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1 Introduction

In recent years the PI and his students have developed algorithms for find-
ing closed form solutions of second order linear differential equations with
rational function coefficients. The PhD thesis [33] of Quan Yuan gave prov-
ably complete algorithms to find closed form solutions in terms of many
special functions, with one important exception: the Gauss hypergeometric

2F1 function.
Since then, the PI and his students have developed several algorithms

to find 2F1-type solutions. Combined, nearly all 2F1-cases are now covered.
Equations with 2F1-type solutions turned out to be remarkably common
(e.g. [6, 9, 10, 24, 47]), leading to an unexpected conjecture:

Definition 1. A linear homogeneous differential equation with polynomial
coefficients is a CIS-equation if it has a CIS-solution: a non-zero solution
that, possibly after scaling1, allows a Convergent Integer power Series.

Conjecture 1. Any second order CIS-equation is 2F1-solvable.

Solving such equations used to be difficult; closed form solutions can
be complicated (e.g. http://oeis.org/A151329). With support from NSF
1319547, algorithms were developed that can quickly solve these equations.
As a result, Conjecture 1 has now been tested on hundreds of examples
coming from many sources.

1y(x) is CIS, also called globally bounded, if it has an expansion y(x) =
∑∞

i=0 ui(sx)i,
with positive radius of convergence, for some s ∈ C and ui ∈ Z.
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An integer sequence {un} corresponds to an integer power series
∑

unx
n,

so it is not surprising that CIS-equations are common in combinatorics.
But they are surprisingly common in physics as well, such as Calabi-Yau
equations [38, 39, 46] or the Ising model [6, 10, 47].

A puzzling question remained. Why should second order CIS-equations
from so many sources all be 2F1-solvable, while the same sources also have
4th order CIS-equations that resist being solved by similar methods?

The hypergeometric 2F1 function has many applications, and conse-
quently, many generalizations have been introduced. The pFq-functions are
univariate functions, but there are also multivariate hypergeometric func-
tions such as Appell functions, Horn, Lauricella, etc. This ever growing zoo
became organized when GKZ [52] introduced A-hypergeometric functions.

For a number of years it appeared as though Conjecture 1 does not extend
to order > 3. The reason is because for solving univariate differential equa-
tions, the most natural functions to consider are univariate hypergeometric
functions (the pFq-functions). The methods developed for 2F1-type solutions
generalize to pFq-type solutions (4F3 for 4th order equations). However, of
the hundreds of 4th order equations in the Calabi-Yau database [38], only
a handful turned out to be 4F3-solvable. Conjecture 2 below proposes the
following answer to this puzzling situation: Conjecture 1 does generalize to
higher order, but only if one allows multivariate hypergeometric functions
(which become univariate via substitutions).

Conjecture 2. Any CIS-equation can be solved in terms of A-hypergeometric
functions.

New methods will need to be developed that, given such an equation,
select the right A-hypergeometric system and its parameters, and then find
the correct substitutions.

In the GKZ system, the rank (= order) of an A-hypergeometric system
corresponds to a polytope with normalized volume n, so one may addition-
ally ask:

Question 1. Are CIS-equations of order n solvable in terms of A-hypergeo-
metric functions with polytopes of normalized volume ≤ n?

This leads to numerous other conjectures and questions, several of which
can be tested with a finite computation. For example:

Question 2. If an A-hypergeometric module of rank n is reducible, must its
factors be solvable in terms of A-hypergeometric functions with rank < n?
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We checked this for one case, namely the Appell F1 function, which is A-
hypergeometric of rank 3. It is known (the so-called resonant case [52]) for
which parameters an A-hypergeometric system becomes reducible. For each
reducible Appell F1 system, we computed the rank-2 factor and verified that
it is 2F1-solvable with the algorithms supported by NSF 1319547. These al-
gorithms can solve non-trivial equations; this computation produced several
formulas for the Appell F1 function that are not known in the literature.

1.1 Goals

The main goal in this proposal is to develop algorithms to find solutions in
terms of A-hypergeometric functions. Intermediate goals are:

1. Classify A-polytopes with normalized volume 3, then classify the cor-
responding A-hypergeometric systems.

2. Answer Question 2 for all resonant (i.e. reducible) A-hypergeometric
systems of rank 3.

3. Develop algorithms that can solve in terms of A-hypergeometric func-
tions of rank 3, starting with the Appell F1 function. Then test Ques-
tion 2 for rank-3 factors of higher-rank systems.

4. Classify A-polytopes of normalized volume 4, and develop algorithms
to find solutions in terms of A-hypergeometric functions of rank 4.

5. Apply these algorithms to the Calabi-Yau database [38], which has
over 400 CIS-equations, most of which have order 4. The algorithms
to be developed in this proposal should allow us to either solve these
equations, or find a counter-example to Conjecture 2.

6. Develop algorithmic tools to facilitate the above goals.

1.2 Relation to prior work

Christol’s conjecture [61] states that a CIS function y(x) =
∑

uix
i satisfying

a linear differential equation should be the diagonal of a multivariate rational
function. This has recently been shown [45] to be equivalent with {un}
being a multiple binomial sum. Christol’s conjecture differs from ours in an
important way: it is not falsifiable with currently known methods.

We collected a list of CIS-equations from various sources (including hun-
dreds from the Online Encyclopedia of Integer Sequences, oeis.org). There is
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no known method to decide if a CIS-equation comes from a diagonal, except
if a diagonal or a multiple binomial sum is already known. So there is no
way to know if the list has many, few, or no counter examples to Christol’s
conjecture.

In contrast, Conjecture 1 is falsifiable because for each explicit example
we can test Conjecture 1 with the algorithms supported by NSF 1319547.
Likewise, Conjecture 2 should become testable with the algorithms to be
developed under this proposal.

In [50] Dwork conjectured that globally nilpotent [47] operators are solv-
able in terms of hypergeometric functions. This conjecture implies our con-
jectures because CIS implies globally nilpotent. However, a counter example
to Dwork’s conjecture was given by Krammer in [72]. It is not a counter
example to Conjecture 1 since the function has no integer power series, even
after scaling.

Many of the computational tools used for NSF 1319547 will need to
be extended to higher order equations, and to multivariate systems. For
example, the PI implemented DFactor in Maple, a program that can factor
univariate differential operators. To test Question 2 properly, one needs to
compute a factor of a multivariate system (we verified Question 2 for the
Appell F1 function by reducing to univariate equations via substitutions, and
then reconstructing the bivariate result via interpolation, but continuing this
approach would be tedious).

1.3 Broader Impacts of the Proposed Work

This project will provide valuable research experience for two graduate stu-
dents, who will develop new algorithms that will significantly increase the
capabilities of computers to solve differential equations. These algorithms
will be made freely available.

Many branches of science have important impacts on society. Differential
equations occur in almost every branch of science, and having closed form
solutions is very useful in practical applications. Computer algebra systems
are widely used and are of great value to society; they are an important part
of the infrastructure for research and education. Within computer algebra,
differential equations is one of the areas with the highest overall impact.

2 Notation and Examples

Let ∂ denote d/dx, so if L = an∂
n + · · · + a1∂ + a0 then L(y) denotes

any
(n) + · · ·+ a1y

′ + a0y. The Gauss hypergeometric function is defined as
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follows:

2F1(a, b; c; x) =
∞∑
n=0

(a)n(b)n
(c)n

xn

n!
(1)

where the Pochhammer symbol (a)n is

(a)n = a(a + 1)(a + 2) · · · (a + n− 1) =
Γ(n + a)

Γ(a)
.

The 2F1-function satisfies a second order equation L(y) = 0 where

L = (x− x2)∂2 + (c− (a + b + 1)x)∂ − ab. (2)

2.1 An example relating Conjecture 1 to Question 2.

The Apéry numbers

un =
n∑

k=0

(
n
k

)2(
n + k
k

)
(3)

have a generating function y =
∑∞

n=0 unx
n that satisfies the differential

equation L(y) = 0 where

L = (x3 + 11x2 − x)∂2 + (3x2 + 22x− 1)∂ + (x + 3) (4)

L has a Convergent Integer power Series solution so it should be 2F1-solvable
according to Conjecture 1. The smallest 2F1-solution is

y =
2F1

(
1
12 ,

5
12 ; 1; f

)
4
√

1− 12x + 14x2 + 12x3 + x4

where the pullback function is

f =
1728x5(1− 11x− x2)

(1− 12x + 14x2 + 12x3 + x4)3

Before the implementations supported by NSF 1319547 (see Section 6.3) it
was hard to find such solutions. The main complication is that the factor
in the denominator in the pullback function f is not visible in L. Note that
the degree of f is 12 even though L has only 4 singular points (the roots of
x3 + 11x2 − x and the point at infinity).
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The question in Conjecture 1 is not how to find such a solution, but why
it should exist in the first place. Question 2 can help explain this as follows.
The expression

y =
∑
n,k

(
n
k

)2(
n + k
k

)
xn

can be written as an A-hypergeometric function by following the recipe from
[44, Section 6], which produces the A-polytope and the parameters2. The
polytope has normalized volume 6, and the system is resonant (reducible).
The system has 7 variables v1, . . . , v7. The function y is obtained by sub-
stituting (v1, . . . , v7) = (x,−1, 1, 1, 1, 1, 1). This substitution reduces the
A-hypergeometric system of PDE’s in 7 variables to a univariate differential
operator of order 6:

L6 = x4(x2 + 11x− 1)∂6 + x3(23x2 + 198x− 13)∂5

+x2(171x2 + 1081x− 46)∂4 + 2x(245x2 + 1024x− 23)∂3

+(506x2 + 1142x− 8)∂2 + (140x + 100)∂ + 4.

Since the system is resonant, L6 must be reducible. The factorization can
be obtained with Maple’s DFactor (developed in the PI’s PhD thesis). This
way one recovers the second order operator L in (4) above. If Question 2 is
true, then this would explain why Conjecture 1 is true for equations coming
from binomial sums. This is progress because Question 2 is partially testable
at the moment, and much more so by the end of the proposed project.

There are two versions of Question 2:

(i) Systems that become reducible by selecting resonant parameters.

(ii) Systems that become reducible by a substitution of the variables:
(v1, . . . , vN ) = (f1, . . . , fN ).

The answer to Question 2 may well depend on which version one considers.
Version (i) has already helped our implementation as follows. Take an A-

hypergeometric system, select parameters for which it has a second order fac-
tor, and substitute arbitrary rational functions for the variables v1, . . . , vN .
The resulting second order equation should be 2F1-solvable. No counter ex-
amples were found, but this did turn out to be an excellent way to find bugs
in the implementation.

2This recipe can likely be used to give another proof to the Wilf-Zeilberger Conjec-
ture [55, 60] and an alternative to Zeilberger’s algorithm [79].

6



One way to find a (partial) proof for Question 2 is by comparing the
monodromy (which can be often computed due to recent work of Beukers
[43]) of resonant rank-n systems with that of rank < n systems. However,
our primary focus will be on developing algorithms, because these will be
useful for many other applications.

2.2 An example of order 3

A univariate generalization of the Gauss hypergeometric function is the pFq

function

pFq(a1, . . . , ap; b1, . . . , bq; x) =
∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

xn

n!

The Calabi-Yau database [38] contains a large number of CIS-equations.
The third order equations in this database turn out to be 3F2-solvable (and

2F1-solvable via the reduction of order from [69]). However, most of the
hundreds of 4th order equations in the database are not 4F3-solvable. So
Conjecture 2 fails for order 4 if we restrict to univariate hypergeometric
functions.

One of the many multivariate generalizations is Appell’s F1 function.

F1(a, b1, b2, c; x, y) =
∞∑

m=0

∞∑
n=0

(a)m+n(b1)m(b2)n
(c)m+nm!n!

xmyn

We can select parameters a, b1, b2, c for which F1 becomes CIS, meaning
that F1(a, b1, b2, c; s1x, s2y) will have integer coefficients for suitable scaling
factors s1, s2 6= 0. If we substitute (x, y) 7→ (f1(x), f2(x)) for some CIS-
functions with f1(0) = f2(0) = 0 then we obtain a univariate CIS function,
which will satisfy a third order operator since the F1 system has rank 3.

The PI and graduate student Wen Xu took such an example

F1

(
1

6
,
1

5
,
1

5
, 1;

x +
√
x2 + 4x

2
,
x−
√
x2 + 4x

2

)
(5)

and computed its minimal operator L =

900x2(x + 4)(43x− 20)(2x− 1)∂3 + 60x(5891x3 + 9388x2 − 11890x + 3000)∂2

+(235296x3 + 30775x2 − 191300x + 36000)∂ + (3096x2 − 5005x− 1900).

The symmetry b1 = b2 allowed the square-root in f1, f2 to disappear. We
picked the parameters 1/6, 1/5, 1/5, 1 in (5) in such a way that we can prove
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that L is not 3F2-solvable3. The function (5) has an integer power series∑
uix

i after scaling x 7→ x · 243352 so L is CIS.
In this example L is F1-solvable by construction. Conjecture 2 says that

all CIS-equations should come from A-hypergeometric functions in this way.

3 Proving that a recurrence produces an integer
sequence

Question 3. Is there a method that, for a sequence given by a recurrence,
can decide if the sequence is an integer sequence or not?

Consider the sequence {un} given by u0 = 1, u1 = 3, and

un =
(11n2 − 11n + 3)un−1 + (n− 1)2un−2

n2
(6)

One finds u2 = 76/22 = 19, u3 = 1323/33 = 147, etc. The question is, how
to prove that every un is an integer, despite the divisions by n2? There
is a short proof for this example, as follows: Show that un is the same
as (3) by showing (e.g. with Zeilberger’s algorithm [79]) that (3) satisfies
recurrence (6). But what if no clearly-integer expression such as (3) is
known?

Suppose for example v0 = 1, v1 = 828, and

vn = 4
(−592n2 + 1184n− 385)vn−1 − 283(4n− 5)(4n− 11)vn−2

n2
(7)

Again v0, v1, v2, . . . appear to be integers, but this time we have no formula
such as (3) that quickly proves this. The relation to this project is that at
the moment, the only method to prove that vn ∈ Z for all n is by solving a
differential equation.

The recurrence for vn can (e.g. with Maple’s gfun package) be converted
to a differential equation for y =

∑
vnx

n(
∂2 +

1

x
∂ − 36(283 · x + 23)

21273 · x3 + 2637 · x2 + x

)
(y) = 0 (8)

This equation appears to be CIS because y = 1 + 828x + · · · appears to
have integer coefficients. No current computer algebra system can find a

3All order-3 CIS equations we encountered in the literature and oeis.org turned out
to be 3F2-solvable; this example is the first that showed that Conjecture 2 restricted to
univariate hypergeometric functions also fails for order 3.
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2F1-type solution for this equation, for that, we need the algorithms ([14]
or [25]) developed with support of NSF 1319547. The resulting 2F1-type
expression is:

y = r0 · 2F1

(
1

12
,

7

12
; 1; f

)
+ r1 · 2F1

(
1

12
,
19

12
; 1; f

)
(9)

where the pullback function is:

f =
−123x(1123x2 + 2368x + 1)

(1 + 1152x)2

and

r0 =
2 + 2496x

9(1 + 1152x)7/6
, r1 =

7(1 + 1344x)2

9(1 + 1152x)7/6
.

Such a solution can be used to prove4 that (8) is indeed CIS and that {vn}
is an integer sequence.

Question 3 is closely related to solving differential equations. At the
moment, the only way to prove that {vn} is an integer sequence is by solv-
ing (8). A key motivation for this proposal is to answer Question 3 when
the differential equation has order > 2. As shown in Section 2.1, this will
require multivariate hypergeometric functions.

4 Tools needed for this project

The key step towards finding solutions such as (9) from Section 3 is to find
the parameters and the pullback function f . This data is obtained by com-
paring exponent-differences at the singularities of the input equation (equa-
tion (8) in the example) with that of the Gauss hypergeometric 2F1 equa-
tion (2). The pullback function f maps each of the so-called non-removable
singularities of the input equation (8) to one of the three singularities 0, 1,∞
of (2).

This becomes considerably more technical for A-hypergeometric solu-
tions. Take the Appell F1 system for example. The singularities are now
not points, but lines {x = 0, x = 1, x = ∞, x = y, y = 0, y = 1, y = ∞}
and there are two pullback functions f1, f2 instead of one. A non-removable

4Sums, products, and compositions, of CIS-functions are CIS, so equation (9) immedi-
ately implies that y is CIS. This in turn implies that there are only finitely many primes
p that could appear in a denominator in the sequence {vn}. So (9) reduces the proof to
checking a finite set of primes.
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singularity of the input equation L need no longer come from one, it could
also come from multiple singularities of the Appell F1 system.

The local asymtotic behavior of the 2F1 equation (2) is determined by
the local exponents. This too is more complicated for the F1 system. To
find the pullback functions f1, f2 one needs a precise relation between the
local asymptotic behavior of the F1 system, and the exponents of the input
equation L.

Graduate student Wen Xu is currently studying these issues. She will
then use the obtained formulas to develop algorithms to find f1, f2. Initially
these algorithms will only cover low-degree pullback functions, just like [14].
To find high degree pullback functions, one could consider extending one of
the approaches described in item 1 in Section 6.3, or perhaps, search for a
new approach.

4.1 Reducing equations

The integer sequence listed at oeis.org/A151329 is the number of walks in
N2, starting at (0,0), and consisting of n steps taken from {(−1,−1), (−1, 1),
(−1, 0), (0, 1), (1,−1), (1, 0), (1, 1)}. The generating function y =

∑
unx

n

satisfies a 5th order differential operator, which factors as a product of a
second order factor L2 and three first order factors. The explicit expres-
sion for the generating function given at oeis.org/A151329 was obtained by
computing the 2F1-type solutions of L2, and applying three integrals that
correspond to the first order factors. The operator L2 is a large expression.
It has a solution of a form similar to (9), however, this time r0, r1 are much
larger. The solution can not be written with a single 2F1 term, otherwise,
the implementation [12] of graduate student Erdal Imamoglu (supported by
NSF 1319547) would have found it.

The algorithm in [12] motivates the following question: Given a large
equation L2, how to find a so-called gauge-transformation that will reduce
L2 to an easier equation L̃, one where the solution can be written using a
single 2F1 term? That equation will then be solvable with [12]. Solving it,
and applying the inverse gauge transformation Y 7→ r0Y + r1Y

′ will then
produce the solutions of L2.

Erdal Imamoglu has recently implemented a method that is very effective
at finding this gauge-transformation. So far, it appears that his implemen-
tation [25] always manages to reduce to an equation whose solution involves
only one 2F1 term. This observation should be investigated in more details.
Currently only order 2 is implemented, but if this strategy also works for
higher order, it could simplify the algorithms significantly. For an equation
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of order n, it would mean that instead of searching for a solution with n
terms r0Y +r1Y

′+· · · rn−1Y (n−1), it suffices to search for a solution with one
term. Such a reduction would allow us to focus on the problem of finding
the parameters and pullback function(s) for the A-hypergeometric function.

Differential equations and recurrence relations can be converted to one
another. The PI and YongJae Cha, a former student, have developed an
algorithm [15] to find gauge-transformations for recurrence relations. In-
vestigating how this interacts with reducing differential equations would be
interesting, particularly for Question 3.

5 Liouvillian solutions

The celebrated Kovacic algorithm [71] can compute all Liouvillian solutions
of second order equations and is implemented in several computer algebra
systems. Liouvillian solutions are solutions that one can write in terms
of exponentials, logarithms, integration symbols, algebraic extensions, and
combinations thereof. In particular, they can be expressed without hyper-
geometric functions.

Klein’s theorem provides an alternative representation. It says that for
irreducible second order equations, Liouvillian solutions can be expressed
with the hypergeometric 2F1 function instead of algebraic extensions. An
algorithm to find Liouvillian solutions in this form was developed by J.A.
Weil and the PI [70]. It turned out that expressing Liouvillian solutions in

2F1 form is much more efficient and leads to much smaller5 expressions. For
this reason, this algorithm is now the default in Maple. In fact, even if one
wants Liouvillian solutions in Kovacic form, the most efficient method is to
first compute them in 2F1-form with [70] and then convert.

There are algorithms for computing Liouvillian solutions of higher order
equations [62, 63]. However, only special cases (e.g. imprimitive differential
Galois group) have been incorporated in a computer algebra system because
for most Galois groups, the solutions become impractically large. These
Liouvillian solutions should be expressible in terms of A-hypergeometric
functions, with much smaller expression sizes.

5 www.math.fsu.edu/∼hoeij/papers/issac05/6.pdf gives an example with a more than
100-fold reduction in expression size
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6 Results from prior NSF support.

During 2010–2015, the PI published 11 journal papers [1-11], 12 conference
papers [12-23], 8 preprints [24-31]. Four of the PI’s Ph.D students com-
pleted their thesis [32-35] during this time, and the PI co-advised for two
more theses. The PI is currently supported by NSF 1319547, which also
supports two RA’s and one student from Brazil visiting for a year.

Title: AF:Small: Linear Differential Equations with a Convergent Integer
Series Solution. NSF 1319547, 09/01/13 – 08/31/16, $479,405.

The Project Description of NSF 1319547 (as well as NSF 1017880 and
0728853) can be viewed at www.math.fsu.edu/∼hoeij/papers.html

6.1 Broader Impacts (NSF 1319547)

The PI and two graduate students will develop algorithms that will signifi-
cantly increase the capabilities of computers to solve differential equations.
This in turn will be very valuable to the many parts of science and engi-
neering that use differential equations. Techniques from number theory and
algebraic geometry will be used to tackle the theoretical goals.

The benefit to society is manifold but indirect; computer algorithms do
not build bridges, but they are useful for designing bridges, studying ocean
waves, fiber optics, quantum mechanics, population dynamics, etc., the list
of applications of differential equations is long and diverse.

6.2 Intellectual merit (NSF 1319547)

The proposed work builds on recent work of the PI and his graduate students
to develop algorithms for solving linear differential equations. A practical
goal is to extend these algorithms to solve every CIS-equation of order < 4.

The main theoretical goal is to prove completeness for the proposed
algorithms, in the sense that they either construct a closed form solution or
a proof that such solutions do not exist. To accomplish this goal, the PI
will use results from modular curves, number theory, Belyi maps and dessins
d’enfants.

The PI’s approach is very effective for CIS-equations of order < 4, which
raises the theoretical question if all such equations have closed form solu-
tions. The PI will study this question and compare with related concepts,
such as G-functions, globally nilpotent operators, and Calabi-Yau operators.
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6.3 Overview of results from NSF 1319547

1. Linear differential equations:

Not long ago it was thought that closed form solutions are rare. How-
ever, for every integer sequence in oeis.org it turned out that if its
generating function is convergent and satisfies a second order linear
differential equation, then that equation is solvable in closed form. We
can now solve these equations automatically with the algorithms sup-
ported by NSF 1319547. These algorithms are being used by other re-
searchers to find closed form expressions in applications such as physics
and combinatorics.

Our first approach was to divide the problem of finding 2F1 type solu-
tions in two categories; the “easy” cases where f has low degree [14],
or where the roots and poles of f can be read from the singularities.
The hard cases are when f is an algebraic function, see item 2 be-
low, or, where f has many roots or poles that do not appear among
the singular points, as illustrated in (4) in Section 2.1. This situation
can only occur when f has a very specific branching pattern. Such f
correspond, up to Mobius-equivalence, to combinatorial objects called
dessins d’enfants and near-dessins.

• ◦ •.
.................

..............
............

.....................................................
...........
..

..........
.....◦ .

..........
.......

..........
....

......................................................
............

..............

.................
.........
.........
..........
............
.............

..............
◦. ...................

..................
.................

................

.........
.........
.........
.
..........
..
..........
...

..........
....◦.

...............
....

.................. ................. ................

•.............
............
............
.............
................

.................. ◦. .................. ................
.............
..........
.
..........
.
.........
..

.
.........
...

.........
...
..........
..

............. ................ .................. ◦. ..................
................
.............
............

.............

.............
•

•.............
............
............
.............
................

.................. ◦. .................. ................
.............
..........
.
..........
.
.........
..

.
.........
...

..........
..
..........
..

............. ................ .................. ◦. ..................
................
.............
............

.............

.............
•

. ............ ............. .............
...........

..

..........
.....

..........
........

.........
.........
..

.........
.........
....

◦

. ............
.............
.............
.............

...............

.................

...................

.....................

1

3 2
4 5

6

7

10 11

12
18

16
17

14

138

9
15

◦ •....................
.................

................

...............

................
................. ◦. ............. ............ ............ ............. ............. .............

.
.........
.........
.

.........
........

..........
......

...........
....

..............
..

................. ◦. ............. ............ ............ .............
.............
.............•

•

.
...............

.................

...................

.....................
◦

.
...........

...

..........
....

.........
......

.........
.......

.

..........
..........
..........
.....

..........
..........
..........
.....

.

................................

................................

◦

◦

1 2

3 4 5

6

7
8

9

Figure 1: two dessins d’enfants

These are combinatorial objects. So for equations with a fixed number
of singular points, it should in principle be possible to tabulate them
with a finite computation:

• A Heun equation is a differential equation with d = 4 singular
points. The PI and Raimundas Vidunas determined a table of all
rational Belyi maps that can occur as a pullback function between
a Heun and a hypergeometric equation. The result is the largest
table in the literature of Belyi functions and dessins d’enfants. To
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find them it was necessary to develop numerous new algorithms.
The table and algorithms are available at [1]. The table gives all
(up to easy-to-recover transformations) Heun equations that are

2F1-solvable with a rational pullback.

• With Vijay Kunwar (Ph.D 2014) this work has been extended to
CIS-equations with d = 5 singular points. The tables, algorithms
and preprint are available [26]. The emphasis in this work is
to prove that the tables are complete, in order to ensure that
the resulting differential solver will be complete whenever the
equation has d = 4 or d = 5 non-removable singularities. For
d = 5 we have to catalogue not only dessins d’enfants, but also
near-dessins, which are braid orbits of 4-constellations (lists of 4
permutations). We have developed algorithms to find all near-
dessins for d = 5 and have computed the corresponding pullback
functions f , which in this context are one-dimensional families.
Combining this work with [19, 14, 32, 26] we now have complete
algorithms for large classes of equations.

• The tables for d = 4 and d = 5 are very large, extending them
to > 5 singularities would not be practical. An algorithm [12] for
any d has been developed with graduate student Erdal Imamoglu.
Though completeness is not (yet) proven, the algorithm is very
effective in practice, especially after the recent addition of the
integral basis method [25].

In summary, we now have provably6 complete algorithms for large
classes of second order equations, and a very effective algorithm
for the remaining second order equations. So the focus in the
proposed project will be on higher order equations. A lot of new
tools will need to be developed for this, because the current tools
are for the univariate case, which will not suffice for order > 2 as
shown in Section 2.2.

2. Modular curves: The work with Vidunas and Kunwar classified
rational functions that can occur as pullback functions for 2F1-type
solutions, but occasionally, an algebraic function is needed as well (see
oeis.org/A005259 for an example where a square-root is needed inside
the hypergeometric function). These algebraic cases correspond to
modular curves X0(N). To tabulate them, the PI has written a web-
site www.math.fsu.edu/∼hoeij/files/X0N with data about X0(N) in

6This could be important in the event of a candidate counter-example to Conjecture 1.
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computer readable format. It also contains an algorithm PuiseuxX0N
and a corresponding preprint.

The PI has published a joint paper [2] with Maarten Derickx on the
gonality of the modular curve X1(N), and written a preprint [27] with
Derickx and Zeng. The websites with the data for these papers are in
the folders X1N and XH under www.math.fsu.edu/∼hoeij/files

The PI has found a method [31] to find points on the modular curve
X1(N) that are defined over minimal number fields. There is an on-
going project with Maarten Derickx to prove that the resulting list of
degrees is complete for N ≤ 40.

3. Subfields: The PI’s algorithm [3] for computing subfields of number
fields has been incorporated into Magma. The number of subfields
(denoted m) is not polynomially bounded, and the complexity of com-
puting all subfields has a term that depends on m. In joint work with
Jonas Szutkoski, a visiting student from Brazil, we improved the com-
plexity by minimizing this term. This improvement can be observed
in Jonas’ implementation; it outperforms Magma when m is large.

Both [3] and the new algorithm compute a set L1, . . . , Lr of so-called
generating subfields. Then [3] computes all subfields by computing
intersections of L1, . . . , Lr with linear algebra. The key idea of the
new algorithm is that this step can be done much faster as follows:
One can associate a partition of {1, . . . , r} to each Li, in such a way
that intersecting subfields corresponds to a quick operation on these
partitions. This way the entire subfield lattice can be obtained from
L1, . . . , Lr in O(r5/2m) bit operations.

4. Integral basis: The PI and Mike Stillman have developed a new al-
gorithm for computing an integral basis in an algebraic function field
[28]. One application of integral basis is, for an algebraic function
field given by a complicated defining polynomial, to find a smaller
polynomial defining an isomorphic function field. Remarkably, a simi-
lar approach turned out to be highly effective for differential equations
as well, making Erdal’s implementation of the quotient method [12]
far more powerful [25].
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