalize b1, . . . , bn at infinity. This means:
minimize the pole orders of b1, . . . , bn in Ac (they have no
poles in A).
This is almost the same as the local algorithm at x = 0,
except that this time the linear equations come from the
highest powers of x in MB instead of the lowest powers of x .


