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Abstract

We present a new algorithm to compute exponential solutions of differential operators with
rational function coefficients. We use a combination of local and modular computations, which
allows to reduce the number of possibilities in the combinatorial part of the algorithm. We
also show how unnecessarily large algebraic extensions of the constants can be avoided in the
algorithm.

Introduction
An ordinary differential equation
Y™ + a1y ™D 4+ agy =0 (1)
corresponds to a differential operator
"+ an_10""t + -+ + apd° (2)

acting on y. Let C C Q be some number field (we will allow more general C in Section 7.1). The
topic of this paper is finding exponential solutions of (1) when the a; are in C(z). By this we mean:
finding all r € Q(z) for which y = exp([r) is a solution of (1). This is equivalent to finding first
order right hand factors & — r with r € Q(z) of (2). Consequently, it can be viewed as part of
the more general problem of factoring differential operators. Beke gave two factoring algorithms
in [Bek94] (see also [PS03, 4.1 and 4.2.1]), one algorithm for first order factors (which we will refer
to as Beke’s algorithm in this paper) and one algorithm (which uses first order factors) for higher
order factors. Other factoring algorithms are the local to global method of [Hoe97a, Hoe97b] and
the eigenring method ([Sin96], [PS03, 4.2.2]). Computing exponential solutions (computing first
order factors) with these algorithms can be slow. It is not difficult to find examples where Maple’s
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ezxpsols takes a long time, even though it uses an almost rational version of Beke’s algorithm, the
local to global method, as well as the eigenring method. The goal in this paper is to give a faster
algorithm. We combine modular methods with an almost rational version of Beke’s algorithm to
obtain Algorithm ExpSolsInC' which computes the exponential solutions defined over a given field
C. Then we study the field problem, which is necessary for giving an efficient algorithm ExpSols
for computing all exponential solutions.

We sketch Beke’s method using the vocabulary of this paper. First, at each singularity, one
computes a finite number (at most n) of objects called generalized exponents. Then, for each
combination of generalized exponents (choose one generalized exponent at each singularity), the
problem reduces to computing polynomial solutions (e.g., with [ABP95]) of some other differential
operator. There are two main problems:

e a combinatorial problem: one has to choose a generalized exponent at each singularity which
could lead to a large number (at most n™ where m is the number of singularities) of possible
combinations.

e q field problem: singularities and generalized exponents are often defined over algebraic ex-
tensions of C, so some combinations can be defined over large algebraic extensions of C.

If neither problem occurs then Beke’s algorithm usually works well in practice. Thus we are mainly
interested in situations where one or both of these two problems do occur. If we can discard
combinations in advance then that would address the combinatorial problem, and in some cases
even the field problem if the discarded combinations include those that are defined over large
extensions of C. Our first main goal is to do this with computations modulo a prime number p.

The algebraic theory of ordinary differential equations in characteristic p is studied in [Hon81,
Kat82, CC85, Put95]. For the problem of factoring differential operators with coefficients in Fp(w),
van der Put showed in [Put95] (this is also recalled in [Put96, 2.1] and [PS03, 13.1]) that the relevant
object is the p-curvature since it determines the differential module mod p and all factorizations of
the operator. More recently, an algorithm to factor Ore polynomials with coefficients in F,(z) is
included in [GZ03]. This algorithm is based on the eigenring method adapted to characteristic p
and generalizes the work of [Gie98] that tackles the problem of factoring differential operators over
F, where ¢ = p' for p prime and [ € N*. An algorithm to factor differential systems over F,(z),
giving links between the p-curvature and the eigenring, is found in [Clu03].

The natural idea to lift modular factorizations to characteristic zero has been studied in [Put96,
4.3] and [PS03, 13.2.3]. In this paper we propose a different approach because there are many
problems that prevent lifting from becoming an efficient and complete algorithm for characteristic
zero. For example, there could be many factorizations in characteristic p, and it is not clear which
of these should be lifted. Also, it is not clear how to do efficient Hensel lifting. Using more than
one prime leads to the combinatorial problem of combining factors of different characteristics, and
using large prime(s) makes p-curvature computations or factoring operators mod p expensive. We
propose not to use factors of the operator mod p for problems in characteristic zero, but to use
only the characteristic polynomial of the p-curvature.

To reduce the number of combinations to check in Beke’s algorithm, we prove links between
eigenvalues in F,(zP) of the p-curvature and the reduction mod p of the generalized exponents.
Algorithm CombMatchRoot determines which generalized exponents match a given eigenvalue.
Algorithm ExpSolsInC' uses this information to compute all exponential solutions defined over a
field C (this C' must be given in the input). Unfortunately, there are cases (see Section 5) where
our mod p computations yield no improvements for the combinatorial problem.



The field problem refers to the problem that the usual Beke’s algorithm computes with a gen-
eralized exponent at every singularity simultaneously. So the degree of the field extension of C in
Beke’s algorithm depends ezponentially on m, the number of singularities (an extension of degree
< m! for the singularities followed by an extension of degree < n™ for the generalized exponents).
Of course this can easily choke the computation. Algorithm ExpSolsInC' does not have this large
field problem because the highest degree extensions of C' it uses are those given by just one singu-
larity. In fact, on complicated examples usually most of the work in ExpSolsInC' consists of rational
(i.e., over C') computations and not of computations in field extensions. However, for ExpSolsInC'
to find an exponential solution g, it needs in its input a field over which y can be defined. From
now on, the field problem refers to the problem of finding such a field without constructing very
large extensions that choke the computation. Our second main goal is solving this field problem.

Our final algorithm ExpSols first calls ExpSolsInC, then uses modular information to check if
more exponential solutions could exist, and if so, it will first reduce the order as much as possible
before tackling the field problem. After that, it calls the recursive FindASol algorithm which solves
the field problem and returns an exponential solution defined over an extension, if such solution
exists. We give several bounds (one of which is based on the p-curvature) for the degree of a
field extension needed to find an exponential solution. Algorithm FindASol uses these bounds and
makes an algebraic extension to decrease these bounds. It does this recursively and each time it
calls ExpSolsInC' to search for a solution over the new field. This continues until either a solution
is found or until the bound becomes 1.

We summarize the two main new results in this paper:

e We use information mod p in several ways (in Section 5 for the combinatorial problem and
Section 6 for improving bounds that are used in the field problem) to speed up computation
of exponential solutions in characteristic 0 if possible.

To accomplish this there is a subtle but important difficulty to be overcome. There are many
results known that hold for almost all p, but if such p can not easily be identified (an example
is given in Section 7.3) then the algorithm can not use the result. The algorithm needs to know
which p it can use. This restriction has numerous consequences, and the algorithm needs to be
designed with this issue in mind. We will give a notion of good primes in Definition 3.3, and
then only use results that hold for all good p. Another important issue is that the definition of
good primes should discard as few primes as possible (for large p the p-curvature computation
becomes slow, so only small p are useful for speeding up ExpSols).

e Our second main new result is Algorithm FindASol in Section 6.2, a recursive algorithm that
constructs a field extension over which an exponential solution (if one exists) can be defined.

An efficiency advantage of Beke’s method over the local to global method in [Hoe97b] or the
eigenring method in [Sin96] is that it directly computes first order factors. In contrast, the
local to global method often needs to compute higher order factors before it can reach the
first order factors, and the eigenring method first has to compute the eigenring. The greatest
disadvantage of Beke’s method in comparison to the eigenring and local to global approaches
is its use of a splitting field, and this is the issue that Algorithm FindASol resolves.

The paper is organized as follows. Section 1 contains the vocabulary needed to read this paper,
in particular the notions of generalized exponents, reduction mod p, and p-curvature. Section 2
illustrates in a few examples how mod p computations can reduce the combinatorial problem.
In Sections 3 and 4 we give links between the p-curvature and generalized exponents. Section 5



contains Algorithm CombMatchModp that reduces the number of combinations to check and Algo-
rithm ExpSolsInC' that computes all exponential solutions defined over a given field C'. Section 6
addresses the field problem. Combining these algorithms in Section 7 we give Algorithm ExpSols
that computes a basis of all exponential solutions, up to conjugation over C.

1 Preliminaries

In this section we briefly recall the concepts that are needed to read the next sections. The first
subsection contains the necessary material in characteristic zero, the second subsection deals with
characteristic p, and the third deals with reduction from characteristic 0 to characteristic p.

1.1 Differential operators in characteristic zero

Let Q denote the algebraic closure of Q. We endow the fraction field Q(z) of the ring Q[z] of
polynomials in the indeterminate = with the usual differentiation ’ := %. The field of constants of
the differential field (Q(x),’ ) is then Q. Consider the non-commutative ring Q(xz)[d] of differential
operators over the differential field (Q(z),’). In this ring the multiplication is given by Yu €
Q(x), Ou = ud + u'. After multiplying if necessary by some element of Q(z), a non-zero element

L € Q(z)[0] can be written as
L=0a,0"+a, 10" ' +... +apd°, a; € Qz], a, # 0 and ged(ag,...,a,) = 1. (3)

As usual, n will be called the order of the differential operator L.

1.1.1 Singularities and generalized exponents

We start with some classical definitions that can be found for example in [Inc26].

Definition 1.1. Let L € Q(z)[0] be written as in (3). A point xo € Q is said to be a singular point
(or a singularity) of L if it is a root of ay. Otherwise, it is said to be a regular (or ordinary) point
of L.

In this paper we always consider the point at infinity as a singular point, whether it is actually
singular or not. To each differential operator L € Q(x)[d], we associate the subset S of Q containing
all finite singularities. The set of all singularities of L is then S := S U {oc}.

Let 6 := z0 and remark that Q(z)[0] = Q(z)[d] C Q((z))[6]-

Definition 1.2. Let L be a non-zero differential operator in Q((x))[8]. L can be written Y ;2. zip;(0)
for some polynomials p; over Q and p, # 0. Then the indicial equation of L s the polynomial p,.
Its roots in Q are called the exponents of L at © =0 (see [Inc26, 7.21] or [HW97, Lemma 11]).

The notion of ezponents can be generalized in the sense of [HW97, 3.2]: there are several distinct
ways to define generalized exponents. We choose here the algebraic definition of [Hoe97a, Hoe97b]
that is easy to extend to characteristic p. We first give the definition at the point x = 0 and then
extend it to all points. At a point z; € Q U {oc}, we define the local parameter t; by

PID B Sk A z; €Q,
Ul Yz i oz =oo.



Definition 1.3. Let e € @[x_%] with k minimal in N* and let Ls_5. denote the differential
operator L € Q(z)[8] in which we have replaced § by § +e. Then e is said to be a generalized
exponent of L at £ = 0 if 0 is a root of the indicial equation of Ls_,51.. The number k is called
the ramification (index) of e. The multiplicity of the root O in the indicial equation is called the
multiplicity of e. If k = 1 then e is called an unramified generalized exponent. If k = 1 and L
has no generalized exponent € for which € — e is a negative integer then e is called a Z-minimal
generalized exponent.

1
Definition 1.4. Let e € Q[t; *]. Then e is said to be a generalized exponent of L at z = z; if
e,z (€ in which we have replaced t; by x) is a generalized exponent of L,z at © = 0. Here Ly, sy
refers to the automorphism of Q(z)[0] given by T — x+x; at a finite point and x — 1/z at infinity.
This leads to O — O at a finite point and O — —x20 at infinity.

Generalized exponents are useful for computing exponential solutions, see Lemma 1.8 and Re-
mark 1.10. At each point z;, there are exactly n generalized exponents counted with multiplicity.
The point z; is called a regular singular point of L when all generalized exponents are constants,
in which case they are just the usual exponents. At a regular point z; the (generalized) exponents
are 0,1,...,n — 1. For further details on generalized exponents see [Hoe97a, Hoe97b, HW97].

1.1.2 Exponential solutions and first order right hand factors

Definition 1.5. Let L € Q(z)[0] and let y # 0 belong to a differential field extension of Q(x) with
Q as field of constants. Assume that L(y) = 0.

Then, y is said to be an exponential solution of L if y'/y € Q(x). It is said to be a radical solution
if there exists a positive integer m such that y™ € Q(z) and finally, it is said to be a rational
(respectively polynomial) solution if y € Q(x) (respectively y € Q[z]).

An exponential solution y of L corresponds to the first order right hand factor  — y'/y of L.

Remark 1.6. In this paper it will not be necessary to distinguish an exponential function y from
a scalar multiple of y. Hence we may represent y by its logarithmic derivative y'/y € Q(z) or by
its minimal annihilating operator 0 —y'[y.

Definition 1.7. Let L € Q(z)[0] be of order n > 1. R € Q(x)[d] of order 0 < m < n is said to be
a right hand factor of L if there exists | € Q(z)[0] such that L = [R.

Lemma 1.8 below (analogous to [Bou00, Proposition 8]) shows that the notions of generalized
exponent, exponential solution and first order right hand factor are closely related.

Lemma 1.8. Let r € Q(x). If 0 —r is a first order right hand factor of L € Q(x)[0], then for all
z; in S, there exists a generalized ezponent e,; € @[t;l] of L at x; such that

r=S+ % where S = Z 6: — too€hos
;€S ¢
and (Fuchs’ relation)
deg(Q) + Z Const(ez;) =0, in particular — Z Const(ez;) € N (4)
T, ES ;€S

where Q € Q[z], the Const(ey,) are the constant terms of the e, and e, := ex, — Const(ex).



Proof. If L =Y a;0" then denote Ly ,o15 = >, a;(0+ S)*. Let e;; be the generalized exponent of
0 —r at x;. Since 0 — r is a right hand factor of L, this is also a generalized exponent of L (see
[Hoe97b, Lemma 3.2]). Now Lg_, 545 has right hand factor 9 — 7 where # = r — S. Let &’ be the set
of all finite singularities of @ —r and let A = 8"\ S. So z; € A if and only if z; is a regular point of

L (hence e, € N) but a singular point (hence ey, #0) of d —r. Now r = 3 %% —t e’ if we take
ex;

x; t;
TiEA t;
solution @) = Hxl €A tf“ Fuchs’ relation (which applied to @ — r is just a reformulation of the fact
that the sum of the residues of r is zero) says that if we sum Const(e,,) over all singularities of 9 —r
then the result is zero, >, 5, Const(ez;) = 0. Then Equation (4) follows from the observation

that deg(Q) = >_,.ca €x;- O

Remark 1.9. In our algorithm we only need to compute unramified generalized exponents of L,
those are the only ones that can be relevant for our algorithm.

If at a singularity x; € S there are two generalized exponents ez, 1 and ez, 2 whose difference
d = eg; 1 —eg,; 2 15 a positive integer, then ey, 1 is not relevant in the sense that the lemma stays true
if we never use ey, 1 (because replacing e;1 and Q by ey, 2 and t3Q does not change S + Q'/Q).
So, in our algorithm, we will only use Z-minimal generalized exponents to construct r.

the sum over all finite singularities of @ — r. Hence 7 = ) . Then 0 — 7 has a polynomial

The r from the previous lemma matches the exponential solution

exp( / S) Q.
If all e, are rational numbers then this exponential solution can be written as
QI & (5)
;€S

which is a radical solution. So the radical solutions are those exponential solutions for which all
associated generalized exponents are rational numbers.

Remark 1.10. If we only know the generalized exponents defining some exponential solution modulo
rational numbers (respectively modulo integers), then finding such exponential solution reduces to
finding radical solutions (respectively rational solutions) of Ly_o+s.

1.2 Differential operators in characteristic p

Let I, denote the algebraic closure of the finite field F,. We define the ring F,(z)[d] of differential
operators in the same way as in characteristic zero. The main difference is that the field of constants
of (Fp(z),") is Fp(zP) (see [Put01] or [GZ03, Lemma 3.3]).

1.2.1 The p-curvature and the map y — y®—1) 4 7

The central tool for studying differential operators in characteristic p is the p-curvature; we recall a
definition and we refer to [Kat82, CC85] and [PS03, 13.2.2] for more information. The differential
field IF,(z) is a finite dimensional vector space over its field of constants [, (zP):



To any differential operator L € F,(z)[0], one can associate the differential module
My, = Fy(@)[0)/Fp @)L

This module is equipped with a Fp(wp)-linear map 0 (coming from the left multiplication by @ on
Fp(z)[0]) satisfying } } B
Ofm = f'm+ fom for all m € My, f € Fy(z).

Definition 1.11. Let L € Fy(z)[8]. The p-curvature of L is the Fy(x)-linear map 0P acting on
the differential module My associated to L.

An algorithm to compute the p-curvature matrix is given in [PS03, 13.2.2]. The map

T: Fp@) = Fp(aP),
y —> y(p_1)+yp

is very useful for order one right hand factors in characteristic p. Details can be found in [[PS03],
13.2.1] and [Put95]; we only recall a lemma that we will often use:

Lemma 1.12 ([Put95], Lemma 1.4.2). The map 7 : Fp(z) — F,(2P) is a surjective additive
map with kernel { %’ |z € Fp(x)* }.

In [Put95], van der Put proves that for the problem of factoring a differential operator in
characteristic p (or in an equivalent way its associated differential module M), the p-curvature is
the relevant object since its characteristic properties give all possible factorizations of the operator.

We will note x,(L) the characteristic polynomial of the p-curvature of L € F,(z)[0]. As we are
only interested in first order factors, the only modular information that we will use are the roots in
Fp(zP) (with multiplicities) of x,(L). We denote R(x,(L)) as the set of roots of x,(L) in F,(zP).

Lemma 1.13. Let L € F)(z)[d).

(a). If L = L1Ly then xp(L) = xp(L1)xp(L2) with deg(xp(L;)) = order(L;).

(b). The map p from the set of all first order monic right hand factors of L in Fp(x)[0] to R(xp(L))
given by p(0 —r) := 7(r) is well defined and surjective.

Proof. The claim (a) follows from the classification (the equivalence of categories) of [Put95] and
[PS03, 13.1]. That the map u is well defined follows from the first claim and the fact that 7(r) is
the p-curvature of 0 — r (see [Put96, Lemma 2.2]). Surjectivity follows from the classification as
well. O

1.3 Reduction modulo p and factorization

Let vp : Q = Z U {oo} denote the standard p-adic valuation on Q. There are infinitely many ways
to extend this valuation to a valuation v, : Q & Q U {oo}. We assume that one such choice is
made. Let R, = {a € Q | vp(a) > 0}, and consider the maximal ideal I = {a € R, | v,(a) > 0}.
Now choose an isomorphism R,/I = F,.

Definition 1.14. Having fized the above choices, we denote the image of a € R, in Fp by alp).
This is called the reduction of a mod p.



Note that a[p], the reduction of a mod p, depends not only on a and p but depends on the
choice of v, as well. However, for compactness of notation we will only mention p even when we
refer to both p and v,. If @ € Q is not in R, then a[p] is not defined. In our algorithm, we will
apply the reduction map [p] : R, — Fp to only finitely many algebraic numbers that are known in
advance. Thus, it is not difficult to choose a prime p and valuation v, in such a way that a[p] is
always defined for all numbers a for which the reduction map [p] is used. The a’s we reduce mod
p are finite in number and thus they are elements of a finite extension K of Q. There are only
finitely many possible choices for v, on K. We will assume that such p and v, are chosen, so that
all instances of the notation a[p] are defined. For more details on this choice see Section 5.3.

In practice, reducing an algebraic number ¢ mod p is done as follows: Let a1,...,a, be those
algebraic numbers that have previously been reduced mod p, but take only those whose reduction
mod p may appear in the same expression as a[p] in the algorithm (if the reductions of a1, . .., a, and
some other numbers b1, ..., by, are used completely independently, then the algorithm will still be
valid if it computes the reductions of these two sets of numbers independently, using one valuation
on Q(ay,...,a,) and an independently chosen valuation on Q(b1,...,b,). This way the larger field
Q(a1,.--,an,b1,...,by) does not need to be constructed). Then determine the minimal polynomial
of a over K := Q(ay,...,a,). Reduce this minimal polynomial mod p, then the coefficients are in
a field we will denote by K[p], which is defined as Fy(a1[p],...,an[p]). Factor this polynomial over
K|p], and choose one of the irreducible factors. Then determine a field extension of K[p] in which
this irreducible factor has a root, and let a[p] be that root.

We will apply the reduction map [p] to the singularities of L, which are in QU {oo}. If a = 0o
then we define a[p] as co. Two distinct singularities of L can have the same image under [p], in
which case we say that p is not a good prime (see condition (C3) in Definition 3.3 in Section 3).
Note that this definition of good prime depends not only on p, but depends on v, as well (recall
that when we refer to both p and v, we will only mention p for brevity).

If a is some object defined over Q (like L, a local parameter t;, or a generalized exponent e;;,)
we can define a[p] by applying the reduction map [p] to all coefficients.

We show now that without too many assumptions on p a factorization of a differential operator
in characteristic zero can be reduced mod p. This result can be found in [Put96].

Proposition 1.15. Let L € Q(z)[0] and let p be such that L can be reduced mod p. If L = L1 Ly
then, after possibly replacing L1 and Lo by cLy and %Lg for some constant ¢ € Q, we have L[p] =

Li[p] Lo[p)].

We allow to replace Li and Ls by cL; and %Lg for some constant ¢ to avoid pathologies of the
form Ly = %8 and Lo = p0.

Proof. The only thing to prove is that ¢L; and %LQ can be reduced mod p for some constant c.
Any p-adic valuation v, on Q can be extended to Q[z] (this statement is a form of Gauss’ lemma.
To define v, (f) for a non-zero polynomial one takes the smallest valuation of the coefficients). The
valuation can then be extended to the fraction field Q(z), and then be extended to Q(z)[0] (again,
take the minimal valuation of the coefficients). Then L[p] is defined if and only if v,(L) > 0. Let
¢ be a constant with valuation —v,(L1), so vp(cLi) = 0, hence cL; can be reduced mod p. Then
vp(LLs) = vp(cLy) 4+ vp(2Lo) = vp(cL1iLs) = vy(L1Ls) = vp(L) > 0, so 1Ly can be reduced mod
p as well. O

One obtains the following two criteria (these can also be easily deduced from [Put95]):



Corollary 1.16. Let L € Q(x)[0] and let p be a prime such that L can be reduced mod p. Assume
further that the order n of L does not drop after the reduction.

If xp(L) is irreducible over Fy(zP) then L is irreducible over Q(z).

If xp(L) has no roots in Fp(zP) then L has no ezponential solutions.

Proof. 1t follows directly from the previous proposition, [Clu03, Theorem 4.1-Step 2] and Lemma
1.13(b). O

As an example, let L = (22 +z +8)0? + (—2® + £+ 6)0+ 1 and p = 3. Then x,(L) has no roots
and this is a very fast way to show that L has no exponential solutions. Without modular methods
this would have taken much longer because one of the degree bounds (one ends up searching for
polynomial solutions of some other operators) turns out to be very high in this example.

In the corollary, the hypothesis that the order does not drop can not be omitted. For example,
the operator (pd + 1)d is reducible in characteristic 0 but its reduction L[p] = 9 is irreducible.

2 Examples

We will illustrate our modular improvements for the combinatorial problem (see the introduction)
with a few examples. These improvements rely on Proposition 1.15 and Lemma 1.13(b) in the
following way. A first order factor in characteristic zero leads to a first order factor in characteristic
p by Proposition 1.15, which in turn corresponds to a root of x,(L) by Lemma 1.13(b).

2.1 Example 1

Consider the following differential operator:

_2$2—x+482_3w3—4x2—3x—28+2x3—3x—2

L=¢
g 212 24 214

11
The singularities are 0 and co. Generalized exponents are 0, %—l— %, 2+% at 0 and —t}, —too’, too

at oo (recall that to, = 1). The usual Beke’s algorithm will have three combinations to check since

we only have one unranfiﬁed generalized exponent at oo, and three at 0. We will use this example
to illustrate our modular method, even though our method generally does not speed up trivial
examples (L is trivial for Beke’s algorithm because the number of combinations is very small and
there is no field problem).

Let p = 3 and note ¢ = zP. The characteristic polynomial x,(L) of the p-curvature matrix is
(A2 4+ X/c? +2/c+1/ct)(A+2) and has only the root A = 1. We will see in Section 5.2 that this
root excludes the choices % + % and 2 + % at 0; consequently, there remains only one combination
to check.

For each of the 3 combinations, Beke’s algorithm will check Fuchs’ relation (Equation (4) in
Lemma 1.8). This check will be very fast because since there is no field problem in this example,
we do not have to construct a complicated number field in order to do this check. One of the three
combinations passes this check, and it yields a solution. In this example, the modular method would
not provide a speedup because it discarded only two combinations (which otherwise would have
been discarded anyway by Fuchs’ relation). In the next example, our modular method discards
more combinations, and moreover, the discarded combinations include all “hard” combinations,
i.e., those not invariant under the Galois group of Q over Q.



2.2 Example 2
Let

L =9(z® — 250 + (23 — 2)(22'° — 1227 + 10825 + 242* — 21622 — 162 — 9)0
—22(1902% — 27423 — 272 — 212).

There are three finite singularities; the roots of z® — 2, with generalized exponents 2, = 36 m=a) o’ ) %a

and — ) + 4+ 18a where o := RootOf(z3 — 2). At infinity, the generalized exponents are

36(
0, —g, —%. So the usual Beke’s algorithm will have 81 combinations to try. Let p = 5 and look
at the reduction mod p of the singularities and generalized exponents. First, we factor z3 —
2 = (z +2)(z%2 + 37 + 4) mod p, so « reduces to 3 as well as to B := RootOf(z? + 3z + 4) in

characteristic p. After reduction mod p the situation is then as follows: we have the singularity 3

with generalized exponents 2, %4_2 1, wi+2 and the singularities 8 with generalized exponents
2, ( +3ﬁ ) +4+248. At infinity the generalized exponents become 0 (with multiplicity 2)
and 2. Now we compute Xp(L) and see that its only root is A = s where s : % and ¢ = zP.

Our method consists then in finding which generalized exponents reduced mod p could match such
a root s. Here, the result is that s can only correspond to the choice -5 —1 at 3, ( 5 T 36 at B
and any choice at infinity. This means that in characterlstlc zero, a p0551ble exponential solution
must involve the generalized exponent 3 0‘2 (=) 1804 at a. This reduces the number of possible
combinations from 81 to 3. Moreover, we ave eliminated all “hard” combinations, i.e., those for
which the sum S in Lemma 1.8 would not be in Q(z).

If two generalized exponents differ by a rational number, then our mod p computation can
not detect which one to take, which is an important limitation. This is why three combinations
remained after the mod p computation even though there was only one root of x,(L). Of the
three remaining combinations only one satisfies Fuchs’ relation, and this combination yields an
exponential solution.

2.3 Example 3

Let p be a prime number and consider the operator L = z*0? — pzd — 2z — 1. Then p is a good
prime in the sense of Definition 3.3 below. However, despite the fact that L[p] exists and can even
be factored, neither of the two generalized exponents 3+ 1/p+p/z? and —1/p of L at z = 0 can be
reduced mod p. So both can be discarded by Lemma 3.4 and hence L has no exponential solutions.

3 Roots of x,(L) and T-reduced terms

Definition 3.1. If r is an object in characteristic zero we set 7(r) := 7(r [p]).

Let ey, € Q[t;'] be an unramified generalized ezponent of L € Q(z)[0] at a point z; € QU {oo}.
Let p be such that x; and ez, can both be reduced mod p. The T-reduced term corresponding to ey,
is then defined as

Tred(ea:i) =

{ T(etiii) Zf T € @a
—T(to€ls) if T =00

where €%, denotes e, without its constant term.

Remark 3.2. If e € Q then e[p] € F, and Lemma 1.12 implies Treq(e) = 0.
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Definition 3.3. A prime p is a good prime for L if the following conditions hold:

(C1)- The coefficients of L can be reduced mod p and the order of L does not decrease after reduction
mod p, i.e., ap[p] # 0.

(C2)- All singularities can be reduced mod p.

(C3)- Distinct singularities stay distinct after reduction mod p.

If L is written in the form (3), then Condition (C2) simply means “deg,(ay[p]) = deg,(an)”-
And (C3) means that the largest square-free factor of a, remains square-free mod p. Checking if
a prime p is good is fairly easy in practice. All three conditions are useful in our algorithm, for
example, without (C3) we would have to replace Algorithm CombMatchRoot in Section 5.2 by a
more complicated algorithm. The lemma below uses (C3) as well. Nevertheless, if p is not a good
prime, then it is often still possible to obtain some useful information from a computation mod p,
but we will not detail this.

Lemma 3.4. Let L € Q(x)[8] and p be a good prime for L. If 0 —r with r € Q(=) is a monic first
order right hand factor of L and if ey, € Q[t;l] is the generalized exponent of 0 —r at z;, then ey,
can be reduced mod p.

Proof. From Lemma 1.8, there exists a generalized exponent e,, € Q[t; '] of L at each singularity

x; such that
!
r= e+ 2 ©)
ti Q

;€S

where Q € Q[z] and e, is ex, without its constant term. Since p satisfies (C1), r can be reduced
mod p (see Proposition 1.15). Now @ is defined up to a multiplicative constant (which we can
choose in such a way that Q[p] is defined and is not zero), so Q'/Q can be reduced mod p and hence
the remaining part ), s ez, /ti — tooed, can be reduced mod p as well. Conditions (C2)+(C3) in
Definition 3.3 imply that we can recover e [p] and ey, [p] for z; € S from (3, 5 €x;/ti — tooed,)[P]
and therefore ez, [p] is well defined. Then the same is true for ex[p] by Fuchs’ relation. O

We now give two new results linking the 7-reduced terms and the eigenvalues of the p-curvature
in Fp(2P), i.e., the elements of R(x,(L)). First another definition:

Definition 3.5. Let L € Q(z)[d]. We say that s € R(xp(L)) comes from characteristic zero if
there exists 7 € Q(x) such that 8 —r is a right hand factor of L in characteristic zero and s = 7(r).

Proposition 3.6. Let L € Q(z)[d] and let p be a good prime for L. If s € R(xp(L)) comes from

characteristic zero, then Vx; € S, there exists a generalized exponent ez, at x; such that:

s = Z Tred(€z;)-

s €S

Proof. By definition, s € R(xp(L)) comes from characteristic zero means that s = 7(r) for some
r € Q(z) where 0 — r is a right hand factor of L. From Lemma 1.8, there exists then a generalized
exponent e, € Q[t; 11 of L at each singularity x; such that r can be written in the form (6) where
Q € Q[z] and e}, is ey, without its constant term. Since p is a good prime for L and Q is defined
up to a multiplicative constant (which we can choose in such a way that @Q[p] is defined and is not
zero), the reduction mod p of each term in Equation (6) is well defined (see also Lemma 3.4 above).
Now using that s = 7(r), the result follows directly from Lemma 1.12 and the definition of the

Tred(€z;)- O
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Proposition 3.7. For almost all primes p the condition that s comes from characteristic 0 may
be omitted.

Proof. As we will not need this result for our algorithm, we will only sketch a proof. First we
note that generalized exponents can be defined in characteristic p. Definitions 1.3 and 1.4 are
completely algebraic: the operations required are additions and multiplications in Q(z), tests to
zero in Q and computing the roots of a polynomial in Q[z]. Obviously these operations also make
sense in characteristic p so the definitions are easily translated to characteristic p provided that
the ramification & is not divisible by p (this is not an issue because we only consider & = 1 in this
paper). The generalized exponents are here defined mod p, which is coherent with the fact that
we want ! to have generalized exponent 0 at z; (because ¢ is in the field of constants) as well as
generalized exponent p at x; because it vanishes with multiplicity p at z;. Note that the notions
of singularity, indicial equation and exponents in characteristic p have already been introduced in
[Hon81] and [CC85].

Lemma 1.8 can also be adapted to characteristic p (the lemma is just a statement about the
relation between a rational function and its local expansions). Then one can also give the analogue
of Proposition 3.6 in characteristic p, with L € F,(z)[d], with the z; in F, U {oc}, the unramified
generalized exponents e, in F,[t; '], but now s can be any root of x,(L)-

Let L € Q(x)[8], let p be a good prime, and let s be any root of x,(L), not necessarily coming
from characteristic 0. Applying the mod p analogue of Proposition 3.6 to L[p] we see that even
if s does not come from characteristic 0, the statement in Proposition 3.6 still holds if we replace
the generalized exponents e;, of L by the generalized exponents of L[p]. This completes the proof
because for all but finitely many good primes p, reduction mod p will induce a bijection between
the (unramified) generalized exponents of L and those of L[p]. O

One obtains the following corollary which is related to the converse of [Hon81, Theorem 2] and
[CC85, Corollary 1.4]. Indeed, their statement (attributed to Katz) is: if L[p] has “sufficiently
many solutions in a weak sense”, which is equivalent to “L has nilpotent p-curvature”, for almost
all p, then all exponents of L are rational numbers.

Corollary 3.8. Let L € Q(x)[0]. If all generalized exponents of L are rational numbers, then for
almost all primes, R(xp(L)) C {0}.

Proof. If e;, € Q then 7,¢4(ey;) = 0 and the result follows from Proposition 3.7. O

4 Exponential solutions and roots of x,(L)

4.1 Classes of exponential solutions

Definition 4.1. The class €5, of a generalized exponent ey, is €z, := e, mod Q, the equivalence
class of ez, modulo Q.

Two generalized exponents e, and e} that have the same class &z, and that can both be reduced
mod p satisfy Treq(ez;) = Treda(e},) by Remark 3.2. So we can define T,cq(€z;) = Tred(es;)-

Definition 4.2. Let y be an exponential solution of L, let 0 — r be the associated first order
right hand factor of L (so v = y'/y) and let ey, be the associated generalized ezponents in the
sense of Lemma 1.8. Then the class Cl(y) of y is defined as the image of y'Jy in Q(z)/~ where
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a~bsa—b= % for some radical function g # 0. Viewing €, /t; as elements of Q(z)/~ we can
write

€.
Cly) = Y mod~ = Z Tt
T;ES t
Two exponential solutions have the same class if and only if their quotient is a radical function,

if and only if at every point, the associated generalized exponents have the same class. Now, to
L € Q(z)[0] we associate the class-set

CI(L) := {Cl(y) € Q(z)/~ | y exponential solution of L }.

4.2 Links between CI(L) and R(x,(L))
Lemma 4.3. Let L € Q(z)[0] and p be a good prime for L. There is a map
U:ClL) — Rxp(L)),

Cl(y) T(y—,) = Z Tred(€z;)-
v zieg

Proof. Let Cl(y) € CI(L). An exponential solution y corresponds to a first order right hand factor
0—r of L in characteristic zero where r = ¢/ /y. Since p is a good prime for L, this factorization can
be reduced mod p (see Proposition 1.15) and we have thus a first order right hand factor 9 — r[p]
of L[p]. Now from Lemma 1.13, 7(r) € R(xp(L)). The lemma is then clear using Proposition 3.6
since 7(r) is an element of R(x,(L)) that comes from characteristic zero. O

Given L, there are two natural questions about V:
(Q1)- Is W surjective for almost all good primes?
(Q2)- Does there exist a good prime p such that ¥ is injective?

Proposition 4.4. The answer to questions (Q1) and (Q2) can be no.

Proof. We give one example for each question. For (Q1), if we take a differential operator that has a
basis of algebraic (but no exponential) solutions, then C1(L) = @. The proved part of Grothendieck’s
conjecture (see [Kat82], [Cha01] or [Put01] for statements and histories of this conjecture) says that
for almost all primes the p-curvature is zero so that R(xp(L)) = {0}. For (Q2), take an operator
L with the following 8 exponential solutions:

z%(x — 1) (z — 2)*

for eg € {0,v/2},e; € {0,4/3} and ey € {0,/6}. Modulo every prime p, at least one of the three
square roots becomes an element of IF,. Suppose for example that V6[p] € F,. Consider then
the exponential solutions y; and y, corresponding to choices respectively (0,0, 0) and (0,0, +/6) for
(€0, e1,e2). Then Cl(y;) # Cl(y2) but they have the same image under ¥. O

The previous proposition says that we can not always choose a prime number for which each
root of x,(L) corresponds to at most one class of exponential solutions. The example illustrates
the cause of this, and one can show the following (note that we do not use this in our algorithm):

Proposition 4.5. Let L € Q(z)[0]. If there ezists a good prime p for L for which:
(*) Vaz; € 3, €r;,2 — €g;,1 ¢ Q = e:ﬂi,?[p] - eSCi,l[p] ¢ Fp

then, for that prime, ¥ is injective.
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Proof. Suppose that Cl(y1) = >, s e”;z —teo€ly 1 and Cl(y2) = 35, s ? — too€ho o are two

distinct elements of C1(L) and suppose that U (Cl(y1)) = ¥(Cl(y2)).
U(Cl(y1)) = ¥(Cl(y2)) <« 2 g;e5 Tred(€ri1) = Dg;e5 Tred(€n 2),
z;,1 * z;,2 *
< T(Ewies tZ» - tOOeoo,l) = T(Ewies i tooeoo,Q)a
€z;,2—€a;, * * _q o %
A Za:iES - 2ti - - tOO(eoo,Q - eoo,l) - %7 fOI‘g € Fp(x) :

This leads to: Vies, €x;,2[p] — €x;,1[p] € Fp and el o[p] — €5, 1[p] = 0 which, by Fuchs’ relation,
implies that also e 2[p] — €x,1[p] € Fp. On the other hand, the hypothesis that Cl(y;) # Cl(y2)
means that 3i € S, €z;,2 — €x;,1 ¢ Q which contradicts condition (x). O

5 Modular improvements of the combinatorial problem

Definition 5.1. Let L € Q(z)[0]. L is said to be rad-regular if there exists r € Q(z) such that
Ly, 54, has all its unramified generalized exponents in Q. Otherwise, L is said to be rad-singular; it
means that there exists a singularity x; with two unramified generalized exponents whose difference
is not in Q.

As mentioned in the introduction, we want to address two problems in Beke’s algorithm: the
combinatorial problem and the field problem. In this section we focus only on the combinatorial
problem and not on the field problem; we suppose that a number field C is given and develop
an algorithm that finds all exponential solutions defined over C. We show how a careful modular
analysis can effectively reduce the combinatorial problem if L is rad-singular. Unfortunately, in the
rad-regular case no reduction in the combinatorial problem is obtained (see also Section 7.2).

5.1 Some precisions on the vocabulary
Let C be a number field. In light of Remark 1.6 we use the terminology:
Definition 5.2. An ezxponential function y is defined over C if ¢/ /y € C(z).

When C is not algebraically closed, we will not consider all roots of the leading coefficient a,, of
L, we will only consider one root for each irreducible factor over C. So the number of singularities
that our algorithm considers is the number of irreducible factors of a,, (this number depends on
the field C) plus one (the point at infinity). The only extensions of C that we will work with in
Section 5 are extensions given by a single irreducible factor of a,, in C|z], so Algorithm ExpSolsInC
in Section 5.4 does not use computationally expensive nested extensions.

Definition 5.3. A place is either a monic irreducible polynomial P; in C[z] or co.
At each place P; # oo, we define the point z; as the class of x in C[z]/(F;) noted RootOf(FP;). At
the place oo, the point is also co.

If the degree of F; is one, then we can view x; as an element of C'. Recall that we have the local
parameter t; = z — x; at finite points and ¢; = 1/z at co. We adapt the notion of singularity and
generalized exponents to the purpose of this section:

Definition 5.4. The C-singularities of L € C(x)[0] written as in (3) are the points at the places
P; for all monic irreducible factors P; of ap in C[z] and the point co. We keep the notations S
for the set of finite C-singularities and S = S U {oo}. Furthermore, a C-generalized exponent of
L at z; is an unramified generalized exponent of L at the C-singularity x; that further belongs to
C(z;)[t; ']. The degree of a C-singularity x; is the degree of P; if z; # oo, and it is 1 if z; = oo,
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A first order operator 9 — r € C(z)[0] has a C-generalized exponent at every C-singularity.
Hence, if at a C-singularity of L there are no C-generalized exponents, then L can not have
exponential solutions defined over C.

Definition 5.5. A C-combination is a list composed of one C-generalized exponent ey, at each
C-singularity x; € S.

The exponential solutions that we are looking for (those defined over C') match first order right
hand factors @ — r with r € C(z) as in Lemma 1.8 but here we write:
QI

€. .
S - @
: ti Q
T; €S

where Tr; is the trace over the field extension C(z;,z) D C(z). The term Tr;(ez,/t;) € C(z) is the
sum of all conjugates of ez, /t; over C(z). So the above r is as in Lemma 1.8 with the additional
property r € C(x), which means that for any o in the Galois group of Q(z) over C(z), if we choose
ez; at z; in Lemma 1.8 then we must choose o(ez;) at o(z;) (0 maps the unramified generalized
exponents of L € C(z)[0] at z; to those at o(z;)). We extend Definition 3.1 to finite C-singularities

x; as follows:
€x;

).

Definition 5.6. Let P be a problem defined over a field C of characteristic 0 for which the following
holds: if s is a solution of P defined over an algebraic extension of C, then all conjugates of s over

C are solutions as well. Then we say that s1,..., s are the solutions of P up to conjugation over
C when:

- for each s; a finite extension C; of C is given such that s; is defined over C; and,
- for any solution s of P defined over any algebraic extension C' of C there is precisely one i such
that C; can be embedded in C' over C and s; corresponds to s under this embedding.

Tred(ezi) i= 7(Try(

We define the degree (or algebraic degree) of s; over C as [C; : C]. The total number of solutions
defined over C equals the sum of the degrees over C of the s;.

Each such problem P that we need to solve (such as: find the singularities, find the generalized
exponents at a singularity x;, find the exponential solutions) will be solved up to conjugation, this
in order to prevent computationally expensive splitting fields. In this terminology, “computing
the C-singularities” and “computing the singularities up to conjugation over C” have identical
meaning: factor a, over C' and construct a field C; = C(z;) = C[z]/(P;) for each factor P; (the
singularity at infinity has degree 1 hence its field is C'). Solving a problem up to conjugation over
C does not involve constructing fields that contain more than one C;, which means that we are not
able to perform arithmetic between objects defined over distinct C;’s (unless of course when the
degrees are 1, i.e., when these Cj’s are just C'). That is why the ez, /t; in equation (7) must first
be “traced down” to an object defined over C before we can add them.

When we compute generalized exponents at x; (recall that we only need the unramified gener-
alized exponents), we compute them up to conjugation over C(z;). The C-generalized exponents
are those of (algebraic) degree 1 over C(z;). Generalized exponents of degree > 1 will not be used
in Section 5, they will be used in Algorithm FindASol in Section 6.2.
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5.2 Finding C-combinations matching the modular information

Let L € C(z)[0] where C is a number field. Suppose that L has m finite C-singularities z1,...,Zmn
and consider the following set:

Comb := {(€z,,...,€z,,,€x) | €z, is a C-generalized exponent of L at z; }.

The elements of Comb are called C-combinations mod Q. Note that the set Comb depends on C
in two ways. First, the z; correspond to irreducible factors of a, over C'. Second, the e, must be
defined over C(z;). Consider now the map

D Comb — Fp(zP),
(%a .. a%a %) = Zzleg Tred(e_mi)-

Definition 5.7. Let s € R(xp(L)) and h € Comb. We say that h matches s if ®(h) = s. We say
that h satisfies Fuchs’ relation if 3, . s Tr;(Const(ez;)) + Const(esx) = 0 mod Q.

Given an element s of R(xp(L)) for a good prime p, we can effectively find the finite set of
elements h of Comb that match s. A naive way to do that consists in taking the image under
® of all possible C-combinations mod QQ and keeping those with image s. A reason for including
Condition (C3) in the definition of a good prime is so that we can give a more practical method
(Algorithm CombMatchRoot below).

In the sequel, F := CJp] denotes the image of the number field C after reduction mod p.
In practice C is given by some (possibly nested) RootOf’s so that this reduction makes sense
(recall that choosing a reduction [p] means choosing factors mod p of the polynomials defining the
RootOf’s).

Since F is finite, the map U + UP is an isomorphism from F[z]| to F[zP], and we denote the
inverse isomorphism by V — V/P. If r = % 4 c with a, b, ¢ € F[z] and deg(a) < deg(b) then 7(r) can
be written as % + C with deg(A) < deg(B), B = b (here gcd(A, B) need not be 1) and C = 7(c).
So if V' € F[zP?] divides the denominator of 7(r) then V'/? € Fz] divides the denominator of 7.

Algorithm CombMatchRoot
Input: a number field C, a good prime p for L, the reduction [p], s € R(xp(L)) N F(zP)
and the data structure of C-singularities and C-generalized exponents of L.
Output: the elements h of Comb matching s and satisfying Fuchs’ relation.
1 - For each z; € S and each e, at x; compute T eq(ez;)-
2 - Compute the partial fraction decomposition Zf\isl ‘g,%l + W of s with U;, W € F[zP],
V; irreducible in F[2P] and deg(U;) < deg(V;™). l
3 - Remove all e for which 7,.4(€x) # W; if none remain, then return () and stop.
4 - For each s =1... N,
4a - Find the C-singularity z; = RootOf(P;) such that Vil/ P € Flz] divides P;p],
4b - Remove all e;; for which the partial fraction decomposition of 'rred(e_wj) does not
contain the term %, if none remain, then return () and stop.
5 - For all remaining e_xj,l compute all combinations h = (€5, ..., €z, ,€x) that satisfy
Fuchs’ relation and return those as output.

In step 1, if the reduction mod p fails then e;, can be discarded by the same argument as in
Lemma 3.4. In steps 3 and 4b, if nothing remains, then there are no first order right hand factors
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0 —r of L with r € C(z) and s = 7(r). Condition (C3) in the definition of good primes is used in

step 4a to make sure that the P; for which Vil/ P divides Pj[p] is unique (the existence of such a P,
follows from the fact that a pole of a root of x,(L) is a singularity of L[p]).

Remark 5.8. It follows from Lemma 3.4 that if ey, can not be reduced mod p then it can not be
relevant for the algorithm, it can not correspond to any first order right hand factor. It follows
from Algorithm CombMatchRoot above that a generalized exponent that can be reduced mod p but
that does not match any element of R(xp(L)) can not be relevant either. If, adding these notions
of relevant to those of Remark 1.9 (i.e., unramified, Z-minimal), no relevant generalized exponents
remain at a certain singularity x; then there are no exponential solutions and we can stop the
computation. If at a certain x; only one relevant generalized exponent remains then we call x; a
semi-apparent singularity because it does not contribute to the combinatorial problem. In Algorithm
FindASol in Section 6 it is important that we use only relevant generalized exponents to prevent
making unnecessary field extensions.

Algorithm CombMatchModp:

Input: an operator L € C(z)[d], a number field C, the data structure F of C-singularities

and C-generalized exponents of L.

Output: the set of C-combinations mod Q that match a root of x,(L) for a good prime p

and that satisfy Fuchs’ relation.

1 - If at some C-singularity there are no C-generalized exponents, return () and stop.

2 - Choose a good prime p for L (choose a reduction [p]).

3 - Compute R(xp(L)) and (to be used in Section 7) Nroots := the total number of roots
of xp(L) in Fp(zP) counted with multiplicity.

4 - Return the union of CombMatchRoot(C,p,[p],s,E) for s € R(xp(L)) N F(z?).

One can often (use Condition (*) in Proposition 4.5) find a prime such that each s matches at
most one C-combination mod Q (i.e., the set CombMatchRoot(C,p,[p],s,E) has < 1 elements for
each s). But Proposition 4.4 shows that such prime does not always exist so that, in practice, we
do not try to find one.

5.3 Some remarks on the choice of p

We can choose p as follows. Start with p = 2, and as long as a reduction mod p of a coefficient of L
fails, or if one of the other conditions of a good prime in Definition 3.3 is not met, we take the next
prime. So we compute the smallest good prime. There are, however, certain cases where another
choice could be better. In hard cases (when we need to use Algorithm FindASol, or when the number
of combinations is very high) we may want to try a few more primes and select the best one. In very
easy examples such as in Section 2.1 it can be best to use no primes at all because the combinatorial
problem was already practically trivial without modular methods. Another situation where there is
no improvement in the combinatorial problem is when L is rad-regular (see Definition 5.1 and also
Section 7.2) and the p-curvature computation does not exclude existence of exponential solutions.
In most cases we only use the smallest good p, and in the unusual event that this p is large then
we skip the modular improvements given in Section 5 because p-curvature computations become
expensive for large p. Exceptions are very easy cases (use no modular methods) and very hard
cases (check more than one prime and select the best one).
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5.4 Finding all exponential solutions defined over a given field

Algorithm CombMatchModp computes a set of possible combinations for C-generalized exponents
mod Q that could appear in an exponential solution defined over C. We will use this to find all
exponential solutions defined over C.

Recall that with the notations of Equation (7) and Lemma 1.8, an exponential solution can
be written as exp([S)Q where § = > s Trz(%) — to€i, and @ is a polynomial. After
CombMatchModp, it remains to check which C-combinations mod QQ lead to exponential solu-
tions and to compute these exponential solutions. A natural idea is: at each C-singularity, given a
€z; we take the finitely many generalized exponents e;; satisfying e;; mod Q = €z; and we have
thus a finite number of C-combinations (e, , ..., €z,,,€x), hence a finite number of possibilities for
S after checking Fuchs’ relation. Then for each S, we construct the operator Ly, 5,5 having as
solutions those of L divided by exp( [ S), and we search for polynomial solutions @ of that operator.

We define an E-combination as a C-combination that uses only generalized exponents that
appear in our data structure . As already mentioned in Remark 1.9, replacing e;, by ez, — d
and @ by th for some d € 7Z leaves the expression exp([ S) @ invariant. So we only need one
generalized exponent in each equivalence class mod Z. To assure that () is a polynomial we only put
Z-minimal generalized exponents in our data structure F, i.e., unramified generalized exponents
that are minimal in their equivalence class mod Z. This is also true for the point at infinity;
although the constant term of e,, does not contribute to S in Lemma 1.8, it does contribute in
Equation (4) to the degree bound for @ (the number N in step 4 is used as a degree bound for the
Q; in step 4b), and using only Z-minimal generalized exponents at infinity ensures that this degree
bound is not too low.

Algorithm ExpSolsInC"
Input: an operator L € C(z)[d], a number field C.
Output: Sol, a basis of exponential solutions of L defined over C.
1 - Compute the data structure E of C-singularities and Z-minimal C-generalized exponents.
2 - M := CombMatchModp(L,C,E).
3 - Sol := 0.
4 - For each E-combination (eg,,-..,€s,, ,€x) Whose class mod Q is in M, and that satisfies:
N := —Const(ec) — D, cs Tri(Const(ez,)) €N, do:
4a - Let S := Zmies Tr,(%) — to€l, and L= Ly,
4b - Compute a basis Q1,.. ., Qy of polynomial solutions in C[z] for L,
4c - If w > 0 then add the exp([ S) Q; to Sol.
5 - Return Sol.

We can pre-compute the Tr;(Const(ez;)) and Tr;(52), from then on all the work in the loop in
step 4 (which may dominate the computation time, see also Section 7.1) takes place over C.

To use this procedure in the recursive algorithm FindASol in Section 6.2, we need to allow
two extra inputs. First, an option called “just one”; if this option is given then we only need to
return just one (if it exists) exponential solution defined over C but not a totally arbitrary one. We
return a solution exp([ S) @ with S as in the algorithm, but with @ of minimal possible degree.
Second, an optional set F' may be given in the input. Each element of F is a couple (z;, e5;) where
z; is a C-singularity of degree 1 (see Definition 5.4) and ey, is a C-generalized exponent at z;.
This couple encodes the command: “in the data structure E in step 1 of ExpSolsInC, throw away
all C-generalized exponents at z; except eg,”. This reduces the number of F-combinations to be
checked. Note that usually not all C-singularities will appear in F', so in general there is still a
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combinatorial problem. Furthermore, if F' # @, then it is of course possible that no exponential
solutions over C' are found even if such solutions exist.

6 A way to handle the field problem

Let L € C(x)[0] with C C Q. We want to find a basis of all exponential solutions, so we may have
to search for exponential solutions defined over algebraic extensions of C'. Before constructing such
extensions, we first want to bound their degrees.

6.1 Two ways to obtain bounds

We start with a few definitions, in particular we need the notion of type. Many useful properties of
the type of a differential operator can be found in [Ore32] (where type is called Art-Begriff). We
will only use the type for first order operators, or equivalently, for exponential solutions:

Definition 6.1. Two exponential functions y1 and yo are said to be of the same type if y1/y2 is
a rational function. This defines an equivalence relation, and type(y:), the type of y1, is defined
to be the equivalence class of y1. We say that y1 and yo have the same local type at z; if y1/y2 is
meromorphic at x;, which is equivalent to saying that the generalized exponents of & — vy /y1 and
0 — yh/ye at z; differ by an integer.

We will identify an exponential solution y with its minimal operator  —y'/y € Q(x)[d], and so
we shall not distinguish y from a constant multiple of . This makes it easy to describe what we
mean by a conjugate of y; if o is an element of the Galois group of Q over some number field C,
then by o(y) we simply mean a non-zero solution of 0 — o (y'/y).

Two exponential functions have the same type if and only if they have the same local type at
every point z;. The type of the exponential solution y = exp([ S) @ with S and @ as in Lemma 1.8

: v z . . .

can be uniquely represented as ) s % — too€l, Where €} is o, without its constant term

recall that this constant term depends on the constant terms of the other e, by Fuchs’ relation).
1l that thi tant t d d th tant t f the oth by Fuchs’ relati

The Galois group of Q over C acts on the set of all types.

Definition 6.2. Let C be a number field, y be an exponential function. Let K be the field of
definition of y over C, which is defined as the smallest number field K that contains C for which
y'/y € K(z). Then the algebraic degree of y over C is [K : C]. We say that y is of minimal
algebraic degree m over C if [K : C] = m and there ezist no exponential function §, of the same
type as y, having smaller algebraic degree over C.

Let C' be a number field, let y be an exponential function, and let K be the field of definition
of y over C. Let Ly = 0 —y'/y € K(x)[0]. Let Ly,...,L, € Q(z)[0] be the conjugates of L;
over C, and let L = LCLM(Ly,...,L,) € C(z)[d]. It is easy to calculate a basis of all exponential
solutions of L that have the same type as y; compute L := L0144 /y € K(z)[0], compute a basis
bi,..., by € K(z) of rational solutions of L, then take byy,...,byy. Let R € K(z)[d] be the monic
operator with b1y, ..., bgy as solutions. Now R is the unique monic operator whose solution space
is the set of all solutions of L with the same type as y, so R is uniquely determined by two things:
L € C(z) and type(y). Hence, any element o of the Galois group of Q over C that leaves type(y)
invariant leaves R invariant as well. Conversely, if o leaves R invariant, it leaves type(y) invariant
as well because R has precisely one type of exponential solutions. Thus, one can define a field of
definition of type(y) over C, namely as the smallest field C’ that contains C for which R € C'(z)[d].
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Note that since R € K(z)[d], one has C' C K, hence: the field of definition of y over C contains
the field of definition of type(y) over C.

We will now prove constructively that y is of minimal algebraic degree over C' if and only if the
fields of definition of y and type(y) are the same. To do this, we will show that R has an exponential
solution defined over C’, in fact, we will show that the algorithm ExpSolsInC with input R, C’ will
find such solutions. Since R has only one type, there is exactly one local type at each singularity
z;, so generalized exponents at x; are unique modulo integers. So if ¢ is in the Galois group of
Q over C'(w;), then it can only move a generalized exponent e, by an integer, but this implies
that o leaves ey, invariant, and thus e,; € C'(z;)[t; 1], i.e., ez, is a C'-generalized exponent. Hence
there is exactly one Z-minimal C’-generalized exponent at every singularity z;, which implies that
ExpSolsInC(R,C") will try exactly one C’-combination. This combination has the same type as y,
and since all solutions of R have this type, ExpSolsInC' will find a basis y1,...,yx of solutions of
R, defined over C’, where k is the order of R. We conclude the following;:

Lemma 6.3. Let C be a number field and L € C(z)[0]. Ify is an ezponential solution of L defined
over some algebraic extension K of C, then its conjugates over C are also solutions of L.

Given L and y, we can compute y1, ...,y of minimal algebraic degree over C that form a basis of
all exponential solutions of L of the same type as y.

If y is of minimal algebraic degree over C, then the distinct conjugates of y over C are of distinct
type and hence linearly independent.

Proof. The fact that for L € C(z)[0], the conjugates over C of solutions are again solutions is clear.
From the foregoing, given L and y, we can compute an operator R € K(z)[d] whose solution space
is precisely the set of all exponential solutions of L of the same type as y. We can calculate the
smallest field C' containing C for which R € C'(z)[d], and can find a basis yi, ...,y of solutions
of R with ExpSolsInC(R,C"). Then ¥, ...,y are defined over C’, which is the field of definition of
their type, so they have minimal algebraic degree over C. And they form a basis of all exponential
solutions of L of the same type as y.

If o is in the Galois group of Q over C, and if two objects have the same field of definition
over C, then o leaves the first object invariant if and only if o acts as the identity on the field
of definition, if and only if ¢ leaves the second object invariant. Now if y is of minimal algebraic
degree over C, then it has the same field of definition as type(y), so o leaves type(y) invariant if
and only if o leaves y (which we identify with 8 — 3'/y because we do not want to distinguish y
from scalar multiples of y) invariant. Thus, distinct conjugates of y must have distinct types. [

Therefore, if we have an exponential solution of minimal algebraic degree m, then this exponen-
tial solution gives in fact m linearly independent solutions. In the output of our algorithm ExpSols
we will only return exponential solutions up to conjugation over C. In order to make it easier
to count how many linearly independent solutions such an output represents, we will only allow
exponential solutions in the output of ExpSols that have minimal algebraic degree over C.

Definition 6.4. If C is a number field, z; a singularity of L and e;; a generalized exponent at z;,
then the field C(z;; ez;) is the extension of C given by x; and the coefficients of ey,.

Proposition 6.5. Let C be a number field, L € C(z)[0], z; a singularity, t; the local parameter,
and let e € @[tz_l] Let by be the number of distinct generalized exponents ey, of L at x; with
ez, — € € Z. Suppose that y is an ezponential solution of minimal algebraic degree m over C(z;;e)
with generalized exponent e at ;. Then m < by.
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Proof. By the previous Lemma, the conjugates of y over C(z;;e) form m linearly independent
exponential solutions, all of which have generalized exponent in e + Z at x;. These exponential
solutions (viewed as formal solutions at z;) can be written as ¢;(¢;) exp([ e/t; dt;) where ¢;(¢;) €
Q((t;)) for all j € {1,...,m}. After Gaussian elimination on the vectors of coefficients of the ¢;(t;),
we obtain m formal solutions at z; with distinct generalized exponents in e + Z. Then m < b

because there are only b; such generalized exponents at x;. O

The modular approach yields a different bound:

Proposition 6.6. Let C be a number field, let L € C(x)[0] and let p be a good prime for L. Let by
be the number of roots of xp(L) (counted with multiplicity) that match (in the sense of Algorithm
CombMatchRoot) the choice €z, at z;. Let y be an exponential solution of minimal algebraic degree
m over C(z;;es,), and generalized exponent ey, at z;. Then m < by.

Proof. Let R € C(z4;ez;)(z)[0] be the right hand factor whose solutions are spanned by all ex-
ponential solutions y of L that have generalized exponent e;; at z;. Since there are at least m
independent such solutions, the order d of R is at least m. All solutions of R have the same local
type at z; (namely the local type ez, mod Z, see Definition 6.1). Now R factors as a product of
first order factors R = Ry Ry --- R4 because R has a basis of exponential solutions. All R; have the
same local type at z;, so for each R;, the generalized exponent at x; must be congruent to e;; mod
Z. Hence the root of x,(R;) matches €z, at ;. The proposition now follows from the fact that R
and Ry,..., R4 can be reduced mod p (see Proposition 1.15) and Lemma 1.13(a). O

We now have two bounds b; and by for the degree of the extension needed over C(z;;ez,). We
do not know in advance which is smaller, so we compute both and take the minimum.

Definition 6.7. To each couple (z;,esz,) we associate the bound b(zien;) 1= min(by, by).

6.2 An algorithm to find an exponential solution over an algebraic extension

Let L € C(z)[0] with C C Q. We suppose that L has no exponential solutions defined over C
and we want to find (if it exists) an exponential solution defined over an algebraic extension of C.
We will use Algorithm ExpSolsInC' as well as the bounds from the previous section. To find an
exponential solution over an algebraic extension of C, we increase the field step by step by adding
extensions coming from singularities or generalized exponents, and at each step we use ExpSolsInC
to search for an exponential solution over the new field. The bounds tell us when we can stop
making field extensions.

For efficiency reasons we first want to reduce the order of the problem as much as possible
before introducing field extensions, which is precisely what Algorithm ExpSols in Section 7 does
before it calls Algorithm FindASol below. And since the order can be reduced whenever a solution
is found, we want FindASol to stop computing as soon as it finds a solution.

In the algorithm we denote e; j, 7 = 1,...,n; as all, up to conjugation over C(z;), see Defini-
tion 5.6, relevant (see Remarks 1.9 and 5.8) generalized exponents at x;. If n; = 0 then we can
stop the algorithm, the output is . Let F' be a data structure as in the comments after Algorithm
ExpSolsInC'. If z; appears in F, which means that a generalized exponent at z; has already been
chosen, then n; := 1. We denote d; j := [C(z;;€;;) : C(z;)], which is the degree as in Definition 5.6
of e;; over C(z;). Now we define by, .. . ) as in Definition 6.7 with as difference that in Propo-
sition 6.6 we only count those roots of x,(L) that match all generalized exponents specified in F.
Of course, before we enter step 5 we discard all e; ; for which b(z;e; ;,7) = 0 because we want n; to
be as small as possible, and if any n; vanishes then we stop.
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Algorithm FindASol:

Input: an operator L € C(z)[d], a field C, a data structure F' and a positive integer b.

Output: an exponential solution of L or (.

1-1If b =0, then return () and stop.

2 - Run ExpSolsInC(L,Coptions={ “just one”, F'}).

3 - If this gives a solution, then return it and stop.

4 - If b =1, then return @) and stop.

5 - If we can choose x; in step 6 with degree 1 over C, or if &' < b/2 for all ¥/ in step 6a,
then go to step 6, else go to step 8.

6 - Choose one C-singularity z;, not appearing in F'. Then, for j = 1,...,n; do 6a and 6b:

6a - Let b’ be the minimum of b, ., . r) and [%J

6b - If FindASol(L, C(zi; €55), F U {(zi, €i )}, b')’ # (), then return it and stop.

7 - Return () and stop.

8 - Do step 8a for all z; not appearing in F' for which d; := [C(z;) : C] is not 1 and
there are at least two j’s with d; ; = 1.

8a - If FindASol(L, C(z;), F, Lb%ﬂj) # (), then return it and stop.

(2

9 - For all 7,5 with z; not appearing in F' and 1 < d; ; < b do step 9a:
9a - If FindASol(L, C(xzi; e55), F U {(zi,ei )}, [%J) # (), then return it and stop.
10 - Return 0.

For the modular computations in recursive calls of ExpSolsInC, we always use the same prime
number so that the modular information that we need is only computed once. One can also re-
use information on singularities and generalized exponents from previous computations, but this
information needs to be updated to the new field which involves factoring polynomials. For the
singularities this means: factoring a, over the new field. The generalized exponents need to be
updated as well, for example, if we extend C then the degree over C(z;) of a generalized exponent
can decrease, which means that the polynomials defining the field extension C(z;;e; ;) over C(z;)
have become reducible, so they need to be factored. This way one conjugacy class of generalized
exponents can split up into several conjugacy classes of generalized exponents.

We are going to verify (we must prove this recursively, i.e., by induction) that Find ASol satisfies
the following;:

Algorithm specification: if an exponential solution y exists that satisfies the fixed choices in
F and has degree < b over C, then FindASol will return some exponential solution of L (but not
necessarily of degree < b over C).

Proof. We first show that step 6 is correct. Suppose such y exists. Then the conjugates of y over
C are also solutions of L, and satisfy the same fixed choices made in F' (because in F' we only have
singularities and generalized exponents defined over C) as well as the degree bound b. Now the
e;; constitute, up to conjugation, a complete list of relevant Z-minimal generalized exponents at
x;, so there must exist j such that a conjugate of y has generalized exponent in e; ; + Z at x;. We
may assume that conjugate is just y. So for this j, there is a solution y defined over a field C’ with
[C" : C] < b having generalized exponent in e; ; + Z at z;. We now replace C by C(z;;e;;) and F
by F U {(zi,e;;)} so we may use the degree bounds from the previous section. We included a new
bound in the algorithm as well, namely L%jj, which holds because:

e;j is a C'-generalized exponent since it corresponds (mod Z) to the solution y defined over C'.
So C'(z;) = C'(ziseiy). Let b = [C'(z;) : C(z;)]. Now C'(z;) = C'(zi;e;5) contains C(z;e;5),
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which has degree d; ; over C(z;), and so [C'(z;) : C(z4;€;)] :ﬁ/di,j. Now y is defined over C’,

hence over C'(z;), which is an extension of C(z;;e; ;) of degree b/d; ; and this is < | ;2| because

d; j
b<[C':C]<b.

Now steps 8 and 9. Again suppose that an exponential solution y exists that satisfies the fixed
choices in F' and has degree < b over C. Let again C’ be the field of definition of y over C. If every
C’-combination was also a C-combination then ExpSolsInC(L,C) and ExpSolsInC(L,C") would
have to find an equal number of solutions; so FindASol will return a solution in step 3. Thus we
may assume that not every C’-combination is a C-combination, so there are more C’-combinations
than C-combinations. This can only happen when at least one of the following is true:

(I). There are more C’-singularities than C-singularities, or:

II). There exists a C-singularity z; at which there are more C’-generalized exponents than C-
g y g p

generalized exponents.

Case (I) will be handled by step 8 and case (II) by step 9. Suppose that (I) holds. Then the
minimal polynomial of some C-singularity z; must be reducible over C’. This minimal polynomial
has degree d;. One of the factors over C' must have degree d' < [d;/2]. By abuse of notation
we denote z; as a root of that factor as well. So then [C'(z;) : C'] = d', [C' : C] < b, so
[C'(z;) : C] < d'b. Now C(x;) is a field between C'(z;) and C having degree d; over C, so
[C'(z;) : C(z;)] = [C'(=;) : C]/d; < d'b/d; < be where € := |d;/2]|/d;. Note that ¢ = 1/2 when d;
is even, and € < 1/2 when d; is odd. Now y is defined over C’, hence also over C'(xz;), which is
an extension of degree < be over our new field C(z;). Hence the degree bound used in step 8a is
correct.

Note that if there exists an ¢ for which there is no j with d; ; = 1 then a solution y necessarily
involves a generalized exponent at z; that is not defined over C(z;), the case that is treated by
step 9, and in this case the algorithm stays correct (but becomes more efficient) if we skip 8 and
use only this 7 in step 9. And if there is only one j with d; ; = 1, then either we must choose this j
(at x; and its conjugates over C), or the problem is handled by step 9 (in which case it is enough
to use only this ¢ in 9).

Increasing the number of singularities does not increase the number of combinations if there is
only one choice to be made at these singularities, thus skipping ¢ in step 8 when there is only one
J with d; ; = 1 is correct.

Now assume that (I) does not hold (then every C’-singularity is a C-singularity) and assume
that (II) holds. Then at some C-singularity z; we have a C’-generalized exponent e;; that is not a
C-generalized exponent. This generalized exponent is defined over C’'(z;) but has degree d; ; over
C(z;). The degree bound L%J in step 9a can then be proved with the same arguments as before,
which completes the proof that FindASol satisfies its specification. O

The degree bound drops at least a factor 2 each time we use recursion with an extension of C.
So if the initial degree bound b is less than 4 then the extensions we construct are not greater than
those given by a single z; (in step 8) or a single couple (z;,ez;) in step 9. If b < 8 then we will
stack at most 2 such extensions (each given by an z; or by a couple (z;,e;,)) on top of each other,
which is generally feasible in practice. So unless the degree bound is very high we do not expect
the algorithm to choke on these algebraic extensions. And even if the degree bound is very high
(order > Nroots > 8), the alternatives currently used by Maple’s ezpsols need not be better.

We can further improve the algorithm with modular methods. For example, certain z; in step
8 may be omitted on the basis of modular information, namely when none of the roots of x,(L)
allows a combination that uses distinct generalized exponents at two singularities conjugated to z;.
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If a root of xp(L) can only match a solution defined over C' (this can happen when it must use
an e; j for which C(z;;e; ;) = C and the bound in Definition 6.7 is 1) then we can discard this root
after step 2. Reducing the number of roots of x,(L) in this way reduces the bounds and the n;’s
which may help prevent making some unnecessary field extensions.

Step 8a can be improved in the following way. If the recursive call for x; returns ), then later
recursive calls in step 8a should be prevented from factoring the minimal polynomial of x; over the
new fields, and prevented from making that same extension z; again.

A similar improvement is possible in step 6b. If the recursive call for e; ; returns (), then we
could discard e; ;. This will prevent later recursive calls from trying e; ; again. But it also reduces
the number of generalized exponents, which may improve the bound b (see the number N; in
comment [1] after Algorithm ExpSols in Section 7).

7 An algorithm to find all exponential solutions

In this section, we give a complete algorithm to find a basis, up to conjugation, for all exponential
solutions of a differential operator L € C(z)[0] where C C Q. The general idea in this recursive
algorithm is the following. Using our procedure ExpSolsInC, we first compute the “easy” first
order factors, that is, those defined over C. Then by looking at the value of Nroots (from Algo-
rithm CombMatchModp) we check if there may exist more exponential solutions, which are then
necessarily not definable over C. If such exponential solutions could exist then we first recursively
remove all “easy” factors, both on the right as well as on the left using the adjoint L* of L (see
[Inc26, 5.3] or [PS03, 2.1]) until there are no more easy factors on either side. We do this because
we want to make the order of the operator as small as possible before entering the “hard” case (i.e.,
searching for exponential solutions defined over algebraic extensions using Algorithm FindASol).

The specifications of the following ExpSols algorithm are the following: first, it should not
return the “same” solution more than once, more precisely: the output gives only one exponential
solution in each conjugacy class. This is because we want the output to be a basis up to conju-
gation. Second, the solutions given in the output must all be of minimal algebraic degree over C,
because this guarantees (see Lemma 6.3) that their conjugates over C are linearly independent.
To count the number of elements in the basis of exponential solutions, we must count a solution y
given in the output d(y) times, where d(y) is the degree over C of the field of definition of y. In
the following, Card(Sol) denotes the number of elements of the set Sol. The number of solutions
represented by Sol is the sum of d(y) taken over y € Sol. Finally, we mark with a [.] the steps for
which explanations or comments are given after the algorithm.
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Algorithm ExpSols:
Input: a linear differential operator L € C(z)[d] (C C Q) and the field C.
Output: Sol, a basis of exponential solutions of L up to conjugation over C.
— Sol := ExpSolsInC(L,C).
— If Card(Sol) > Nroots —1, then return Sol and stop ([1]).
— If Sol # () then,
- Write L = L LCLM(d — ¢/ /y |y € Sol),
- ExpSols(L,C) ([2])-
- Keep only the types not defined over C of the solutions found,
- For each remaining type represented by ¢ ([3]),
. Compute a basis R, ..., Rs of rational solutions of Ls_, 51,
. Add the exp( [ t) R; to Sol.
- Return Sol and stop.
— Else,
- If the order is 2 then go to the next Else below,
- Make L monic,
- ExpSolsInC(L*,C) where L* is the adjoint of L ([4]).
- If it finds solutions y1, ...,y where r > 0 then,
. Write L = LCLM(8 — o} /y1,---,0 — 4. /yr)* L,
. Return ExpSols(L,C) and stop.
- Else ([5]),
. FindASol(L,C,0,Nroots) ([6]). If @ then return () and stop.
. Optimize the solution y found ([7]),
. Compute a basis Ry, ..., R of rational solutions of Ly .51 /y,
. Add the y R; to Sol,
. Write L = L LCLM(d — r1,...,0 — rs, “and conjugates over C”), ([8])
. Remove recursively from L the solutions of the same type as y ([9]),
. ExpSols(L,C).
. Keep only the types not defined over C of the solutions found,
. For each remaining type represented by ¢ ([3]),
Compute a basis Ry, ..., R, of rational solutions of Ly, 54,
Add the exp( [ t) R; to Sol.
. Return Sol and stop.

We explain or comment the points marked with a [.]:
[1] - The number Nroots, which was calculated in CombMatchModp, is used as upper bound for
the number of linearly independent exponential solutions. We have already found Card(Sol) inde-
pendent solutions and so there are at most d := Nroots — CardSol linearly independent exponential
solutions left. This d is an upper bound for the degree of the field extension of remaining exponen-
tial solutions of minimal algebraic degree. If d < 1 then no extensions are necessary so we can stop
the computation.
At a singularity z;, let N; be the number of distinct unramified generalized exponents in @[t;l]:
this is another upper bound for the total number of linearly independent exponential solutions. If
N; < Nroots, then replace Nroots by N;.
[2] - At this point the roots of the p-curvature have already been computed, and need not be com-
puted again; we can simply take the roots (with multiplicity) for x, (L) and reduce the multiplicities
according to the solutions found.
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[3] - We have applied recursion on a left factor of L so the exponential solutions found are in
general not exponential solutions of L. We will only use the types of the exponential solutions of
this left factor, not the exponential solutions themselves. We skip types defined over C' because
all exponential solutions over C have already been found. From [Ore32] or [Hoe97b, Lemma 7.1],
the types of exponential solutions of L that are not yet found must be among the types in the left
factor L of L.

[4] - We will apply FindASol only when all easy factors have been removed both on the left and
on the right. Removal of easy factors, left or right, does not cause solutions to be lost because
we only do this after all easy solutions have already been computed and stored in the set Sol, in
the first step of the algorithm. To find the easy left factors, we apply ExpSolsInC to the adjoint
operator L* to find the easy exponential solutions of L* which correspond to easy left factors of L
(see [PS03, 2.1]). Then we apply recursion on the remaining right hand factor.

[5] - If the order of the operator is two, and if the bounds in FindASol do not immediately rule out a
solution defined over an extension, then the formulas given in [UW96] would be a good alternative
to FindASol. If the order is three, then an alternative would be the eigenring method (see [PS03])
but we do not expect that to be better than FindASol, especially if one implements some shortcuts
for order 3 in FindASol (such as: we only need to consider extensions in FindASol that have a
degree 3 subfield. And: if at z; there are two non-conjugated generalized exponents that do not
differ by an integer, then C(z;) is the only extension that needs to be considered).

[6] - Here, we reach the point where there is nothing left to do than entering the “hard case”, trying
to find a solution over an extension of C' with FindASol. An a priori first bound is Nroots, the
number of roots in F,(zP) counted with multiplicity of x,(L) for a good prime p. Note that a more
detailed analysis could lead to a sharper bound. For example, if two roots of x,(L) can not corre-
spond to conjugated exponential solutions, or if one can conclude using the bounds in Section 6.1
that some root of x,(L) can not correspond to an exponential solution of minimal algebraic degree
Nroots, then we could give FindASol a better bound.

[7] - Let y be an exponential solution. We can write y'/y = P, /P, where P; and P, are polynomials
with gcd 1 and P» is monic. The field of definition of y is then the field generated over C by the
coefficients of P, and P». By “optimizing the solution” we mean two things: 1). Using this solution
y to find a solution of minimal algebraic degree over C. And 2). Making sure that the field that
the algorithm gives for y (this field contains the field of definition of y) is actually equal to the field
of definition of y. Both 1) and 2) are important. We want y to be of minimal algebraic degree so
that we know that its conjugates are linearly independent. But the way we count the number of
conjugates of y, i.e., the way we determine the number d(y), is not by looking at y, but by looking
at the field given for y. The field provided for y by Algorithm FindASol contains, but need not be
not equal to, the field of definition of y. So to optimize y, we take the field given for y, and then
determine the subfield generated over C' by the coefficients of P, and P,. Then we find defining
equations (i.e., new RootOf’s) for this subfield, and use them to rewrite the coefficients of P; and
P,. This then takes care of 2). To do 1), we could use the approach in Lemma 6.3, however, this is
not necessary because the special choice that Algorithm ExpSolsInC' makes when the option “just
one” is given causes 1) to be automatically satisfied. The polynomial @ is of minimal degree with
this option given, which leads to uniqueness of y'/y which in turn causes y to already be of minimal
algebraic degree over C.

[8] - Here ; = R;/R; +v'/y. One can compute this LCLM using the method of undetermined
coefficients and solving linear equations over C(z), this can be done without actually constructing
the conjugates of y'/y.

[9] - What is meant here is to also remove solutions whose type is conjugated over C to the type
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of y. We will remove such solutions recursively because if we do not then it would be non-trivial
to ensure the specification of the algorithm that the “same” solution is not returned more than
once. So before we call ExpSols on the remaining left factor L of L, we first remove from L all
exponential solutions of the same type as (conjugates of) y, and we keep repeating this until L no
longer has solutions of this type. A recursive procedure to achieve that is the following: compute
the rational solutions R; of i’@—)6+y’ /y; each one gives a first order right hand factor & —r; of L
where r; = R!/R;+v'/y. If there are none then return L else write L = L1 LCLM(d—r1,...,0—rs,
“and conjugates over C”) and apply recursion on L.

7.1 Some remarks on the algorithm

Remark on ExpSolsInC: Even though we use Algorithm CombMatchModp, there could still be
combinations in step 4 that do not lead to an exponential solution (if for example the number of
combinations is greater than Nroots then we already know in advance that this will be the case). If
the degree bound (the number N in step 4) for polynomial solutions is high, or if C' is a complicated
field, or if there are many combinations to be checked, then to make the algorithm efficient we need
a quick way to discard non-solution-combinations before doing all the work in steps 4a and 4b,
because each of these two steps can dominate the computation time.

In step 4, we can of course pre-compute the traces, so that all computations in step 4 are rational
(i.e., over C'). Computing S in step 4a then only involves additions in C(z). However, that does
not imply that computing S is cheap, because normalizing S (writing S as P; /P, where P;, P, are
polynomials with no common factors) can be an expensive operation if C' is a complicated field.
Computation of L = Lj_,5+5 can be even more expensive because we need to multiply, differentiate,
and add in C(z). And since step 4a is applied to each combination, one can easily spend more time
in step 4a than in steps 1 and 2 combined. And if N is large then 4b can take even more time.

Often the N’s are very small, and one can improve the running time of ExpSolsInC' substantially
by implementing some cases for step 4b separately, such as the case N =0 (in that case we should
use a fast zero test for L(1) without computlng L itself) and the case N small non-zero: here, one
would be tempted to take an ansatz va o GiT', and to compute the coefficients of L(ansatz) which
gives linear equations for the unknowns ¢;. But for small N and large L this results in much more
equations than we need because there are only N 4 1 unknowns. In this case, to make the ansatz
approach efficient we should not fully evaluate f/(ansatz) because then we computed much more
equations than we need. Instead we should evaluate just enough coefficients of L(ansatz) (and do
this without fully computing L itself) so that we have enough equations to determine the ¢;, and
once the ¢; € C are found then we finish with a quick zero test for I:(va o cit'). For large N we
propose to compute L and to use [ABP95].

If we find w > 0 polynomial solutions in step 4b then the computation time in 4a and 4b was
well spent even if those steps took a lot of time. But when w = 0, and if C' is a complicated field
or N is a large number, then we want to avoid 4a and 4b with high probability. This is done as
follows: take a sufficiently large prime number p (in general this p is not the same prime as we used
for the p-curvature because for the p-curvature we only use small primes) such that C[p] = F, (such
primes have density at least 1/[C : Q] so they are easy to find). Then compute L[p] € F,(x)[0] and
check if it allows a polynomial solution of degree < N. If not, skip 4a and 4b.

More general fields: It is not difficult to generalize our algorithm to arbitrary fields of charac-

teristic 0. We may assume that C is the field generated by the coefficients of L, so then C is a
finitely generated extension of Q, say C' = Q(t1,...,t)[c,- .., o] where t1,...,t; are algebraically
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independent and the «; are algebraic over Q(¢1,...,%). Then the reduction mod p works as fol-
lows: choose random values for ¢; in Q. This gives a map fi; from a subring Ry of Q(¢1,...,%)
to Q. If not all coefficients of the minimal polynomial of a; are in Ry, then choose different ran-
dom values for ¢;. After that, the minimal polynomial of «; is mapped to a polynomial over Q,
we can choose an irreducible factor, a root o) of that factor, and map a; to o). Do the same
for as,...,0q. This way we have a map fo from a subring Ry of C to the field Q(af,..., o).
We can then choose a reduction mod p in the same way as before, so we have a map g from a
subring of Q(¢/,...,]) to a finite field. Then let the map [p] be the composition g o fo of these
two maps, which will be defined on some subring R3 of Ry. One can always find evaluations in Q
for the ¢; and a prime number p such that all elements of C' that we want to reduce mod p are in R3.

Logarithms: Generalized exponents correspond to formal solutions. Since we are only interested
in exponential solutions, the formal solutions that contain a logarithm are not of interest to us.
Because of this, we can disregard those generalized exponents that do not correspond to a formal
solution without a logarithm. Note that in any given equivalence class mod Z, this observation
could eliminate some but never all unramified generalized exponents, so it does not help much
for the combinatorial problem. However, this observation may reduce the number of distinct
unramified generalized exponents in some equivalence classes mod Z, which can reduce the bound
in Proposition 6.5 as well as the number N; in comment [1] after Algorithm ExpSols. This could
speed up Algorithm FindASol. Note that if L has an exponential solution of minimal algebraic
degree n — 1 where n is the order of L, then the adjoint of L has an exponential solution defined
over C. Algorithm ExpSols removes this solution, hence, if ExpSols calls FindASol with degree
bound (the number b in FindASol) N; = n — 1 then we may use n — 2 instead.

Deciding which generalized exponents match formal solutions without logarithms can be done if
we compute d + 1 terms of the formal solutions, where d is the exponent-difference. We propose to
do this computation only when ExpSols has to call FindASol. To speed up this computation, one
could compute the formal solutions modulo a suitably large prime number, if a logarithm occurs
then a logarithm must occur in characteristic zero as well.

A related implementation: Although we do not have an implementation for the algorithm
ExpSols in this paper, there is an implementation in Maple 9 for the difference case, i.e., a procedure
that computes the hypergeometric solutions of a difference equation. This implementation follows
some of the ideas in this paper and performs very well in practice (a paper concerning the difference
case is planned). We expect our ExpSols to perform equally well.

7.2 Computing radical solutions

Computing radical solutions is almost the same problem as computing exponential solutions, with
only a few differences:

1. One only uses generalized exponents that are in Q, see Equation (5) and Remark 1.10.
2. Treq maps rational numbers to zero, which implies that the only root of x,(L) that matters is 0,
but also implies that there is no reduction in the combinatorial problem.

This means that for computing radical solutions, the only useful modular information is the multi-
plicity of the root 0 in x, (L), which we can use as a bound for the number of linearly independent
radical solutions, hence as a bound for the degree of the field extension over which such solutions
(of minimal algebraic degree) are defined.

To save computation time, we can compute this multiplicity without computing x,(L), in the
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following way: Take a good prime p. Then compute a basis z1, ...,z of rational solutions of L[p].
If s = 0 then return 0, otherwise write L[p| = LiLy where zi,...,z;s is a basis of solutions of Ls,
apply recursion to Li, then add s to the result for L, and return the answer. We expect this to be
faster than computing x,(L) because rational solutions of a differential operator in characteristic
p can be computed very quickly, O(max(l, p)?p) field operations where [ is a bound on the degree
of the coefficients of L, see [Clu03].

7.3 Almost all primes

There are many results known that hold for all but finitely many p. For example, it is easy to show
that

Lemma 7.1. For all but finitely many p, the number of linearly independent radical solutions of L
is bounded by the dimension of the space of rational solutions of L[p].

Thus, for almost all p, we could have used the number s in the previous section as a bound. The
reader may wonder why we did not do so. The problem here is that of the many results that are
known for all but finitely many p, the only ones we can use for the algorithm are those for which
a small prime p can be exhibited with little computation. This problem is also the reason that the
only information we use from the p-curvature is its characteristic polynomial.
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