
Computing Hypergeometric Solutions of Linear Recurrence

Equations

Thomas Cluzeau∗

LACO, University of Limoges
123 avenue Albert Thomas

87060 Limoges cedex, France
thomas.cluzeau@unilim.fr

Mark van Hoeij†

Department of mathematics
Florida State University

Tallahassee, FL 32306, USA
hoeij@math.fsu.edu

June 15, 2005

Abstract

We describe a complete algorithm to compute the hypergeometric solutions of linear recur-
rence relations with rational function coefficients. We use the notion of finite singularities and
avoid computations in splitting fields. An implementation is available in Maple 9.

Introduction

Let C be a field of characteristic zero and C its algebraic closure. In many examples, C = Q, but
C can also be a number field and may also have transcendental degree > 0 over Q, as long as the
standard algorithms (such as zero-test in C, factoring in C[x], etc.) are available.

A linear difference operator

L = an τn + an−1 τn−1 + · · · + a0 τ0, (1)

with ai = ai(x) ∈ C(x) is an operator that acts on functions u = u(x) in the following way:

L(u) = an(x)u(x + n) + an−1(x)u(x + n − 1) + · · · + a0(x)u(x).

The set of all such operators is denoted by C(x)[τ]. This is a non-commutative ring; multiplication
is given by composition. We will always assume that the leading coefficient an and the trailing
coefficient a0 are both non-zero. In this case, n is called the order of L. The field of definition of
L is the smallest field C ′ ⊆ C such that L ∈ C ′(x)[τ].

The linear difference operator L in (1) corresponds to the linear recurrence equation (or relation)

L(u) = 0, i.e., an(x)u(x + n) + an−1(x)u(x + n − 1) + · · · + a0(x)u(x) = 0. (2)

∗work initiated while being a member of Laboratoire STIX, École polytechnique, 91128 Palaiseau cedex, France
†Supported by NSF grant 0098034

1

A solution of L is a function u for which L(u) = 0. A hypergeometric solution is a solution u
for which r := u(x + 1)/u(x) is a rational function, i.e., r ∈ C(x). Computing a hypergeometric
solution u of L is equivalent to computing a first order right hand factor τ − r of L in C(x)[τ].

An algorithm for computing hypergeometric solutions of linear recurrence relations with poly-
nomial coefficients was first given by Petkovšek in [Pe92]. This algorithm is very useful and has
interesting applications. Unfortunately, in practice it is limited to the case where a0 and an do
not have complicated roots because the algorithm computes the splitting field of a0 an and this can
easily run out of control. Even when this splitting field is not too complicated, the algorithm is still
not optimal because it searches through more combinations than necessary (see [Ho99, Example
1.5] and also [We01, Section 6.3]). To address these problems, the concept of finite singularities was
introduced in [Ho99]. This notion and the associated Fuchs’ relations allow to reduce the number
of combinations to check and to mimic Beke’s algorithm to find exponential solutions of linear dif-
ferential equations (see [Be94] or [CH04]). For n < 4, [Ho99, Theorems 2 and 3] show how to avoid
splitting fields. In this paper we extend this to order > 4. We also give a number of additional
improvements. We detail the steps of the algorithm and we show how they can be done efficiently.
The complete HypSols algorithm is described in Section 9 and uses a similar approach as Algorithm
ExpSols in [CH04] which computes the exponential solutions of linear differential equations. We
will show in Section 10 how modular computations can be used to improve several steps in the algo-
rithm. Finally, we will build the necessary tools to construct an analogue algorithm for q-difference
equations when q is not a root of unity. Note that a q-analogue of Petkovšek’s algorithm is given
in [APP98].

To summarize, the main contributions of the paper are:

• More details on how to implement the algorithm in [Ho99] efficiently.

• How to avoid splitting fields for arbitrary order (in [Ho99] this was done for order 6 3).

• Modular improvements in Section 10.

• Introduction of local types and Fuchs’ relations for q-difference equations in Section 12, so
that an algorithm along the same lines can be given for the q-difference case as well.

The paper is organized as follows. Section 1 recalls the vocabulary concerning hypergeometric
terms and their local types. Section 2 shows how the symmetric product is used in the algorithm.
Sections 3 and 4 deal with the finite singularities: we detail how candidate local types at these
singularities can be computed efficiently. In Section 5 the same problem concerning the point
at infinity is addressed. Section 6 discusses issues about field extensions. In Section 7 we give
Algorithm ESols to compute the “easy” solutions and in Section 8 we describe Algorithm HSol
that computes a “hard” hypergeometric solution, addressing the field problem. The complete
Algorithm HypSols is given in Section 9 which also lists a number of additional improvements.
Section 10 details how modular computations can improve the algorithm. Section 11 gives some
timings. Finally, in the last section, we introduce the notions needed to construct an analogue
algorithm for q-difference equations when q is not a root of unity.

1 Hypergeometric terms

Let C be a field of characteristic zero and C be its algebraic closure. In [PS97, Section 6.2], the
authors prove the existence and uniqueness (up to difference isomorphisms) of a universal extension

2

V for difference equations with coefficients in C(x). Consequently, given a difference operator L,
we can view the solutions of L(y) = 0 as elements of this universal extension V. The dimension of
the solution space (the kernel of L : V → V) is n.

One can view V as a subring of the ring S which is defined as follows

S = {[f] | f ∈ C
N},

where [f] is the equivalence class of all f̃ ∈ C
N

for which f − f̃ has finite support. If f is a function
that is defined on all but finitely many elements of N, then its image [f] ∈ S is well defined. This
way C(x) can be viewed as a subring of S.

Definition 1. A non-zero expression u(x) ∈ V is called a hypergeometric term if it satisfies
u(x + 1)/u(x) ∈ C(x). The rational function r(x) = u(x + 1)/u(x) ∈ C(x) is then called the
certificate of u(x). It is the analogue of the logarithmic derivative from the differential case.

Let u(x) be a hypergeometric term, and view u(x) as an element of S. If C = C then we can use
Gamma functions to represent u(x) by a function, defined for sufficiently large integers, as follows:

cx R(x)

m
∏

i=1

Γ(x − αi)
ei ,

where c ∈ C∗, R(x) ∈ C(x) and ∀ i ∈ {1, . . . ,m}, αi ∈ C and ei ∈ Z.

In this paper, we do not need to distinguish a hypergeometric term u(x) from a constant times
u(x). Thus we can represent u(x) by its certificate, which explains the following definition.

Definition 2. Let C be a field of characteristic zero. A hypergeometric term u(x) is said to be
defined over C if u(x + 1)/u(x) ∈ C(x).

Definition 3. Let u1(x), u2(x) be hypergeometric terms, and r1(x) = u1(x + 1)/u1(x), r2(x) =
u2(x + 1)/u2(x) be their certificates. Then u1(x) and u2(x) are said to be of the same type (or
similar) if u1(x)/u2(x) ∈ C(x), or equivalently, if r1(x)/r2(x) is the certificate of a rational function.

Remark 1. The following property (see [PWZ96, Proposition 5.6.2]) shows that the notion of type
is very natural: u1, u2 are of the same type ⇔ u1 + u2 is either a hypergeometric term or zero.

In fact, if u1, . . . , uk are hypergeometric terms of distinct types then they are C(x)-linearly
independent. Let u(x) be a hypergeometric term defined over C and let r(x) ∈ C(x) be its
certificate. We can factor r(x) over C as follows. Note that in general C will not be algebraically
closed, so the factors need not be linear.

r(x) = c φ1(x)e1 · · ·φm(x)em , (3)

with c ∈ C∗, ei ∈ Z, and φi(x) = xdeg(φi) + φi,1x
deg(φi)−1 + · · · + φi,deg(φi)x

0, where φi,j ∈ C, and
φi ∈ C[x] is monic and irreducible over C. Because r(x) is a rational function, the multiplicities ei

can be negative.
Denote t := 1/x. Now r(x) = r(1/t) can be written as

c tv (1 + d t + O(t2)), (4)

3

where c ∈ C∗, v ∈ Z and d ∈ C. Equations (3) and (4) are related in the following way: the number
c is the same, and furthermore:

v = −
m

∑

i=1

ei deg(φi) and d =

m
∑

i=1

ei φi,1.

If we factor r(x) over C, so r(x) = c
∏

i(x−αi)
ei , then we can write v = −∑

i ei and d = −∑

i ei αi.

Definition 4. With the notations above, the local type of the hypergeometric term u(x) at x = ∞
is defined as

g∞(u(x)) := (c, v, d + Z) ∈ C∗ × Z × C/Z.

If g∞(u1) = (c1, v1, d1 + Z) and g∞(u2) = (c2, v2, d2 + Z), then g∞(u1 u2) = (c1 c2, v1 + v2, d1 +
d2 + Z).

Example 1. Let

u(x) = 7x Γ(x + 1
3)Γ(x + 6

5)3

Γ(x − 2
3)Γ(x − 4

5)
(5)

be a hypergeometric term defined over Q. Then

r(x) =
u(x + 1)

u(x)
= 7

(

x +
1

3

)1 (

x − 2

3

)−1 (

x +
6

5

)3 (

x − 4

5

)−1

,

so that
c = 7, v = −(1 · 1 − 1 · 1 + 3 · 1 − 1 · 1) = −2,

and

d = 1 · 1

3
− 1 ·

(

−2

3

)

+ 3 · 6

5
− 1 ·

(

−4

5

)

=
27

5
.

Consequently,

g∞(u(x)) =

(

7,−2,
27

5
+ Z

)

.

Entries of g∞(u(x)) correspond to terms in the expansion of r(x) at x = ∞ (at t = 0):

r(x) = r

(

1

t

)

= 7 t−2

(

1 +
27

5
t + O(t2)

)

.

Definition 5. Let u(x) be a hypergeometric term defined over a field C of characteristic zero and
let r(x) = u(x + 1)/u(x) ∈ C(x) be as in Equation (3). Let q ∈ C and let p = q + Z be the image
of q in C/Z. Then the local type or valuation growth of u(x) at the “point” p is defined as:

gp(u(x)) =
∑

i

ei where the sum is taken over all i for which φi has a root in p.

That φi has a root in p is equivalent to saying that φi(q + l) = 0 for some l ∈ Z.

4

Example 2. Let u(x) be as in Example 1.
For p = 2/3 + Z, we have gp(u(x)) = 1 − 1 = 0 and for p = 4/5 + Z, gp(u(x)) = 3 − 1 = 2.
If p is any other element of Q/Z, then gp(u(x)) = 0.
So for this example we have calculated the local types of u(x) for all p ∈ Q/Z∪{∞}. We can verify
that the so-called Fuchs’ relations (see [Ho99, Equation 3]) hold:

v +
∑

p∈Q/Z

gp(u(x)) = 0 and d +
∑

p∈Q/Z

gp(u(x)) p ≡ 0 mod Z. (6)

The first one is −2 + 0 + 2 = 0, and the second is 27
5 +

(

0 · 2
3 + 2 · 4

5

)

≡ 0 mod Z.

The following statement is part of [Ho99, Theorem 1].

Theorem 1. Let u1(x) and u2(x) be hypergeometric terms. Then u1(x) and u2(x) are of the same
type if and only if they have the same local type at every p ∈ C/Z ∪ {∞}.

This theorem is central to the algorithm. The way the algorithm uses it is as follows: from the
definition of type, if we know the type of u(x), then we know u(x) up to some unknown factor in
C(x). The theorem says that we know the type of u(x) if and only if we know the local type of u(x)
at all “points” p ∈ C/Z ∪ {∞}. Hence, in order to find a hypergeometric solution u(x) of a linear
recurrence equation, we first have to find the type of u(x), and in order to do that we first have to
find the local type of u(x) at each p ∈ C/Z ∪ {∞}. In Section 4 we compute for p ∈ C/Z a finite
set gp(L) of candidate local types of L at p. This means that for every hypergeometric solution u
of L, the local type gp(u) of u at p is an element of gp(L). In Section 5 we do the same for p = ∞.

2 The symmetric product

Definition 6. Let L1, L2 ∈ C(x)[τ]. The symmetric product L1©s L2 of L1 and L2 is defined as
the monic operator L ∈ C(x)[τ] of smallest order such that L(u1 u2) = 0 for all u1, u2 ∈ V with
L1(u1) = 0 and L2(u2) = 0.

In this paper, we only use this when the order of L2 is 1, and give a formula for this case. Let
L =

∑n
i=0 aiτ

i ∈ C(x)[τ] be a linear difference operator with ai ∈ C(x) and let r ∈ C(x). Then

L©s (τ − r) =
1

bn

n
∑

i=0

biτ
i where bn = an and ∀ i ∈ {0, . . . , n − 1}, bi(x) = ai(x)

n−1
∏

j=i

r(x + j).

We made the result monic (dividing by the leading coefficient bn) in order to make L©s (τ − r)
uniquely defined. However, in the implementation, uniqueness is not necessary here, and we mul-
tiply L©s (τ − r) by a polynomial in order to avoid computing with fractions.

One way that the symmetric product is used in the algorithm is as follows: suppose we have
chosen a candidate, that is, for each point p we have chosen a candidate local type of L at p (i.e.,
an element of gp(L)). If this candidate does not satisfy Fuchs’ relations given in Equation (6)
then the candidate does not correspond to the type of any hypergeometric term u(x) (see [Ho99,
Theorem 1]), and thus it can be discarded. If it does satisfy these relations, then we have a candidate
type. Then we apply a few tests (see Remark 3 in Section 4) in order to quickly discard those types
for which it is easy to decide that L has no hypergeometric solution of that type. If the candidate

5

type passes these tests, then we want to compute a basis u1, . . . , um of all hypergeometric solutions
of L of that type (if such solutions exist). We construct a function r(x) ∈ C(x) that represents this
candidate type. This means that a non-zero solution u of τ − r has this type. So u1/u, . . . , um/u
must be in C(x). Now 1/u is a solution of τ − 1/r and so from Definition 6 it follows that

u1

u
, . . . ,

um

u
is a basis of rational solutions of L©s (τ − 1

r
).

So finding u1, . . . , um reduces to computing rational solutions. However, at no additional compu-
tational effort (see Example 5 and Remark 3 in Section 4) we can choose r in such a way that
u1/u, . . . , um/u must be in C[x]. This way we only need to compute polynomial solutions.

3 What does it mean to be a finite singularity?

Definition 7 (Definition 8 in [Ho99]). Let L = anτn + · · ·+a0τ
0 ∈ C(x)[τ] with an 6= 0 and a0 6= 0.

After multiplying L on the left by a suitable element of C(x), we may assume that the coefficients
ai are in C[x] and gcd(a0, . . . , an) = 1. Then q ∈ C is called a problem point of L if q is a root of
the polynomial a0(x) an(x − n).

We want a notion of singularities that is invariant under the shift operation p 7→ p + 1. Now p
is invariant under the shift if p = ∞ (Section 5 discusses the singularity p = ∞) but not invariant if
p ∈ C. Thus, we will deviate from other definitions in the literature (our problem points are called
singularities in [No29]) and define finite singularities as follows:

Definition 8. p ∈ C/Z is called a finite singularity of L if L has a problem point in p.

Example 3. Let

L = x

(

x − 1

3

)(

x +
1

4

)

τ2 − τ + x(x − 3).

The order is n = 2. The roots of the trailing coefficient give the problem points 0 and 3, and the
roots of the leading coefficient give the problem points 0 + 2, 1/3 + 2, −1/4 + 2. If u(x) ∈ V is a
solution of L and if q ∈ Q then

q

(

q − 1

3

)(

q +
1

4

)

u(q + 2) − u(q + 1) + q(q − 3)u(q) = 0,

whenever this is defined. Solving for u(q + 2) gives

u(q + 2) = −−u(q + 1) + q(q − 3)u(q)

q(q − 1
3)(q + 1

4)
, in general u(q + n) = −

n−1
∑

i=0

ai(q)

an(q)
u(q + i), (7)

and solving for u(q) leads to

u(q) = −q(q − 1
3)(q + 1

4)u(q + 2) − u(q + 1)

q(q − 3)
, in general u(q) = −

n
∑

i=1

ai(q)

a0(q)
u(q + i). (8)

Formula (7) can be used to compute u(q + 2) from previous u-values if q + 2 is not a problem point
whereas Formula (8) can be used to compute u(q) from next u-values if q is not a problem point.

6

Consequently the problem points of L are {0, 1/3,−1/4}+2 = {2, 7/3, 7/4} and {0, 3}. This means
that the finite singularities are

{

2 + Z,
7

3
+ Z,

7

4
+ Z, 0 + Z, 3 + Z

}

=

{

Z,
1

3
+ Z,

3

4
+ Z

}

,

so there are three finite singularities.
Consider p = Z. If for example the values of u(−5), u(−4) are given, then we can use the

relations (7,8) to calculate u(q) for q ∈ Z with q < 2. But u(2) can not be computed because
taking q = 0 in equation (7) leads to a division by zero. If u(8), u(9) were given, then u(q) could
be computed for all q ∈ Z for which q > 3. We can not reach u(3) from u(8), u(9) because taking
q = 3 in equation (8) results again in a division by zero.

The point p = 1/3 + Z is a finite singularity. If u(5 + 1/3), u(6 + 1/3) were given, then u(q)
can be determined with equations (7,8) for all q ∈ p. However, if u(−5 + 1/3), u(−4 + 1/3) were
given then not all u(q), q ∈ p can be determined. So p is singular, but one only notices its singular
behavior when going from the left to the right (with Equation (7)), and not when going from the
right to the left (with Equation (8)). The point p = 3/4 + Z is a finite singularity for the same
reason.

Any other element of Q/Z is not a singularity. For example, p = 1/2 + Z is not a finite
singularity of L, because whenever we know any two consecutive values of u on p then the two
formulas (7,8) allow us to go freely to the left and right without ever bumping into a division by
zero; there are no problem points in p = 1/2 + Z.

In general, if p is a finite singularity, if n consecutive values u(q + 1), u(q + 2), . . . , u(q + n) are
given, and if q + 1, . . . , q + n are on the left of the problem points, then u(q + l) can be computed
for all l 6 n (with l ∈ Z) but not always for l > n because that would require passing through
problem points. This is the essence of the concept of left solutions of L at p introduced in [Ho99]:
they are solutions defined on a left half line. Similarly, if q + 1, . . . , q + n were on the right of the
problem points, then u(q + l) could be determined for positive integers l, which means we have right
solutions of L at p, they are defined on a right half line.

The set of all left (resp. right) solutions at p is denoted by Vp,l(L) (resp. Vp,r(L)). For a precise
definition of these sets, see [Ho99, Section 2]. Both are n-dimensional vector spaces, where n is
the order of L (we always assume that an and a0 are non-zero). So at a finite singularity p we
distinguish two kinds of solutions, left and right solutions, which are separated by the problem
points. If p is non-singular then Vp,l(L) and Vp,r(L) are not separated and so they can be identified.

Deforming the singularity p is a method to bypass the problem points, in order to go from the
left to the right solutions, as well as from the right to the left solutions. The deformed operator
Lε is obtained by substituting x 7→ x + ε in L. This deformation moves the singularity p to p − ε,
and turns p into a non-singular point: dividing by zero is now replaced by dividing by ε. Here ε is
a new constant; deforming increases our field of constants from C to C(ε). Because of this change
of constants, elements of the two solution spaces (left and right) of L at p can not be identified in
a unique way with solutions of the deformed operator Lε, but we will see in Section 9.1 (see also
[Ho99, Section 4.2]) that it is still possible to define useful maps between these solution spaces.

The main information we gather by going from the left to the right and from the right to the left
in the deformed operator Lε is the multiplicity of the factor ε that will appear in the denominator
(or in the numerator). In the next section, the set gp(L) is constructed from this data.

7

4 How to compute gp(L) for finite p.

Let C be a field of characteristic zero and let L ∈ C(x)[τ] be a linear difference operator. Let
p ∈ C/Z. In [Ho99] a procedure was given to calculate a finite set denoted by gp(L) that has the
property:

u(x) hypergeometric solution of L =⇒ gp(u(x)) ∈ gp(L). (9)

Note: the converse does not hold in general.
We shall show how this can be done in practice in an efficient way. If p = q +Z ∈ C/Z where q ∈ C
then computing with the singularity p of L is equivalent to computing with the singularity 0+Z of
the operator Lq where Lq is the operator obtained from L by substituting x + q for x. So without
loss of generality we may assume that the singularity p to be considered is p = Z. Note though
that (see the discussion in Section 6), given L ∈ C(x)[τ] for some field C of characteristic zero, if
q 6∈ C then we need to temporarily (as long as we are computing with this singularity) replace the
field C by C ′ = C(q) because Lq ∈ C ′(x)[τ].

Now we will assume that L ∈ C ′[x][τ] has order n and that p = Z is the singularity to be
studied. Then the problem points corresponding to p are the integer roots of a0(x) an(x − n). We
take the largest possible pl ∈ p such that for all integers q 6 pl, the two consecutive sequences
u(pl − n), . . . , u(pl − 1) and u(q − n), . . . , u(q − 1) can be computed from each other via the two
equations (7,8) without bumping into divisions by zero. Then we can identify every left solution of L
at p with a vector (u(pl−n), . . . , u(pl−1)) with entries in C, because given any n consecutive values
of such a left solution, we can determine (u(pl −n), . . . , u(pl − 1)) by repeated use of Equation (7),
and furthermore, given (u(pl − n), . . . , u(pl − 1)) we can determine u(q) for all integers q < pl by
repeated use of Equation (8). Similarly, we can take the smallest integer pr ∈ p such that we can
go back and forth between (u(pr + 1), . . . , u(pr + n)) and (u(q + 1), . . . , u(q + n)) for all q > pr.
This way each right solution of L at p can be identified with a vector (u(pr +1), . . . , u(pr +n)) with
entries in C.

Remark 2. The condition back and forth is important in order for such smallest pr ∈ p to exist.
For example if L = τ2 − x2 and p = Z then starting with (u(pr + 1), u(pr + 2)) and say pr < 0
we can go arbitrarily far to the right, but say we go to (u(1), u(2)), then going from there to
(u(pr + 1), u(pr + 2)) without dividing by zero is not possible when pr < 0. So for L = τ2 − x2 we
can not take pr < 0. We see that pr = 0. For L = τ2 − x2 and p = Z we have pl = 2. Notice that
pl − n is always smaller than pr + 1, but that {pl − n, . . . , pl − 1} and {pr + 1, . . . , pr + n} are not
necessarily disjoint.

Example 4. Back to Example 3, recall that concerning the finite singularity p = Z we have seen
that we can not obtain u(2) from previous u-values nor can we obtain u(0) or u(3) from next
u-values. One finds pl = 2 and pr = 3.

Since Lε, the operator obtained by substituting x + ε for x in L, has no singularity at p = Z,
its solution space at p, Vp(Lε) := {ũ : p → C(ε) |Lε(ũ) = 0} is an n-dimensional C(ε)-vector space.
We now specify two bases ũ1, . . . , ũn and ṽ1, . . . , ṽn of Vp(Lε) in the following way:

ũi(pl − j) = δi,j and ṽi(pr + j) = δi,j for i, j ∈ {1, . . . , n},

where δi,j is 1 if i = j and 0 otherwise. If we substitute ε = 0 in ũ1, . . . , ũn then one may have
divisions by 0, but these do not occur at q < pl. This way we obtain a basis {u1, . . . , un} =

8

{ũ1, . . . , ũn}ε=0 of left solutions of L at p. Likewise, {ṽ1, . . . , ṽn}ε=0 is defined at all q > pr, and
this results in a basis of right solutions of L at p.

Definition 9. Let a ∈ C(ε). The valuation vε(a) of a at ε = 0 is the element of Z ∪ {∞} defined
as follows: if a 6= 0 then vε(a) is the largest integer m ∈ Z such that a/εm ∈ C[[ε]], and vε(0) = ∞.

So
vε(a) > 0 ⇐⇒ aε=0 = 0 and vε(a) < 0 ⇐⇒ a has a pole at ε = 0.

Now, for p = Z, we want to compute a set gp(L) satisfying the specification of (9). First, for
q ∈ {pl − n, . . . , pr + n}, we consider the following integers:

Bl(q) = min
16i6n

vε(ũi(q)) and Br(q) = min
16i6n

vε(ṽi(q)). (10)

These integers are very useful since they also lead to bounds for the denominators of rational
solutions in the same way as in [Ho98].

Definition 10. The minimum valuation growth gp,r(L) and the maximum valuation growth gp,l(L)
of L at p are defined as

gp,r(L) = min{Bl(q) | q > pr}, gp,l(L) = −min{Br(q) | q < pl}, (11)

and the set of valuation growths, or candidate local types, denoted gp(L), is then

gp(L) := {m ∈ Z | gp,r(L) 6 m 6 gp,l(L)}.

Note on difference modules: If p ∈ C/Z and if two operators L1, L2 define isomorphic difference
modules (for a definition see [PS97]) then gp(L1) = gp(L2), and thus gp can be defined for differ-
ence modules. This gp behaves in a predictable way with respect to tensor products, direct sums,
etc. Moreover, if gp(L1) = {0} then there exists an operator L2 defining an isomorphic difference
module, for which p is not a singularity. We do not detail this because difference modules are not
needed for this paper.

If u = u(x) is a hypergeometric solution of L, then its local type gp(u) at p, also called its
valuation growth, must be an element of this set gp(L), see [Ho99]. If gp(L) has only one element,
then that leaves only one choice for gp(u). In that case p is called a semi-apparent singularity. If
0 is the only element of gp(L) then p is called an apparent singularity1. The singularities that are
most significant in the algorithm are the ones where there is more than one choice for gp(u), i.e.,
the singularities p where gp(L) has more than one element. Such singularities are called essential
singularities.

If L has a basis of rational solutions, then all singularities are apparent. More generally, if L
has n linearly independent hypergeometric solutions, then gp,r(L) is precisely the smallest gp(u)
of all hypergeometric solutions u of L, and gp,l(L) is the largest gp(u). If L has fewer than n
linearly independent hypergeometric solutions then gp,r(L) and gp,l(L) are just bounds for gp(u)
and are often no longer sharp. If L = L1L2 then gp(L2) ⊆ gp(L) always holds, but it is easy to find
examples where gp(L2) 6= gp(L), even when L does not have more hypergeometric solutions than

1our terminology deviates slightly from [ABH05] where trailing (resp. leading) singularities are called apparent if
the numbers Br(q) (resp. Bl(q)) are non-negative.

9

L2. This already occurs when L = (τ − x)(τ − x) = τ2 − (2x + 1)τ + x2. Fortunately, this does
not imply that Algorithm Search in Section 7 will have to try many types in Steps 2a–2e because
Fuchs’ relations (Equation (6)) are usually quite selective.

Now, in order to calculate the minimum valuation growth gp,r(L) from the formulas (10) and
(11), we have to start from the ũi (which take values 0 and 1 at pl − n, . . . , pl − 1) and evaluate
them at pr + 1, . . . , pr + n. This computation starts with values at pl −n, . . . , pl − 1, and then goes
to the right using Equation (7).

Similarly, to compute the maximum valuation growth gp,l(L), we start with values 0 and 1 for
ṽi at pr + 1, . . . , pr + n, and then we proceed to the left (with Equation (8)) in order to evaluate ṽi

at pl − n, . . . , pl − 1.

Truncated power series:
Suppose we want to calculate Bl(q) for q ∈ {pl − n, . . . , pr + n}. We need to compute the ũi(q) for
i ∈ {1, . . . , n} and q ∈ {pl, . . . , pr + n}. For efficiency reasons, we want to prevent computing in
our new field of constants C ′(ε). Recall that C ′ is the field extension of C given by the singularity
p ∈ C/Z that we shifted to p = Z. Note that computing the sets gp(L) using direct computations
in C ′(ε) hurts the running time of the algorithm: this is remarked in [We01, Section 6.3].
As we are merely interested in the ε-valuations of the ũi(q), these ũi(q) ∈ C ′(ε) can be replaced by
truncated power series in ε, i.e., power series of the form

∑

i<a ciε
i +O(εa) where the sum is finite

and a ∈ Z. This a is called the accuracy of the truncated power series. If a0(x), . . . , an(x) are the
coefficients of L then a0(x + ε), . . . , an(x + ε) are the coefficients of Lε. Let N0 (resp. Nn) be the
number of roots (counted with multiplicity) of a0(x) (resp. an(x)) in p. When we compute the next
term with Equation (7), the accuracy decreases by the ε-valuation of an(q + ε), which is the same
as the order of an(x) at x = q. Combined, going from the left to the right, the accuracy decreases
by Nn. We can recover the ε-valuation of an element of C ′(ε) from a truncated power series when
the accuracy is greater than the ε-valuation. We start computing with ũ(pl −n), . . . , ũ(pl − 1) with
initial accuracy a = N0 +Nn +1. Going to the right with Equation (7), the accuracy has decreased
by Nn when we reach ũi(q) with q > pr, so the remaining accuracy is a − Nn. Considering the
fact that one can go back with Equation (8), it is not difficult to show that N0 is an a priori upper
bound for gp,r(L), hence the remaining accuracy a − Nn = N0 + 1 suffices to determine gp,r(L).
The same initial accuracy N0 + Nn + 1 suffices to compute gp,l(L) as well.

Example 5. Let L = (x − 1) (x + 1) τ2 − x (x2 + x − 1) τ + x2 (x − 1) and p = Z. The problem
points are 1, 3 and 0, 1. Here 1, 3 are the solutions of an(x − n) = (x − 1 − 2) (x + 1 − 2) = 0,
and 0, 1 are the roots of a0. Now pl − n, . . . , pl − 1 (the starting points for the ũi) is −1, 0 because
this is the furthest to the right for which the following is true: for any q, q + 1 ∈ p on the left of
−1, 0 one can go back and forth between q, q + 1 and −1, 0 without dividing by zero. Likewise,
pr + 1, . . . , pr + n (the starting points for the ṽi) will be 2, 3.

Replacing x by x + ε to determine Lε, and solving ũ(x + 2) from Lε(ũ) = 0 like in Equation (7)
we get

ũ(x + 2) = −−(x + ε)
(

(x + ε)2 + (x + ε) − 1
)

ũ(x + 1) + (x + ε)2(x + ε − 1)ũ(x)

(x + ε − 1)(x + ε + 1)
.

N0 + Nn + 1 = 6 so we start with: ũ1(−1) = 0 + O(ε6), ũ1(0) = 1 + O(ε6). Likewise, take
ũ2(−1) = 1 + O(ε6), ũ2(0) = 0 + O(ε6). Then substitute x = −1, 0, 1 in the above equation to find:

10

ũ1(1) = − 1
2ε − 1

4 + 7ε
8 − ε2

16 − ε3

32 − ε4

64 + O
(

ε5
)

, ũ2(1) = −1
ε + 2 − ε + O

(

ε5
)

,

ũ1(2) = −1
2 + ε

4 + ε2

8 + 9
16ε3 − 23

32ε4 + O
(

ε5
)

, ũ2(2) = −1 + 3 ε − 3 ε2 + 2 ε3 − 2 ε4 + O
(

ε5
)

,

ũ1(3) = −1
4 − 1

4ε + 3
16ε2 + 11

16ε3 + O
(

ε4
)

, ũ2(3) = −1
2 + 7

4ε − 3
8ε2 − 13

16ε3 + O
(

ε4
)

.

The accuracy, indicated by O(εa), drops when we divide by ε. Now Bl(q) = min{vε(ũ1(q)), vε(ũ2(q))}
and gp,r(L) = min{Bl(2), Bl(3)} so we have Bl(1) = −1, Bl(2) = 0, Bl(3) = 0, and gp,r(L) = 0.
Now use Lε(ṽ) = 0 to write ṽ(x) as a linear combination of ṽ(x + 1) and ṽ(x + 2). Then start with
ṽ1(2) = 1 + O(ε6), ṽ1(3) = 0 + O(ε6) and ṽ2(2) = 0 + O(ε6), ṽ2(3) = 1 + O(ε6) and compute for
i = 1, 2 the values of ṽi(x) at x = 1, 0,−1. At x = 1 we divide by a0(1 + ε) and the accuracy drops
by 1. Then at x = 0 we divide by a0(0+ε) and the accuracy drops by 2. So for i = 1, 2 we find ṽi(1)
with accuracy 5, and find ṽi(0) and ṽi(−1) with accuracy 3 which is more than enough to determine
gp,l(L). We find Br(1) = −1, Br(0) = −1, Br(−1) = −1 and gp,l(L) = −min{Br(0), Br(−1)} = 1.
Finally, we get

gp(L) = {m ∈ Z | gp,r(L) 6 m 6 gp,l(L)} = {0, 1}.
Our algorithm for computing hypergeometric solutions will try two candidate types (see Section 2)
for this example. In one of these candidate types, we have the element 0 from gp(L) and the
number c from Section 1 (computed in Section 5) is 1. For this candidate type we need to find
rational solutions of L. In [Ho98] the numbers max{Bl(q), Br(q)} were used to give a denominator
bound for rational solutions. We can do the same here. The number max{Bl(q), Br(q)} is a lower
bound for the valuation of a rational solution at x = q. This bound is −1 at x = 1 and zero
elsewhere, thus, the rational solution must be of the form (x− 1)−1 times a polynomial. The degree
bound for this polynomial is obtained using the information at p = ∞ computed in the next section.
This degree bound is zero, and thus what remains to be done for this candidate type is to check if
(x − 1)−1 is a solution, which it is.

The next candidate type has the element 1 from gp(L) and the number c is again 1. So we have
to compute the rational solutions of L©s (τ −1/r) where τ −r should have the desired candidate type,

which implies that r = x τ(f)
f for some rational function f . Now the Bl(q) number for L©s (τ − 1/r)

is the Bl(q) number for L plus the Bl(q) number for τ − 1/r. The same holds for Br(q). We can

choose f in r = x τ(f)
f in such a way that L©s (τ − 1/r) will have max{Bl(q), Br(q)} = 0 for all

q ∈ C. This way, the rational solutions of L©s (τ − 1/r) must be polynomials. The r obtained this
way is r = x− 1. The degree bound for the polynomial solutions is zero, thus, the algorithm checks
if the solution Γ(x − 1) of τ − r is a solution of L, which it is.

Example 6. Let us see briefly what we obtain for the operator given in Example 3. In Example 4,
we found pl = 2 and pr = 3, so we start with values of ũi at 0, 1 and go to the right. We
find Bl(2) = Bl(3) = Bl(4) = Bl(5) = −1 so that gp,r(L) = −1. Then we start with values
of ṽi at 4, 5 and go the the left, and we find Br(3) = Br(2) = Br(1) = −1, Br(0) = −2. So
gp,l(L) = −min{−1,−2} = 2 and finally, gp(L) = {−1, 0, 1, 2}.
Modular computations:
We can further improve this by computing modulo prime numbers. In the Maple implementation,
this is done as follows: take three “big” primes p1, p2 and p3, consider the coefficients of the
truncated power series as elements of Fpi

(details concerning the reduction of elements in C ′ modulo
p are included in [CH04, Sections 1.3 and 7.1]) and make the computations modulo each pi. If these
three modular computations lead to the same result, then return it and stop, otherwise take new
primes.

11

Remark 3. With these two tricks, reducing rational functions in ε to truncated power series, and
reducing the elements of C ′ to a finite field, computing the sets gp(L) for p ∈ C/Z is quite fast and
does generally not dominate the running time of our algorithm.
Moreover, by storing for each p the numbers Bl(q) and Br(q) that were computed to obtain gp(L),
we can compute r in such a way that all rational solutions of L©s (τ − 1/r) are already polynomials.
A degree bound for these polynomial solutions can be obtained from the Bl(q), Br(q) numbers (these
numbers determine r) and the local information at p = ∞ computed in the next section. We
compute this degree bound before computing L©s (τ − 1/r). This saves computation time, because
if for example the degree bound is negative then we do not need to compute L©s (τ − 1/r) (this is
one of the tests we use to quickly discard candidate types that do not correspond to hypergeometric
solutions, other tests are based on modular computations, see Section 10). If the degree bound is 0
then we take the sum of the coefficients of L©s (τ − 1/r) and do a zero-test (first a fast probabilistic
test, then if necessary a full test). If the degree-bound is positive but not high, then we proceed by
computing and solving necessary linear equations for the coefficients of the polynomial solutions.
Since we do not want to solve systems of equations with many variables, we should use a different
method if the degree-bound is high (see [ABP95, Ba97, BCS05]).

5 How to compute g∞(L).

As with finite points, given L ∈ C(x)[τ], one can exhibit a finite set g∞(L) such that:

u(x) hypergeometric solution of L =⇒ g∞(u(x)) ∈ g∞(L).

We detail here how we can compute this set with the classical techniques (see [Ad28, Bi30, No29])
used to compute the formal solutions at infinity of linear difference operators. Our approach is based
on the following easy lemma which follows directly from the definition of the local type at infinity
and the exposition in [Ad28] or [Bi30].

Lemma 1. Let L ∈ C[x][τ]. If L has a hypergeometric solution u = u(x) with local type (c, v, d+Z)
at infinity, then L has a formal solution at infinity of the form Γ(x)−v cx xd F (1/x) where F (1/x)
is a formal power series in 1/x.

The possible couples (c, v) ∈ C × Z appearing in the formal solutions at infinity can be read
from the so-called Newton τ -polygon (see [BD94], note that similar polygons already appeared in
[Ad28, Bi30]). More precisely −v is a (integer) slope of this polygon whereas c is a root of the
Newton τ -polynomial (or characteristic equation) associated with the slope −v.

Definition 11. Let L =
∑n

i=0 ai τ
i ∈ C[x][τ]. For (u, v) ∈ R2, let L(u, v) := {(x, y) ∈ R2 |x =

u, y > v}. Let M(L) be the union of the L(i,− deg(ai, x)) for i ∈ {0, . . . , n} with ai 6= 0. The
Newton τ -polygon of L is the convex hull of M(L).

We give now an algorithm that computes only relevant (i.e., integer) slopes of the Newton
τ -polygon with their associated Newton τ -polynomial.

Algorithm τPolygon:
Input: L := anτn + · · · + a0τ

0 with ai ∈ C[x], a0, an 6= 0.
Output: The integer slopes of the Newton τ -polygon and corresponding Newton τ -polynomials.

12

1. If n = 0, then return ∅ and stop.
2. For i ∈ {0, . . . , n}, let vi := − deg(ai, x) (if ai = 0 then vi = ∞).
3. s := max((vn − vi)/(n − i), i = 0, . . . , n − 1).
4. m := min(i < n | (vn − vi)/(n − i) = s).
5. R := ∅.
6. If s ∈ Z, then

6a. P :=
∑n−m

i=0 coefficient(an−i, x
s i−vn)xn−m−i,

6b. R := {[s, P]}.
7. Return R ∪ τPolygon(amτm + · · · + a0τ

0) and stop.

Example 7. Let

L := x4 τ5 + (5x5 − 12x3 − 3x) τ4 − (x6 + x + 7) τ3 − (140x3 + 1) τ2 + 10x5 τ − 8x3.

The Newton τ -polygon of L is:

6

-

A
A
A
A
A
AHHHHHH�

�
�

�
�

�

0

−3

−4

−5

−6

1 2 3 4 5

��	

slope −2

��	

slope −1/2

@@I
slope 1

The slopes are 1, −1/2, −2. Algorithm τPolygon first finds the slope s = 1 and computes the
associated Newton τ -polynomial P = x2 + 5x − 1. Then, in the recursive call, considering only
the terms of L of order 6 3 (since m = 3), it finds s = −1/2 (with m = 1) which is not an
integer. Thus, it continues with only the terms of L of order 6 1 and finds the slope s = −2
(and m = 0): it computes the associated Newton τ -polynomial P = 10x − 8 and terminates.
Consequently, Algorithm τPolygon returns: {[1, x2 + 5x − 1], [−2, 10x − 8]}.

The above algorithm works more generally for L ∈ C((t))[τ] where t = 1/x if we replace
− deg(ai, x) by vt(ai) where vt denotes the t-adic valuation.

13

If τ − r is a right hand factor of L then τ − r/(c tv) = τ − (1+ d t+O(t2)) is a right hand factor
of Lc,v which is defined as (note: 1/tv is just xv)

L©s (τ − 1/(c tv)),

multiplied on the left by a polynomial in order to avoid fractions. Now write δ = τ − 1 so τ = δ +1
and τ − (1 + d t + O(t2)) = δ − d t + O(t2). Let

Lδ
c,v := substitute(τ = δ + 1, Lc,v) ∈ C(c)[x][δ].

The transformation we have made to obtain Lc,v amounts to dividing the formal solution in
Lemma 1 by the term Γ(x)−v cx so that the first order right hand factor δ − d t + O(t2) we are
searching for corresponds to a formal solution of the form t−d F (t) where F (t) is a formal power
series in t with non-zero constant term.

Definition 12. Let L ∈ C((t))[δ] and e be a variable. Let Le := L(te)/te ∈ C[e]((t)). Then, we
define v1(L) as the t-adic valuation of Le. The indicial equation of L is the element of C[e] defined
as the coefficient of tv1(L) in Le.

This definition is the one used in [AB98]. In [BD94, Section 2.1] a slightly different indicial
equation is defined from another polygon we can associate to a difference operator: the Newton
δ-polygon. Our indicial equation can be computed in the same way.

If f ∈ C((t))∗ has t-adic valuation vt(f), then the t-adic valuation of L(f) is vt(f) + v1(L) if
vt(f) is not a root of the indicial equation and is > vt(f) + v1(L) otherwise. Consequently, v1(L)
can be viewed as the amount the t-adic valuation changes if we apply L to a “generic element”
of C((t)). It follows that if L1, L2 ∈ C((t))[δ], then v1(L1 L2) = v1(L1) + v1(L2) so that v1 is a
valuation on C((t))[δ].

Note that v1(t
i δj) = i + j, and that if L =

∑

i,j ai,j ti δj then v1(L) = min(i + j | ai,j 6= 0). So
the only coefficients that contribute to the indicial equation are the ai,j for which i + j = v1(L).
Set ej = (−1)j e (e + 1) (e + 2) · · · (e + j − 1) ∈ C[e] then δj(te)/te = ej tj + O(tj+1) so the indicial
equation of L =

∑

i,j ai,j ti δj is the sum of the ai,j ej taken over all i, j for which i + j = v1(L).
From [Ad28, Bi30] we know that:

Lemma 2. If L ∈ C((t))[δ] has a solution of the form te F (t) where F (t) ∈ C[[t]] is a formal power
series with non-zero constant term and e ∈ C, then e is a root of the indicial equation of L.

The roots of the indicial equation are called the exponents of L. The numbers d we are looking
for are negated exponents d = −e. For the local type we only need d modulo Z. So if some roots
e1, e2 of the same indicial equation differ by an integer in Step 3a(v) below, say e2 − e1 ∈ Z,
e2 − e1 > 0, then we skip e2. We also work up to conjugation over C(c), meaning that we consider
only one root of each irreducible factor of the indicial equation over C(c).

Algorithm LocalTypeAt∞:
Input: L ∈ C(x)[τ] and the field C.
Output: the set g∞(L), up to conjugation over C.

1. A := ∅.
2. P := τPolygon(L). If ∅, then return ∅.
3. For each [s, P] ∈ P, set v = −s and do:

14

3a. For each (up to conjugation over C) root c of P , do:
(i) Lc,v := L©s (τ − xv/c),
(ii) Clear denominators in Lc,v,
(iii) Lδ

c,v := substitute(τ = δ + 1, Lc,v),

(iv) Compute the indicial equation of Lδ
c,v,

(v) For each (mod Z, up to conjugation over C(c)) root e of this indicial equation, do:
- Set d := −e and add (c, v, d) to A.

4. Return A.

Remark 4. For efficiency reasons, step 3a is implemented slightly differently: take Lv := L©s (τ −
xv) and let L̃ =

∑

ai,jx
−iδj =

∑

ai,jt
iδj be the operator obtained from Lv by substituting τ = δ+ c.

We do not actually calculate L̃ completely, rather, we compute only those terms ai,jt
iδj for which

i+ j = v1(L̃). Then, we sum the ai,j cj (−1)j e (e+1) · · · (e+ j−1) over those i, j to get the indicial
equation. The factor cj corrects for the fact that we did not include c in the computation of Lv

for better efficiency (this helps in particular when c involves an algebraic extension). This way, the
indicial equation generally takes very little CPU time to calculate.

Example 8. We continue with example 7. The output of Algorithm τPolygon was {[1, x2 + 5x −
1], [−2, 10x − 8]}. The first root we consider is c = α where α = RootOf(x2 + 5x − 1). The
indicial equation in Step 3a(v) has degree one, and has as root e = −d = −5/29α + 89/29. The
second possible c is 4/5 which leads to −d = 0. Consequently, we have:

g∞(L) = {(α, −1, 5/29α − 89/29), (4/5, 2, 0)}.
Definition 13. The roots-number of (c, v, d + Z) ∈ g∞(L) is the number of distinct roots of the
indicial equation of Lδ

c,v in e + Z where e = −d. The formal-sol-dimension of (c, v, d + Z) is the

dimension of the formal solutions of Lδ
c,v in te C((t)).

The formal-sol-dimension is less than or equal to the roots-number. Each of these two numbers
can be used (see Proposition 1 in Section 8) to bound the degree of a field extension of C(c, d)
needed to find hypergeometric solutions. In this paper we use the roots-number since it is less
work to implement. However, instead one may also use the formal-sol-dimension which leads to a
better bound. The same issue for the differential case is discussed in the comments on logarithms
in [CH04, Section 7.1].

6 Representing the finite singularities

Let L = an τn + · · · + a0 τ0 where the ai are polynomials in x with coefficients in a field C of
characteristic zero. In our algorithm we will use algebraic extensions C ′ of C but not splitting
fields. Hence, we can not work with all roots of a0(x) an(x − n) simultaneously. This restriction
is necessary because the construction of a splitting field can be prohibitively costly. This does not
imply that there are any roots of a0(x) an(x−n) that we can not compute with, we can compute with
each root, but we should compute with only one root at a time. This also means that throughout
the computation we always need to keep track of what the base field C is and what the current
extension field C ′ is, in particular, when factoring a polynomial it is essential (for efficiency as well
as correctness of the algorithm) to specify the correct field. The algorithm SingOverC below is
essentially trivial, but we include it to emphasize this field issue. First another definition:

15

Definition 14. Let f(x), g(x) ∈ C[x]. If there exists an integer m such that f(x) = g(x+ m) then
f(x) and g(x) are said shift equivalent.

Algorithm SingOverC:
Input: L ∈ C(x)[τ] and the field C.
Output: the set of finite singularities of L over C, up to conjugation over C.

1. Sing := ∅.
2. Let S be the set of monic irreducible factors of an(x) a0(x) in C[x].
3. Now take a subset T ⊆ S such that precisely one polynomial has been chosen
in each shift equivalence class.
4. For all P ∈ T , do:

4a. Take a root xP of P (see comments below),
4b. Sing := Sing ∪{[P, xP]}.

5. Return Sing.

The output Sing is given as couples [P, xP] where P ∈ C[x] is irreducible over C and xP =
RootOf(P, x), which denotes the image of x in C ′ = C[x]/(P). So the set Sing represents all finite
singularities “up to conjugation over C” (see [CH04, 5.1] for details). Note that no calculation
takes place in Step 4a. Instead, this step involves the construction of a data structure: one needs
to construct a field C ′ generated by one root xP of the polynomial P .

After the set Sing has been computed, our base field is still C in many places in the algorithm.
An exception is of course when we compute with a singularity p = xP + Z in which case the base
field is C ′ = C(xP).

Given Sing, if we want to determine the singularities over a field extension of C then we take
each [P, xP] in Sing, we factor P over the field extension, and replace [P, xP] by the set of all
[P ′, xP ′] for all irreducible factors P ′ of P .

7 Computing e-solutions

Definition 15. Let C be a field of characteristic zero. Let u(x) be a hypergeometric term and let
r(x) = u(x + 1)/u(x) ∈ C(x). The field of definition of u(x) over C is the smallest field C ′ ⊇ C
for which r(x) ∈ C ′(x). The cvd-field of u(x) is the field C(c, d) where c, d are as in Equation (4).
For L ∈ C(x)[τ], the cvd-fields of L are the fields C(c, d) for (c, v, d + Z) ∈ g∞(L).

The cvd-field of a hypergeometric term u is a subfield of the field of definition of u.

Definition 16. Let C be a field of characteristic zero and L ∈ C(x)[τ]. An easy hypergeometric
solution, or e-solution for short, is a hypergeometric solution of L defined over its cvd-field.

Definition 17. For r ∈ C(x), let hyp(r) ∈ V denote a non-zero solution of τ − r.

Note that hyp(r) is not uniquely defined, but only defined up to a constant factor. However,
that will not play a role in this paper.

Example 9. Let L ∈ Q(x)[τ] and assume that L has both u1 := hyp(x2+
√

2) and u2 := hyp(x+
√

2)
as hypergeometric solutions. By definition, u1 is a hypergeometric solution of τ − (x2 +

√
2) so its

local type at infinity is (1,−2, Z) since x2 +
√

2 = 1 t−2 (1+O(t2)) with t = 1/x, and so its cvd-field

16

is Q: it follows that this is not an e-solution. Now, x +
√

2 = 1 t−1 (1 +
√

2 t1 + O(t2)) thus the
local type at infinity of u2 is (1,−1,

√
2 + Z) and its cvd-field is Q(

√
2) so u2 is an e-solution of L.

The following algorithm computes a basis of all e-solutions of L ∈ C(x)[τ] with a given local
type (c, v, d) ∈ g∞(L).

Algorithm ESols:
Input: L ∈ C(x)[τ], the field C and (c, v, d).
Output: Sol, a basis of all e-solutions of L with local type (c, v, d + Z) at ∞.
1. Let S := SingOverC(L,C).
2. For [Pi, xi] ∈ S, compute gxi

(L).
3. Let C ′ := C(c, d) be the cvd-field.
4. For [Pi, xi] ∈ S, factor Pi over C ′: let Pi := Pi,1 · · ·Pi,mi

.
5. Sol := Search(L, C ′, (c, v, d), {gxi

(L)}i, {Pi,j}i,j).
6. Return Sol.

We store the result from Steps 1 and 2 so that the computed information can be re-used later, for
example, when ESols is called again with the same L but a new (c, v, d).

Algorithm ESols first computes the finite singularities [P1, x1], . . . , [Ps, xs] over C. For each xi

it computes the set gxi
(L) of candidate local types. It then factors the Pi over the cvd-field C(c, d)

and calls Algorithm Search below, which computes hypergeometric solutions defined over C ′. By
taking C ′ := C(c, d) we find e-solutions (to search for other hypergeometric solutions, Algorithm
HSol in the next section calls Search with a larger field). The factorization Pi,1 · · ·Pi,mi

of Pi over
C ′ is part of the input of Algorithm Search below. We do not need to compute the set gxi,j

(L)
(where xi,j denotes a root of Pi,j) because xi,j is also a root of Pi and so gxi,j

(L) = gxi
(L).

Algorithm Search:
Input: L ∈ C(x)[τ], the field C ′, (c, v, d) ∈ g∞(L), the gxi

(L) and the Pi,j .
Output: Sol, a basis of all hypergeometric solutions of L defined over C ′ with

local type (c, v, d + Z) at ∞.
1. Let Sol := ∅.
2. For each combination (l1,1, . . . , l1,m1

, . . . , ls,ms) with li,j ∈ gxi
(L) that satisfies

the two Fuchs’ relations (Equation (6)), do:

2a. Let r̃ := c
∏

i,j P
li,j
i,j ,

2b. Compute R ∈ C ′(x) (see comments below) and let r := r̃ τ(R)
R ,

2c. Compute L̃ := L©s (τ − 1/r),

2d. Compute a basis Q1, . . . , Qw of polynomial solutions in C ′[x] for L̃,
2e. If w > 0, then add the hyp(r)Qi to Sol.

3. Return Sol.

In Section 4, for each singularity xi, to produce gxi
(L) we compute the numbers Bl(q), Br(q)

defined in Equation (10). From these numbers and r, it is easy to deduce the corresponding numbers
for the operator L̃ in Step 2c. Let B̃l(q), B̃r(q) denote those numbers. We choose R in Step 2b in
such a way that max{B̃l(q), B̃r(q)} = 0 for all q. Then any rational solution of L̃ is a polynomial.
From the numbers li,j , Bl(q), Br(q) and d (here we need d instead of d + Z), we compute a degree

17

bound for these polynomial solutions before computing r̃, R and L̃. As mentioned in Remark 3 we
do this to save computation time whenever the degree bound is negative.

To use Algorithm Search in the recursive algorithm HSol in Section 8, we need to allow one
extra input, namely an option called “just one”. If this option is given, then we only need to
return one (if it exists) hypergeometric solution over C ′ but not a totally arbitrary one: we return
a hyp(r)Q with Q of minimal possible degree.

8 Computing a hard solution

Let C be a field of characteristic zero and L ∈ C(x)[τ]. To find a basis of all hypergeometric solutions
of L, we may have to search for hypergeometric solutions defined over algebraic extensions of the
cvd-fields of L. We first bound the degrees of such extensions. As in the differential case (see
[CH04, Section 6.1]), we define the notion the minimal algebraic degree:

Definition 18. Let C be a field of characteristic zero and u be a hypergeometric term. Let C ′ be
the field of definition of u over C (see Definition 15). Then the algebraic degree of u over C is
[C ′ : C]. We say that u is of minimal algebraic degree m over C if [C ′ : C] = m and there exist no
hypergeometric term, of the same type as u, having smaller algebraic degree over C.

Then, adapting the exposition in [CH04, Section 6.1] from the differential case, we can prove
the following ([CH04, Lemma 6.3]):

Lemma 3. If u is a hypergeometric solution of L defined over some algebraic extension C ′ of C,
then its conjugates over C are also solutions of L.
Given L and u, we can compute u1, . . . , uk of minimal algebraic degree over C that form a basis of
all hypergeometric solutions of L of the same type as u.
If u is of minimal algebraic degree over C, then distinct conjugates of u over C are of distinct type
and hence linearly independent.

This implies that a hypergeometric solution of L of minimal algebraic degree m corresponds to
m linearly independent hypergeometric solutions of L. In Algorithm HypSols in Section 9, we only
return hypergeometric solutions up to conjugation over C. Therefore to make it easier to count
the number of linearly independent solutions represented by this output, we want HypSols to only
return hypergeometric solutions of minimal algebraic degree.

Proposition 1. Let u be a hypergeometric solution of L with local type (c, v, d+Z) at infinity. Let
B1(c, v, d) be the roots-number of (c, v, d+Z) (see Definition 13). If u has minimal algebraic degree
m over its cvd-field C(c, d), then m 6 B1(c, v, d).

Proof. From Lemma 3, the conjugates of u form m linearly independent hypergeometric solutions
of L, all of which have local type (c, n, d + Z) at infinity. Now (see Section 5), these hypergeo-
metric solutions correspond to formal solutions at infinity of Lδ

c,v that can be written t−d Fi(t),

i ∈ {1, . . . ,m}, where Fi(t) ∈ C[[t]]. After Gaussian elimination on the vectors of coefficients of
the Fi(t), we obtain m formal solutions t−d F̃i(t) of Lδ

c,v with distinct exponents. Hence, we can
conclude m 6 B1(c, v, d) by Definition 13.

The final Algorithm HypSols in Section 9 first computes the e-solutions and uses them to reduce
the order. After this, L will no longer have e-solutions. Then, we want to compute (if it exists) a

18

hypergeometric solution, with local type (c, v, d+Z) at infinity, defined over an algebraic extension
of its cvd-field C(c, d). Algorithm HSol (“hard” hypergeometric solution) below introduces algebraic
extensions of this field and searches for a hypergeometric solution. We stop Algorithm HSol as soon
as one solution is found, so that Algorithm HypSols can use this solution to reduce the order. Since
Algorithm HSol is only called after the e-solutions have been computed, the finite singularities
Sing = {[P1, x1], . . . , [Ps, xs]} over C and the gxi

(L) are already known. Algorithm HypSols calls
Algorithm HSol with arguments: L, a cvd-field C(c, d) of L, (c, v, d), a bound B, the set Sing, and
the empty set for F . So the field that is denoted as C in Algorithm HSol is initially a cvd-field
C(c, d), and so in Algorithm HSol we always have c, d ∈ C.

Algorithm HSol:
Input: L ∈ C(x)[τ], a field C, (c, v, d), B ∈ N, a set Sing and a set F .
Output: a hypergeometric solution of L with local type (c, v, d + Z) at ∞ or ∅.
1. If B = 0, then return ∅ and stop.
2. If option “no extension”, then S := Sing, otherwise:
2a. For all [Pi, xi] ∈ Sing, do:
2a1. If [Pi, xi] ∈ F , then Pi,1 := Pi, otherwise factor Pi over C, Pi = Pi,1 · · ·Pi,mi

,
2b. If Search(L, C, (c, v, d), {gxi

(L)}i, {Pi,j}i,j, “just one”) 6= ∅, then return it and stop.
2c. If B = 1, then return ∅ and stop.
2d. Let S be the set of all [Pi,j, xi,j] and let gxi,j

(L) := gxi
(L) for all i, j.

3. If S \ F contains a [Pi, xi] with xi an essential singularity and [C(xi) : C] > 1, then:
3a. If HSol(L,C,(c, v, d),B,S, F ∪ {[Pi, xi]}, “no extension”) 6= ∅ then return it and stop.

3b: If HSol(L, C(xi), (c, v, d), bB bdeg(Pi)/2c
deg(Pi)

c, S, F) 6= ∅ then return it and stop.

4: Return ∅.

Algorithm specification: if there exists a hypergeometric solution u that satisfies the information
encoded by F (meaning that none of the minimal polynomials in F becomes reducible over the
field of definition of u) and that has minimal algebraic degree 6 B over C, then HSol will return
some hypergeometric solution of L (but not necessarily of degree 6 B over C).

Proof. Suppose that a hypergeometric solution u exists, satisfies the information encoded by F and
has degree 6 B over C. Let C ′ be the field of definition of this u over C. Consider the [Pi, xi] ∈ S
for which xi is an essential singularity. If none of these Pi becomes reducible over C ′, then there
are no more combinations over C ′ than there are over C. Thus, if there are no hypergeometric
solutions defined over C but there is a hypergeometric solution u defined over C ′ then at least
one Pi must factor over C ′. In Step 3 we pick a [Pi, xi], which may have been a wrong choice
(Pi stays irreducible over C ′), in which case Step 3a will work, but it may also have been a right
choice (meaning that Pi is reducible over C ′), in which case Step 3b will work. We then have
to prove that in this case the bound in Step 3b is correct. Suppose that Pi has degree di. Pi is
reducible over C ′ and thus one of its irreducible factors will have degree d′i 6 bdi/2c. By abuse
of notation, we also denote xi as a root of that factor. So then [C ′(xi) : C ′] = d′i, [C ′ : C] 6 B,
so [C ′(xi) : C] 6 d′iB. Now C(xi) is a field between C ′(xi) and C having degree di over C, so
[C ′(xi) : C(xi)] = [C ′(xi) : C]/di 6 d′iB/di 6 bdi/2cB/di. Now u is defined over C ′, hence also over
C ′(xi), which is an extension of degree 6 bdi/2cB/di over our new field C(xi). Hence the degree
bound used in Step 3b is correct.

19

9 An algorithm to find all hypergeometric solutions

We now present an algorithm to compute a basis of all hypergeometric solutions (up to conjugation
over C) of a difference operator L ∈ C(x)[τ] where C is a field of characteristic 0. It uses the same
strategy and satisfies the same specifications as Algorithm ExpSols in [CH04, Section 7].

Algorithm HypSols:
Input: a linear difference operator L ∈ C(x)[τ] and the field C.
Output: Sol, a basis of hypergeometric solutions of L up to conjugation over C.
1: Sol := ∅.
2: A := LocalTypeAt∞(L, C).
3: For (c, v, d) ∈ A, do:
3a: V(c,v,d) := ESols(L, C, (c, v, d)),

3b: Sol := Sol ∪ V(c,v,d),

3c: Let B(c,v,d) be a bound for the number of linearly independent hypergeometric

solutions with local type (c, v, d + Z) at infinity,
3d: B(c,v,d) := B(c,v,d) - Cardinality(V(c,v,d)),

3e: If B(c,v,d) 6 1, then A := A \ {(c, v, d)}.
4: If A = ∅, then return Sol and stop.
5: If Sol 6= ∅, then

5a: Write L = L̃ LCLM(τ − τ(s)/s and conjugates over C | s ∈ Sol). Run HypSols(L̃,C),
5b: Of the solutions in 5a, keep only the types not defined over their cvd-field,
5c: For each remaining type represented by t, do:
– Compute a basis R1, . . . , Rs of rational solutions of L©s (τ − 1/t),
– Sol := Sol ∪ {hyp(t)R1, . . . ,hyp(t)Rs}.

5d: Return Sol and stop.
6: If the order is 2 then go to 10.
7: Make L monic and let L∗ be the adjoint of L.
8: Let S be the union of ESols(L∗, C, (c, v, d)) for all (c, v, d) ∈ g∞(L∗).
9: If S 6= ∅, then

9a: Write L = LCLM(τ − τ(s)/s and conjugates over C | s ∈ S)∗ L̃,

9b: Return HypSols(L̃, C) and stop.
10: For (c, v, d) ∈ A, do:
10a: HSol(L, C(c, d), (c, v, d), B(c,v,d), Sing, ∅),
10b: If it finds a solution, then
– Optimize the solution found, denote it as u, and let r = τ(u)/u,
– Compute a basis R1, . . . , Rs of rational solutions of L©s (τ − 1/r),
– Sol := {uR1, . . . , uRs},
– Write L = L̃ LCLM(τ − τ(s)/s and conjugates over C | s ∈ Sol),

– Remove recursively from L̃ the solutions of the same type as conjugates of u,

– Run HypSols(L̃, C) and of its output, keep only the types that are not
defined over their cvd-field. Then run Steps 5c, 5d.

11: Return ∅ and stop.

We explain some points in the algorithm. Some remarks have already been made in [CH04].
- The bound B(c,v,d) used in Step 3c is usually the B1(c, v, d) of Proposition 1. However, other

20

bounds can be used: the formal-sol-dimension of (c, v, d + Z) (see Definition 13) or the bound
coming from computations modulo a prime p (see Proposition 3 in Section 10.3).
- When we apply recursion on a left factor L̃ of L (Steps 5 or 10b), the hypergeometric solutions
of L̃ are in general not hypergeometric solutions of L. We will only use the types of the hyperge-
ometric solutions of L̃, not the hypergeometric solutions themselves. We skip types defined over
their cvd-field because all e-solutions have already been found.
- We will apply HSol only when all easy factors have been removed both on the left and on the
right. Removal of easy factors, left or right, does not cause solutions to be lost because we only do
this after all e-solutions have already been computed and stored in the set Sol, in Steps 1,2,3 of
the algorithm. To find the easy left factors, in Step 8, we apply ESols to the adjoint operator L∗

(see for example [We01, Definition 3.2.1]) to find the e-solutions of L∗ which correspond to easy
left factors of L. Then we apply recursion on the remaining right hand factor.
- When we reach the point (Step 10) where there is nothing left to do than entering the “hard
case”, we try to find a solution over an extension of a cvd-field with HSol. An a priori first bound
is B1(c, v, d) (see Proposition 1). The variable Sing in Step 10a is calculated during the first call
to ESols in Step 3a.
- Let u be a hypergeometric solution. We can write τ(u)/u = P1/P2 where P1 and P2 are polyno-
mials with gcd 1 and P2 is monic. The field of definition of u is then the field generated over C
by the coefficients of P1 and P2. In Step 10b, by “optimizing the solution” we mean two things:
(1). Using this solution u to find a solution of minimal algebraic degree over C. And (2). Making
sure that the field that the algorithm gives for u (this field contains the field of definition of u)
is actually equal to the field of definition of u. Both (1) and (2) are important. We want u to
be of minimal algebraic degree so that we know that its conjugates are linearly independent. But
the way we count the number of conjugates of u is not by looking at u, but by looking at the
field given for u. The field provided for u by Algorithm HSol contains, but need not be equal to,
the field of definition of u. So to optimize u, we take the field given for u, and then determine
the subfield generated over C by the coefficients of P1 and P2. Then we find defining equations
(i.e., new RootOf’s) for this subfield, and use them to rewrite the coefficients of P1 and P2. This
then takes care of (2). To do (1), we could use the approach in Lemma 3, however, this is not
necessary because the special choice that Algorithm ESols makes when the option “just one” is
given causes (1) to be automatically satisfied. The polynomial Q is of minimal degree with this
option given, which leads to uniqueness of τ(u)/u which in turn causes u to already be of minimal
algebraic degree over C.
- When we “remove recursively from L̃ the solutions of the same type as u” (Step 10b), we also
remove solutions whose type is conjugated over C to the type of u. We will remove such solutions
recursively because if we do not then it would be non-trivial to ensure that the “same” solution
is not returned more than once. So before we call HypSols on the remaining left factor L̃ of L,
we first remove from L̃ all hypergeometric solutions of the same type as (conjugates of) u, and we
keep repeating this until L̃ no longer has solutions of this type. A recursive procedure to achieve
that is the following: compute the rational solutions Ri of L̃©s (τ − 1/r) where r = τ(u)/u is the
certificate of u. Each Ri gives a first order right hand factor τ − ri of L̃ where ri = rτ(Ri)/Ri. If
there are none, then return L̃ else write L̃ = L̃1 LCLM(τ − r1, . . . , τ − rs, “and conjugates over C”)
and apply recursion on L̃1.

21

9.1 Some possible improvements

We shall give two possible improvements that can be added to Algorithm HypSols. The first one
is included in the Maple implementation.

Maps between Vp,l(L) and Vp,r(L), and possible degrees of field extensions: we show how
the ranks of the maps between left and right solution spaces Vp,l(L) and Vp,r(L) at finite singularities
p can be used to discard certain cases during the search phase of the algorithm.

Let p be a finite singularity of L. Let gp,r = gp,r(L) be the smallest and gp,l = gp,l(L) the
largest element of gp(L). In [Ho99, Section 4.2] it is shown how to construct two maps Ep,r :
Vp,l(L) → Vp,r(L) and Ep,l : Vp,r(L) → Vp,l(L) by defining their action on explicit bases. In our
implementation, we only use the rank of these maps. If rkr is the rank of Ep,r, and rkl is the rank
of Ep,l, then this gives us the following information:

• there can be at most rkr linearly independent hypergeometric solutions u with gp(u) = gp,r

(minimal valuation growth),

• at most n − rkr with gp(u) > gp,r (more than minimal valuation growth),

• at most rkl with gp(u) = gp,l (maximal valuation growth), and,

• at most n − rkl with gp(u) < gp,l (less than maximal valuation growth).

This can be exploited in several ways:

1. Suppose that there can be at most 2 independent solutions with less than maximal valuation
growth, and suppose that the algorithm already found 2 such solutions. Then from that
moment on, we no longer need to consider the case gp(u) < gp,l, and so we may assume
gp(u) = gp,l.

2. Or suppose that there can be at most 1 linearly independent solution with minimal valuation
growth. Then, if there exists such a solution u with gp(u) minimal, and if p = q + Z with
q ∈ C, then the certificate r(x) = u(x+1)/u(x) of u must be an element of C(x). The reason
for that is that if r(x) was defined over an extension C ′ of C, then by taking conjugates of
r(x) over C ′ we would find more than 1 linearly independent solution with minimal valuation
growth at p. More generally, suppose that there are at most s1 independent solutions with
maximal valuation growth, but s2 have already been found. So there can remain at most
s1 − s2 independent hypergeometric solutions u(x) with maximal valuation growth, and this
means that for computing the certificate r(x) = u(x + 1)/u(x) of such a solution, it is not
necessary to consider field extensions of degree more than s1 − s2.

The above results generalize [Ho99, Theorems 2 and 3] and can be proven in a similar way.

Sorting the local types at infinity: it can be useful to sort the local types at infinity in such
a way that we compute the solutions that have the smallest fields of definition first. The reason is
that each time a solution is found, the number of combinations to be considered may be reduced
following the items above, so we want to compute first those solutions that are the least expensive
to calculate.

22

10 Modular improvements

We shall propose a number of improvements we can add to Algorithm HypSols using p-curvature
computations. This section has its own theoretical interest since, as it is done in [CH04] for the
differential case, we give links between the local information in characteristic zero and the roots of
the characteristic polynomial of the p-curvature matrix.

10.1 Difference operators in characteristic p

In this part, most results are stated without proof since they are just adaptations of results in
[CH04, 1.2] from the differential to the difference case. A classification (similar to that for the
differential case) of difference modules in characteristic p can be found in [PS97, Chapter 5].

Let Fp denote the algebraic closure of the finite field Fp. We define the ring Fp(x)[τ] of difference
operators in the same way as in characteristic zero. The main difference is that the constant field
is then Fp(x

p − x) (see [PS97, Chapter 5] or [GZ03, Theorem 3.1]). To simplify the notations, we
set:

λ := xp − x.

The central tool to study recurrence relations in characteristic p is the p-curvature; we give a
definition of the p-curvature when the equation is written in matrix form Y (x + 1) = A(x)Y (x)
with A(x) ∈ Mn(Fp(x)) and for more details we refer to [PS97, Chapter 5] and references therein.
Note that a difference operator L ∈ Fp(x)[τ] is naturally associated to a linear difference equation
in matrix form; take for A(x) the companion matrix of L.

Definition 19. Let Y (x + 1) = A(x)Y (x) with A(x) ∈ Mn(Fp(x)) be a linear difference equation.
Its p-curvature is defined as the product of matrices A(x + p − 1) · · ·A(x + 1)A(x).

Consider the following group homomorphisms:

τ1 : Fp(x)∗ → Fp(λ)∗, u 7→ u(x + p − 1) · · · u(x + 1)u(x),

and
τ2 : Fp → Fp, a 7→ ap − a,

which are related by Equation (12) below.

Lemma 4. (i): The map τ1 : Fp(x)∗ → Fp(λ)∗ is a surjective multiplicative map with kernel
{τ(u)/u |u ∈ Fp(x)∗}.
(ii): The map τ2 is a surjective additive map with kernel Fp.

Proof. (ii) is obvious, and (i) follows from (ii) and Equation (12) below (one can also follow a
similar result for the differential case in [Pu95, Lemma 1.4.2]).

For L ∈ Fp(x)[τ], let χp(L) denote the characteristic polynomial of the p-curvature of L. As we
are only interested in first order factors, the only modular information that we can use are the roots
in Fp(λ) (with multiplicities) of χp(L). We denote R(χp(L)) the set of roots of χp(L) in Fp(λ).

Lemma 5. Let L ∈ Fp(x)[τ].
(i): If L = L1L2, then χp(L) = χp(L1)χp(L2) with deg(χp(Li)) = order(Li).
(ii): The map from the set of monic first order right hand factors of L in Fp(x)[τ] to R(χp(L))
defined by τ − r 7→ τ1(r) is well defined and surjective.

23

As in the differential case, the key ingredient to use modular information for computing hyper-
geometric solutions of L ∈ C(x)[τ] is the known fact that, with few assumptions on the prime p to
be chosen, a factorization of L in characteristic zero can be reduced mod p.

Definition 20. For some object f in characteristic zero, we note f [p] its reduction modulo p in
the sense of [CH04, Sections 1.3 and 7.1].

The following proposition and its corollary can be proven as [CH04, Proposition 1.15] and
[CH04, Corollary 1.16].

Proposition 2. Let C be a field of characteristic zero, let L ∈ C(x)[τ] and let p be such that L
can be reduced mod p. If L = L1L2 then, after possibly replacing L1 and L2 by cL1 and 1

cL2 for
some constant c ∈ C, we have L[p] = L1[p] L2[p].

Corollary 1. Let C be a field of characteristic zero, let L ∈ C(x)[τ] and let p be a prime such that
L can be reduced mod p. Assume further that the order n of L does not drop after the reduction.
(i): If χp(L) is irreducible over Fp(λ), then L is irreducible over C(x).
(ii): If χp(L) has no roots in Fp(λ), then L has no hypergeometric solutions.

10.2 Local types at infinity and R(χp(L))

Definition 21. If a is an object in characteristic zero, then for i ∈ {1, 2}, we set τi(a) := τi(a[p]).

If d ∈ C and d[p] is defined then τ2(d + Z) is defined since τ2(i) = 0 for i ∈ Z.

Lemma 6. Let r(x) = c τ(Q)
Q

∏m
i=1(x − xi)

ei ∈ C(x) with c, xi ∈ C, ei ∈ Z and Q ∈ C[x]. Assume
further that the xi, c, Q can be reduced mod p and that Q[p] 6= 0. Then

τ1(r(x)) = cp
∏

i

(λ − τ2(xi))
ei . (12)

Furthermore, if r(x) has expansion c tv (1 + d t + O(t2)) at infinity, then

τ1(r(x)) = cp tvλ (1 + τ2(d) tλ + O(t2λ)), (13)

where

tλ :=
1

λ
=

1

xp − x
.

Proof. We have τ1(r(x)) = τ1(c
τ(Q)

Q

∏

i(x−xi)
ei) = τ1(c)

∏s
i=1(τ1(x−xi))

ei since, from Lemma 4,
τ1 is multiplicative and τ(Q)/Q ∈ ker(τ1). Now, clearly τ1(c) = cp. Furthermore, we have τ1(x) =
(x + p − 1) · · · (x + 1)x = xp − x and substituting x = x − xi in this equality leads to τ1(x − xi) =
(x − xi)

p − (x − xi) = λ − τ2(xi). Equation (12) is then clear.
For (13), we only need to prove that the coefficient τ2(d) of tλ is correct. Let d̃ denote this coefficient.
From (12), we have d̃ = −∑

i eiτ2(xi). But we also know from Section 1 that d = −∑

i eixi so that
an easy verification leads to τ2(d) = d̃.

Definition 22. Let L = anτn + · · · + a0τ
0 ∈ C(x)[τ] for some field C of characteristic zero and

assume that an, a0 6= 0. After multiplying L on the left by a suitable element of C(x), we may
assume the coefficients ai are in C[x] and gcd(a0, . . . , an) = 1.

24

We say that a prime p is a good prime for L if the two following conditions hold:
(C1): the coefficients of L can be reduced mod p and a0[p] 6= 0, an[p] 6= 0.
(C2): the finite singularities can be reduced mod p.

Condition (C1) ensures that the order does not decrease after reduction mod p. Condition
(C2) simply means that the leading coefficient of the polynomials a0 and an do not reduce to zero
mod p. We give now a new result linking local types of hypergeometric solutions and eigenvalues
of the p-curvature in Fp(λ).

Theorem 2. Let C be a field of characteristic zero, let L ∈ C(x)[τ] and let p be a good prime for
L. Suppose that τ − r is a right hand factor of L with r ∈ C(x). Let s = τ1(r) ∈ R(χp(L)). Then
there exist ei ∈ gxi

(L) at each finite singularity xi of L and (c, v, d+ Z) ∈ g∞(L) such that c, d can
be reduced mod p and
(i): s = cp

∏

i(λ − τ2(xi))
ei,

(ii): the expansion at infinity of s is cp tvλ (1 + τ2(d) tλ + O(t2λ)).

Proof. One can prove (for example, adapt the proof of [CH04, Lemma 1.8] to the difference case)
that if τ − r is a first order right hand factor of L then there exist a local type ei ∈ gxi

(L) at
each finite singularity xi of L, a local type (c, v, d + Z) ∈ g∞(L) at infinity and a rational function
R ∈ C(x) such that:

r = c
τ(R)

R

∏

i

(x − xi)
ei = c tv (1 + d t + O(t2)).

Since p satisfies condition (C1) in Definition 22, r can be reduced mod p (see Proposition 2).
Now from condition (C2),

∏

i(x − xi)
ei can be reduced mod p and is further not zero mod p.

Furthermore, R is defined modulo a multiplicative constant which we can choose in such a way
that R[p] is defined and not zero. Then τ(R)/R is also defined and not zero mod p. Consequently, c

can be reduced mod p, and c[p] 6= 0, because c is the quotient of r and τ(R)
R

∏

i(x−xi)
ei which both

reduce to something non-zero mod p. Then d can also be reduced mod p. Now the two formulas
(i) and (ii) follow directly from Lemma 6.

10.3 How to improve HypSols using the p-curvature?

The first improvement we propose for HypSols is a bound unrelated to the one of Proposition 1.
Then we use the minimum of these bounds.

Proposition 3. Let C be a field of characteristic zero, let L ∈ C(x)[∂] and let p be a good prime
for L. Let (c, v, d + Z) ∈ g∞(L). Let B2(c, v, d) be the number of roots of χp(L) (counted with
multiplicity) that have expansion cp tvλ (1 + τ2(d) tλ + O(t2λ)) at infinity. If u is a hypergeometric
solution of minimal algebraic degree m over its cvd-field, with local type (c, v, d+Z) at infinity, then
m 6 B2(c, v, d).

Proof. Let C ′ be the cvd-field. Let R ∈ C ′(x)[τ] be the right hand factor of L whose solutions are
spanned by all hypergeometric solutions of L that have local type (c, v, d + Z) at infinity. Since
there are at least m independent such solutions, the order o of R is at least m. All solutions of R
have the same local type (c, v, d + Z) at infinity. Now R factors as a product of first order factors
R = R1R2 · · ·Ro because R has a basis of hypergeometric solutions. All Ri have the same local

25

type at infinity, so for each Ri, the local type at infinity must be (c, v, d + Z). Hence the root
of χp(Ri) has expansion cp tvλ (1 + τ2(d) tλ + O(t2λ)) at infinity (see Theorem 2). The proposition
now follows from the fact that R and R1, . . . , Ro can be reduced mod p (see Proposition 2) and
Lemma 5(i).

The bound B2(c, v, d) is in some cases used in the Maple implementation. By computing this
bound before doing Step 3a in Algorithm HypSols we can, if the bound is zero, discard (c, v, d)
before calling Algorithm ESols. Some other possible improvements can be deduced from Theorem 2
(these have not been implemented):

(I). Suppose we are searching for the e-solutions of L ∈ C(x)[τ] that have local type (c, v, d + Z)
at infinity. Let p be a good prime for L. Distinct singularities do not necessarily stay distinct
after reduction mod p. However, one can use the following approach to discard some combinations
in Step 2 of Algorithm Search. Using the notation of Search: let S ⊂ R(χp(L)) be the set of
eigenvalues of the p-curvature matrix having expansion cp tvλ (1 + τ2(d) tλ +O(t2λ)) at infinity. Now
use only combinations li,j in Step 2 of Algorithm Search that match an element s ∈ S. Deciding
if a combination matches s is done as follows: let C ′[p] denote C ′ reduced mod p as in [CH04].
Factor s in (C ′[p])(λ), let s = V e1

1 · · · V el

l where ei ∈ Z and Vi irreducible in (C ′[p])[λ]. For each
k ∈ {1, . . . , l}, check if the sum of all mi,j,kli,j adds up to ek. Here mi,j,k denotes the maximal m
for which V m

k divides τ1(Pi,j).

Remark 5. This method to discard some combinations is very close to the one used in [CH04,
Section 5.2] in the differential case.

(II). Let (c, v, d + Z) ∈ g∞(L). If there is a good prime p for which c or d can not be reduced mod
p, or c reduces to 0 mod p, then this (c, v, d + Z) can be discarded by the proof of Theorem 2.

Example 10. Taking p = 29 and p = 5 which are good primes in Example 7 one sees that all
elements of g∞(L) given in Example 8 can be thrown away, so the example has no hypergeometric
solutions.

11 Computation timings

A Maple implementation of HypSols by the second author has been available since 2001 on
http://www.math.fsu.edu/~hoeij/maple.html and is now included in Maple 9. To use it, do
with(LREtools): and then call hypergeomsols. Older versions of Maple have an implementation
of Petkovšek’s algorithm (called here PetkoSols). This algorithm can still be called in Maple 9
by setting _Env_old_hypergeomsols:=true before calling hypergeomsols. A comparison on 36
examples can be found on http://www.math.fsu.edu/~hoeij/comparison_hypergeomsols.
The tests show that HypSols is much faster than PetkoSols except on very small examples. We
give one additional example:

L(u) = u(x + 2) − (x + 1) (2x2 + 3x + 2)u(x + 1) + (x6 + 2x5 + x4 − 2)u(x) = 0.

Recall that hyp(r) is short notation for a solution u of the operator τ − r. The operator L has a
basis of two hypergeometric solutions, which are conjugated over Q. If HypSols is given the field
C = Q then the output of HypSols will contain only one solution u(x) = hyp(x3 +x2 +

√
2) because

26

the output is a basis up to conjugation over C. Note that HypSols needed to enter the “hard case”
(Algorithm HSol) to find this solution. Since the user will expect hypergeomsols to return a basis
of solutions, not a basis up to conjugation, Maple will compute all conjugates of x3 + x2 +

√
2

over C = Q. The expression hyp(r) can be rewritten as
∏x−1

k=0 r(k) but it can also be written as a
product of Γ functions (Maple’s choice depends on the factorization of r). The output of

with(LREtools): L := u(x)*(x^6+2*x^5+x^4-2)-(x+1)*(2*x^2+3*x+2)*u(x+1)+u(x+2);

hypergeomsols(L, u(x), {}, output=basis);

in Maple 9 on this example is

x−1
∏

k=0

(

k3 + k2 +
√

2
)

,
x−1
∏

k=0

(

k3 + k2 −
√

2
)

.

The computation takes about 1.2 seconds (Pentium 733 MHz). In PetkoSols the example takes
about 436 seconds. Mathematica’s implementation of Petkovšek’s algorithm finds no solutions be-
cause it is limited to the case where a0 and an have no irreducible factors of degree > 2, see [PWZ96,
Section 8.5].

Another comparison between the algorithm in [Ho99] and Petkovšek’s algorithm was done
in [We01, Section 6.3]. Here, the author points out the problem with the number of cases Petkovšek’s
algorithm must consider. He also mentions the high cost of computing the sets gp(L), most likely
caused by not using truncated power series as in Section 4. The author also remarks that, un-
like [Ho99], Petkovšek’s algorithm may return too many (i.e., linearly dependent) solutions.

12 An analogue algorithm for q-difference equations

In this section, we explain briefly how to develop the q-analogue of HypSols, for computing q-
hypergeometric solutions of q-difference operators when q is not a root of unity and not zero. The
q-analogue of Petkovšek’s algorithm was given in [APP98].

We consider a field C of characteristic zero and its algebraic closure C. To simplify the notations,
we set K := C(x).

Definition 23. Let q ∈ C, not zero and not a root of unity. A q-difference operator L :=
∑n

i=0 ai τ i

with ai = ai(x) ∈ C(x) is an operator that acts on u = u(x) as follows:

L(u(x)) =

n
∑

i=0

ai(x)u(qix).

In [PS97, Section 12.1], the authors prove the existence of a universal extension Vq for q-
difference equations with coefficients in C(x).

Definition 24. An expression u(x) ∈ Vq is called a q-hypergeometric term if u(qx)/u(x) ∈ C(x).

We will define a notion of local types for first order q-difference operators (or q-hypergeometric
terms) and construct sets of candidate local types for possible first order right hand factors of
q-difference operators. We shall also exhibit Fuchs’ relations and show that the type of a first order
operator (see Definition 25) only depends on its local type at each point.

27

12.1 Local types

While a difference operator has only one special singularity, namely at ∞, a q-difference operator
has two special singularities: 0 and ∞. Consider the two following groups with multiplication ©s

where ©s is defined as in Definition 6:

K∗
©s := {τ − r | r ∈ K∗} and K∗

R := {τ − τ(r)

r
| r ∈ K∗}.

Note that K∗ ∼= K∗
©s (resp. K∗/C∗ ∼= K∗

R) under r 7→ τ − r (resp. r 7→ τ − τ(r)/r).

Definition 25. Let r in K∗. The type of τ − r is defined as the image of τ − r in K∗
©s /K∗

R.

12.1.1 Special singularities

Here, we will define the local type at 0 and ∞ of L = τ − r with r ∈ K∗. Let 〈q〉 denote the
multiplicative group generated by q (remember that q is not a root of unity and not zero).

Definition 26. For e ∈ C
∗
, denote e = {e qi | i ∈ Z}, the image of e in C

∗
/〈q〉.

Let
G0 = G∞ := C

∗
/〈q〉 × Z.

We will use the additive notation for this group: (c1, v1) + (c2, v2) = (c1c2, v1 + v2). The element
r ∈ K∗ can both be written in the form r = c0 xv0 (1 + O(x1)) and r = c∞ tv∞ (1 + O(t1)) where
t := 1/x, c0, c∞ ∈ C

∗
and v0, v∞ ∈ Z.

Definition 27. With these notations, the local types of L = τ − r at 0 and ∞ are respectively
defined as:

g0(L) = (c0, v0) ∈ G0,

and
g∞(L) = (c∞, v∞) ∈ G∞.

Note that g0 (resp. g∞) define homomorphisms from K∗
©s /K∗

R to G0 (resp. G∞). So g0(τ − r)
and g∞(τ − r) only depend on the type of τ − r.

12.1.2 Other Singularities

Definition 28. Let C be a field of characteristic zero and L ∈ C[x][τ] be a q-difference operator.
Then α ∈ C

∗
is a problem point of L if α is a root of a0(x) an(x/qn).

α ∈ C
∗
/〈q〉 is a singularity of L if L has a problem point in α.

Definition 29. For e ∈ C
∗

and r ∈ K∗, we define the valuation ve(r) of r at e as the largest
integer m such that r/(x − e)m ∈ C[[x − e]]. The valuation of 0 is ∞.

Definition 30. For α ∈ C
∗
/〈q〉, we define the group homomorphism vα : K∗ → Z given by

vα(r) =
∑

e∈α ve(r). The local type of L = τ − r at α is defined as

gα(L) = vα(r) ∈ Z.

It is easy to show that gα(τ − r) only depends on the type of τ − r.

28

12.2 Fuchs’ relations

Let G+ be the additive group of functions C∗/〈q〉 → Z with finite support and let

H := G+ × G0 × G∞.

Definition 31. The collection of local types of L = τ − r is defined as

g(L) := (α 7→ gα(L), g0(L), g∞(L)) ∈ H.

Lemma 7 (Fuchs’ Relations). Let L = τ − r ∈ K∗
©s . If g(L) := (α 7→ gα(L), (c0, v0), (c∞, v∞)) ∈ H

is the collection of local types of L, then we have

v0 + v∞ +
∑

α∈C
∗
/〈q〉

gα(L) = 0 and c0 = c∞
∏

α∈C
∗
/〈q〉

(−α)gα(L). (14)

Proof. One can check this for generators of the group K∗
©s , i.e., the τ − c with c ∈ C

∗
and the

τ − (x − e) with e ∈ C.

Let HF be the subset of H containing all the elements satisfying Fuchs’ relations given by
Equation (14).

Proposition 4. g induces a group isomorphism from K∗
©s /K∗

R to HF .

Proof. Let g : K∗
©s → H be as in Definition 31. From the previous lemma, the image of g is

contained in HF . The map is surjective since if F = (f, (c0, v0), (c∞, v∞)) ∈ HF , then F = g(L)
where L = τ − c∞ xv0 (x − α1)

f(α1) · · · (x − αm)f(αm). Here, c∞ is a representant in C
∗

of c∞ and
α1, . . . , αm are representants in C

∗
for the αi ∈ C

∗
/〈q〉 for which f(αi) 6= 0, and αi 6= αj if i 6= j.

Furthermore, it is easy to check that such an L is in K∗
R only if F = (0, (1, 0), (1, 0)) which is the

identity in HF . So the kernel of g is K∗
R.

Consequently, the type of a q-difference operator of order one is determined by its local types.
Now, as in the difference case, given L ∈ K[τ], one can effectively construct sets of candidate local
types for possible order one right hand factors of L. Then q-HypSols, the q-analogue of HypSols,
follows naturally.

Acknowledgments: the authors would like to thank M. A. Barkatou for helpful explanations and
references concerning Section 5.

References

[Ab95] S. A. Abramov. Rational solutions of linear difference and q-difference equations with
polynomial coefficients. In (Russian) Programmirovanie, 6: 3-11, 1995; translation in
Program. Comput. Software 21, 6: 273-278, 1995.

[AB98] S. A. Abramov, M. A. Barkatou. Rational solutions of first order linear difference sys-
tems. In Proceedings of ISSAC’98, ACM Press, 1998.

[ABH05] S. A. Abramov, M. A. Barkatou, M. van Hoeij. Apparent Singularities of Linear Dif-
ference Equations with Polynomial Coefficients. To appear in AAECC, 2005.

29

[ABP95] S. A. Abramov, M. Bronstein, M. Petkovšek. On polynomial solutions of linear operator
equations. In Proceedings of ISSAC’95, ACM, New York, 1995.

[APP98] S. A. Abramov, P. Paule, M. Petkovšek. q-Hypergeometric solutions of q-difference
equations. In Discrete Math., 180: 3-22,1998.

[Ad28] C. R. Adams. On the irregular cases of the linear ordinary difference equations. In
Trans. Amer. Math. Soc., 30: 507-541, 1928.

[Ba97] M. A. Barkatou. A fast algorithm to compute the rational solutions of systems of linear
differential equations. In Rapport de Recherche IMAG (Grenoble), RR 973-M-, 1997.

[BD94] M. A. Barkatou, A. Duval. Sur les séries formelles solutions d’équations aux différences
polynômiales. In Ann. Inst. Fourier(Grenoble), 44(2): 495-524, 1994.

[Be94] E. Beke. Die Irreduzibilität der homogenen linearen differentialgleichungen. In Math.
Ann., 45, 278-294, 1894.

[Bi30] G. D. Birkhoff. Formal theory of irregular linear difference equations. In Acta Math.,
54: 205-246, 1930.

[BCS05] A. Bostan, T. Cluzeau, B. Salvy. Fast algorithms for polynomial solutions of linear
differential equations. In Proceedings of ISSAC’05, July 24-27, Beijing, China, 2005.

[CH04] T. Cluzeau, M. van Hoeij. A modular algorithm to compute the exponential solutions
of a linear differential operator. Journal of Symbolic Computation, 38, 1043-1076, 2004.

[GZ03] M. Giesbrecht, Y. Zhang. Factoring and decomposing ore polynomials over Fp(t). In
Proceedings of ISSAC’03, August 3-6, Philadelphia, Pennsylvania: 127-134, 2003.

[Ho98] M. van Hoeij. Rational solutions of linear difference equations. In Proceedings of IS-
SAC’98 : 120-123, 1998.

[Ho99] M. van Hoeij. Finite singularities and hypergeometric solutions of linear recurrence
equations. In Journal of Pure and Applied Algebra, 139: 109-131, 1999.

[No29] N. E. Nörlund. Leçons sur les équations linéaires aux différences finies. Gauthiers Villard
et Cie, Paris, 1929.

[Pe92] M. Petkovšek. Hypergeometric solutions of linear recurrences with polynomial coeffi-
cients. In Journal of Symbolic Computation, 14(2-3): 243-264, 1992.

[PWZ96] M. Petkovšek, H. S. Wilf, D. Zeilberger. A = B. With a foreword by Donald E. Knuth.
A. K. Peters, Ltd., Wellesley, MA, 1996.

[Pu95] M. van der Put. Differential equations in characteristic p. In Compositio Mathematica,
97: 227-251, 1995.

[PS97] M. van der Put, M. F. Singer. Galois theory of difference equations. In Lectures Notes
in Mathematics, vol. 1666 Springer, Berlin, 1997.

[We01] C. Weixlbaumer. Solutions of difference equations with polynomial coefficients. Diplom-
arbeit, RISC Linz, Johannes Kepler Universität, 2001.

30

