
Computing an Integral Basis for an Algebraic
Function Field

Mark van Hoeij
Florida State University

joint with Mike Stillman, Cornell University

Georgia Tech meeting on Algebraic Geometry for Applications

April 11, 2015



Algorithms

1 Round 2, round 4. Works for number fields and function fields.
Implemented in several computer algebra systems.

2 Puiseux expansions. Works if there is no wild ramification
(includes function fields of char 0 and char p >> 0).
Implemented in Maple’s algcurves package.

3 Montes algorithm. Number fields and function fields.
Magma implementation can be downloaded online.

4 Frobenius based method. Designed for function field of small
prime characteristic p.
Implemented in Macaulay.



Applications

Consider the following number field:

K = Q[x ]/(98818x6 − 800756x5 + 3495803x4 − 8505211x3 +
15375943x2 − 17721960x + 7848261)

There is an algorithm, POLRED, that can size-reduce this to

K ∼= Q[x ]/(x6 − 5x4 − 21x3 − 23x2 − 12x − 2)

A key step is the computation of an integral basis.



Applications

Let L = Q(x)[y ]/(f ) be the function field of the algebraic curve
C ⊂ P2 defined by:

f = y4 + (−4x2 + 2x + 2)y3 + (8x4 − 7x3 − 2x2 − 2x + 1)y2 +
(−12x6 + 9x5 + 4x4 + x3 − 2x2)y + 9x8 − 9x7 + 3x6 − 6x5 + 4x4

Then: L ∼= Q(u)[v ]/(f̃ )

where f̃ = 3v2 + 4u3 + 24u + 1.

How to find such size-reduction? Again, integral basis is key.



Applications

L = Q(x)[y ]/(large equation) = {functions on C}, want to find:

L ∼= Q(u)[v ]/(small equation).

The main step is to find two functions g , h ∈ L of low degree
(then construct an isomorphism with g , h 7→ u, v).

Functions of low degree are functions C → P1 with few poles
(counting with multiplicity).

To find those, we need an integral basis. If A ⊂ C denote:
OA = {g ∈ L | no poles in A}

We can compute low-degree functions from a basis for OA

and a basis for OAc .



Places on Curves

If P is a regular point on a curve C defined over C, then one can
evaluate functions g ∈ L at the point P, and the result is an
element of P1(C) = C

⋃
{∞}.

One can also compute the valuation of g at the point P:

vP(g) > 0 when g has a root of that order at P

vP(g) =∞ when g = 0

vP(g) < 0 when g has a pole of that order at P

vP(g) = 0 when g(P) 6∈ {0,∞}.

vP(g) > 0 means that g has no pole at P.



Places and Valuations

A discrete valuation on L is an onto map v : L→ Z
⋃
{∞} with

g = 0⇐⇒ v(g) =∞
v(gh) = v(g) + v(h)

v(g + h) > min(v(g), v(h)) for all functions g , h ∈ L.

A non-singular point P corresponds to a valuation
vP : L→ Z

⋃
{∞}.

A singular point can correspond to several valuations (g could go
to 0 on one branch of a double-point and not on the other).

Places = “points on desingularized curve”.

Each place P corresponds precisely to one valuation vP .



Places and Valuations

Let L := Fp(x)[y ]/(f ) and

A := {finite places} = {P with vP(x) > 0}

First consider functions in Fp(x) ⊂ L with no poles in A:

{g ∈ Fp(x) | vP(g) > 0 for all P ∈ A}

This is the ring Fp[x ], and so:

OA := {g ∈ L | vP(g) > 0 for all P ∈ A}

is a Fp[x ]-module.

This module is free (Fp[x ] is a PID) so it has a basis b1, . . . , bn.



Integral basis and singularities

L = Fp(x)[y ]/(f ) and A = {finite places}

OA = {g ∈ L | vP(g) > 0 for all P ∈ A}

is the integral closure of Fp[x ] in L
(the elements of L that satisfy a monic equation over Fp[x ]).

Assume f ∈ Fp[x , y ] is monic in y . Then (starting point):

B := {1, y , y2, . . . , yn−1} ⊂ OA.

B is a basis of OA ⇐⇒ f has no singularities in A.



Integral basis and singularities

Assume f monic in y , so F[x , y ] ⊆ OA

If g ∈ OA and d is the smallest polynomial in Fp[x ] for which
d · g ∈ F[x , y ] then d is the denominator of g .

α is a root of a denominator of an element of OA

⇐⇒
α is the x-coordinate of a singular point
=⇒
α is a root of multiplicity > 2 of the discriminant Resy (f , ∂f∂y )

Step 1: Square-free factor the discriminant. Then determine all
irreducible factors of multiplicity > 2. These are the only factors
that can appear in a denominator.



Local integral basis

For d irreducible with d2|disc we need a local integral basis:

a basis of all g ∈ OA whose denominator is a power of d .

Basic overview (for notational convenience take d = x):

1 b1, . . . , bn := 1, y , . . . , yn−1.

2 Find, if it exists (if not, then done), an Fp-linear combination
s of b1, . . . , bn for which s/x ∈ OA.

3 Replace a suitable bi by s/x .

4 Back to step 2.

Main task: step 2.



Matrix of a basis

Start: B = b1, . . . , bn = 1, y , . . . , yn−1.

Let MB be the n by n matrix over Fp(x) for which bp1
...
bpn

 = MB

 b1
...
bn


Lemma: If MB has entries in Fp[x ] then b1, . . . , bn ∈ OA.

Proof: If there is a pole in A among b1, . . . , bn then the pole order
for bp1 , . . . , b

p
n must be higher!

(that contradicts MB having entries in Fp[x ]).



Linear algebra

 bp1
...
bpn

 = MB

 b1
...
bn


Goal: find c1, . . . , ck−1 ∈ Fp such that

bk − (c1b1 + · · ·+ ck−1bk−1)

x
∈ OA

Idea: b 7→ bp is an Fp-linear, so an equivalent problem is to use
matrix MB to search for c1, . . . , ck−1 ∈ Fp such that

bpk − (c1b
p
1 + · · ·+ ck−1b

p
k−1)

is divisible by xp. =⇒ Fp-linear equations for the ci .



Algorithm (stated locally for the factor x)

1 Construct MB for B := 1, y , . . . , yn−1.

2 Read off linear equations for the ci . If no solution: local basis
is done.

3 If there is a solution, then replace bk by
bk − (c1b1 + · · ·+ ck−1bk−1) and adjust MB accordingly
(with elementary row and column operations).

4 Replace bk by bk/x and adjust MB accordingly (multiply the
k’th column by x , and divide the k ’th row by xp).

5 Return to step 2.

The algorithm is almost the same for Fq with q = ps , except that
one obtains twisted-linear equations. These are turned into
ordinary Fq-linear equations with the inverse of the Frobenius.



Algorithm (treating all factors of the discriminant)

To treat the next multiplicity > 2 factor of the discriminant
one does not need to recompute MB ;
simply continue with the last MB .

The “factor at infinity”:

For the application of finding low-degree functions, it is
important to normalize b1, . . . , bn at infinity. This means:
minimize the pole orders of b1, . . . , bn in Ac (they have no
poles in A).
This is almost the same as the local algorithm at x = 0,
except that this time the linear equations come from the
highest powers of x in MB instead of the lowest powers of x .


