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ABSTRACT

Let L be a linear ordinary differential equation with coefficients in C(x). This thesis presents

algorithms to solve L in closed form. The key part of this thesis is 2-descent method, which

is used to reduce L to an equation that is easier to solve. The starting point is an irreducible

L, and the goal of 2-descent is to decide if L is projectively equivalent to another equation

L̃ that is defined over a subfield C(f) of C(x).

Although part of the mathematics for 2-descent has already been treated before, a com-

plete implementation could not be given because it involved a step for which we do not

have a complete implementation. Our key novelty is to give an approach that is fully im-

plementable. We describe and implement the algorithm for order 2, and show by examples

that the same also work for higher order. By doing 2-descent for L, the number of true

singularities drops to at most n/2 + 2 (n is the number of true singularities of L). This

provides us ways to solve L in closed form(e.g.in terms of hypergeometric funtions).
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CHAPTER 1

INTRODUCTION

Let L =
∑n

i=0 ai∂
i be a differential operator with coefficients ai in a differential field K =

C(x), where ∂ is the usual differentiation d
dx . The corresponding differential equation is

L(y) = 0, i.e. any
(n)+· · ·+a1y′+a0y = 0. Finding the closed form solutions of L in computer

algebra systems is important because of its wide applications in Physics, Combinatorics and

other fields. Algorithms that can be fully implemented in computer algebra systems are

also needed.

1.1 Closed Form Solutions of L

When we say a linear ordinary differential equation has closed form solutions, we mean

that solutions can be written in terms of functions from a defined set of functions, under

operations from a defined set of operations. In [22], these functions are {C(x), exp, log,

Airy, Bessel, Kummer, Whittaker, and 2F1-Hypergeometric functions } and the operations

are {field operations, algebraic extensions, compositions, differentiation and
∫
dx}. Solving

a second order L in terms of these functions is solved in [30] except for 2F1-Hypergeometric

Functions. Thus, our focus will be on finding 2F1 type solutions. Differential equations

with 2F1-type solutions are very common in Combinatorics and Physics [2, 5]. However,

there are no complete algorithms to find such solutions.

Example 1.

L := ∂2 +
4(1296x5 + 576x4 − 144x3 − 72x2 + x+ 1)

x(6x− 1)(2x+ 1)(6x+ 1)(12x2 − 1)
∂+

2(5184x6 − 864x5 − 1656x4 + 48x3 + 162x2 + 6x− 1)

(−1 + 2x)x2(6x− 1)(2x+ 1)(6x+ 1)(12x2 − 1)
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This differential equation is satisfied by a D-finite generating function that counts certain

lattice walks in the quarter plane [27, 5]. However, current computer algebra system does not

solve it. Of the 17 equations in [27, 5], there are 16 such equations that can not be solved by

current computer algebra system (despite the fact that they do have closed form solutions).

Therefore it becomes important to develop algorithms to solve such equations, especially

algorithms to find the 2F1-type solutions. We will continue Example 1 in Section 3.7 and

Section 5.4.

1.2 Descent method for differential equations

The problem of finding closed form solutions of L becomes easier if we can factor L as

a product of lower order operators as in [3, 6, 17] or apply some other approach to reduce

the order, see [19, 28].

A different type of reduction is called descent. The goal is to reduce L to an operator

L̃ of the same order, but this time defined over a proper subfield k = C(f) of K. Here L̃

must be projectively equivalent to L. Informally, this means that L can be solved in terms

of the solutions of L̃ and vice versa (a precise definition will be given later in Chapter 2).

In this thesis, we treat of 2-descent, meaning that k is a subfield of K with index 2. We

focus on solving second order equations in terms of hypergeometric functions by 2-descent,

at the end we will also give examples for higher order. For a second order equation L, after

applying Kovacic’ algorithm [26], we can assume that L is irreducible (i.e. not a product of

lower order factors), and that it has no Liouvillian solutions.

Descent reduces the number of true singularities (Definition 18) from n to at most n/2+

2, which helps to solve differential equations as illustrated in Section 3.7 and Section 4.3.

In particular, for second order equations, if the number of true singularities1 drops to 3,

and if these are regular singularities2, then a 2F1-type solution can be obtained quickly. We

can also stop reducing when we reach a second order operator with four true singularities,

because 4-singularity equations with 2F1-type solutions are currently being classified by

[16]. Classifying equations with closed form solutions and > 4 singularities would be hard

to do, this is where 2-descent becomes crucial.

1the number of removable singularities (Def. 18) is irrelevant
2for the irregular singular case, finding closed form solutions if they exist can be done with [12, 23]
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If L ∈ C(x)[∂] then there is a finitely generated extension Q ⊆ C with L ∈ C(x)[∂],

just take C to be the extension of Q given by the coefficients of L. The main design goal

for our algorithm is to introduce as few algebraic extensions of C as possible. Without

this design goal, Sections 3.3 and 3.5 would have been much shorter (if we simply compute

the splitting field of the singularities then for Section 3.5 we can follow [8] and Section 3.3

becomes trivial. Sections 3.3 and 3.5 become non-trivial when we aim to minimize field

extensions).

The main results in this thesis is the 2-descent algorithm in Chapter 3 and Chapter 4.

We know from [21] that if there is a gauge transformation G from L to σ(L), then L will

allow descent with respect to σ. The question is, given G, how to find the descent? Is

it necessary (as in the terminology in [21]) to trivialize a 2-cocycle, or to perform some

equivalent complicated operation such as finding a point on a conic over C(x)? The answer

is no; we give a short and efficient algorithm in Section 3.4 (and an alternative method

in Chapter 4), and we even show (Theorem 1) that it produces a result over an optimal

extension of C.

1.3 Relation to prior work

For a second order differential equation, it is shown in [8, 21] that the problem of

computing 2-descent can be reduced to another problem (trivializing a 2-cocycle) although

no step by step algorithm is given in these papers. The paper [19] does give an algorithm,

and implementation, that can be used to find 2-descent, as follows. If σ is a Möbius

transformation of order 2, and C(f) is the fixed field of σ, and if L is projectively equivalent

to σ(L), then we can compute the so-called symmetric product of L, σ(L), then apply

factorization (DFactorLCLM in Maple), take the 3’rd order factor found that way, and run

the algorithm from [19] to find a second order operator. All of these steps are implemented,

and the end result is a 2-descent.

The problem with the above methods is that they rely on an algorithm that can find

a point on a conic defined over K (or an algorithm that solves an equivalent problem).

Although such a point must exist when K = C(x), the proof does not show how to find

such a point over a field of constants that is optimal or close to optimal (recall that we wish

3



to minimize the extension of C that the algorithm introduces, where C ⊂ C). There is only

an implementation in [20] for this step if C is Q or a transcendental extension of Q. If L

contains algebraic numbers, then there is no implementation for finding a point on a conic,

and without that, it is not clear how to obtain from [19, 8, 21], a complete implementation

for finding 2-descent.

In Chapter 3 of this thesis, a step by step algorithm is described for finding 2-descent for

a second order differential equation. The algorithm can be fully implemented [13] because

it does not call a conic algorithm. Note: If L ∈ C(x)[∂] with C ⊂ C of order 2, and if one

allows unnecessary algebraic extensions of C (potentially exponentially large), then it is not

hard to implement a conic algorithm, in which case one can consider 2-descent an already

solved problem. But in practice our algorithm would be much preferable because it only

extends C when necessary (i.e. when there is no 2-descent defined over C).

This thesis is organized as follows: Chapter 2 contains the preliminary knowledges of

differential equations and differential modules. In Chapter 3, the 2-descent algorithm is

described in details. Several support theorems are also proved. Chapter 4 presents an

improved algorithm for the Case A of finding 2-descent. We also give examples to show

the application of 2-descent for higher order differential equations in Chapter 4. Chapter 5

shows how to solve second order linear differential equations in terms of Hypergeometric

functions by examples. We give the conclusion in Chapter 6.

4



CHAPTER 2

SINGULARITIES AND TRANSFORMATIONS

In this chapter, we first introduce some facts about differential equations, differential oper-

ators, and their singularities. After that, the transformations between differential operators

will be discussed. Because these properties are already known, we will just list them, and

refer to [11, 23, 29] for proofs and details.

2.1 Differential Operator Ring

Definition 1. ([29])

1. An ordinary differential ring R is a ring R equipped with a map (derivation)

∂ : R −→ R, such that:

∂(a+ b) = ∂(a) + ∂(b),

∂(ab) = ∂(a)b+ a∂(b),

for a, b ∈ R

2. The ring CR = {c ∈ R|∂(c) = 0} is called the ring of constants of R.

Remark 1. An ordinary differential ring R which is also a field is called a differential field.

If K is a differential field, the corresponding ring of constants is a field CK , as can be proved

directly from the definition.

Example 2. The ring of formal power series Z[[x]] with derivation f ′ = df
dx is a differential

ring, the ring of constants of which is Z.

Example 3. The field of rational functions C(x) with derivation f ′ = df
dx is a differential

field, the field of constants of which is C.

5



Note: In this thesis, the coefficients of the differential equations are from a differential

field K, where K is C(x) or a subfield of C(x).

Definition 2. Let K be a differential field. The ring of non-commutative polynomials of

the form L = an∂
n + · · ·+ a1∂ + a0 with ai ∈ K is called the ring of differential operators

over K, where the ring multiplication is defined by ∂ ·a = a
′
+a∂ for all a ∈ K. An operator

L acts on functions as L(y) = any
(n) + · · ·+ a1y

′ + a0y.

Remark 2. Multiplication of differential operators is defined in such a way that: L1(L2(y)) =

(L1L2)(y). Through this thesis, we denote this differential operator ring as D= K[∂]. The

equation L(y) = 0 is same as the scalar differential equation any
(n) + · · ·+ a1y

′ + a0y = 0.

The order of L = an∂
n + · · · + a1∂ + a0 is n if an 6= 0. We use differential operators and

differential equations interchangeably.

Lemma 1. Every left ideal of D is of the form DL for some L ∈ D.

Sketch of proof: D has all the properties of a Euclidean ring, except commutativity.

It has right-division and left-division. Using right-division, one can compute the greatest

common right divisor (GCRD). In other words, the Euclidean algorithm works for D, and

the lemma then follows.

Remark 3. We can also define the Least Common Left Multiple of L1, L2 ∈ D (Denote as

LCLM(L1, L2)) as the unique monic generator of DL1 ∩ DL2 [31].

Let Ω be a universal extension of C(x) as in [29], which is a D-module as well as a

commutative ring with the property dimC(ker(L,Ω → Ω))=ord(L) for any L ∈ D-{0}.

Then we have the following definition.

Definition 3. Given a linear differential operator L ∈ D of order n, the solution space

V (L) of L(y) = 0 in K is defined as ker(L,Ω → Ω). Then V (L) is a vector space over C

of dimension ord(L).

Lemma 2. Given L1, L2 ∈ C(x), then V (GCRD(L1, L2)) = V (LCLM(L1, L2)).

The next lemma gives the relation between two differential operators when they have

the same solution spaces.

6



Lemma 3. If L1, L2 ∈ C(x)[∂] have the same order, then

V (L1) = V (L2)⇐⇒ L1 =
lc(L1)

lc(L2)
L2

where lc stands for leading coefficient lc(an∂
n + · · ·+ a1∂ + a0) = an if an 6= 0.

Proof. ′′ ⇒ ′′ : This can be verified by Lemma 2 that V (GCRD(L1, L2)) = V (L1)∩V (L2) =

V (L1) = V (L2) and GCRD(L1, L2) is a right factor of both L1 and L2.

2.2 Differential Module

A linear differential equation can be presented in several ways: scalar form, that is

the form we usually adopt; matrix form; differential module form. These three forms are

equivalent to each other, we can use these three forms interchangeably [29].

Definition 4. A differential module M is a finite dimensional K-vector space equipped with

an additive map ∂ : M −→ M with the property: ∂(fm) = f ′m + f∂m for all f ∈ K and

m ∈M . In other words, M is a D-module, and is finite dimensional as K-vector space.

We denote a differential module as (M,∂).

Definition 5. Let (M1, ∂1) and (M2, ∂2) be two differential modules. A differential module

homomorphism φ : M1 → M2 is a K-linear map such that φ(∂1(m)) = ∂2(φ(m)) for all

m ∈M1.

Definition 6. (M1, ∂1) and (M2, ∂2) are isomorphic if there exists a bijective differential

homomorphism φ : M1 →M2.

Definition 7. Let M be a differential module over K. An element e ∈M is called a cyclic

vector if M is generated over K by the elements e, ∂e, ∂2e, . . . (i.e. M is generated over D

by e).

Lemma 4. Assume K 6= CK . Let M be a differential module with K-basis {e1, · · · , en} and

let η1, · · · , ηn ∈ K be a linearly independent over CK . Then there exist integers 0 ≤ ci,j ≤ n,

1 ≤ i, j ≤ n, such that m =
∑n

i=1 aiei is a cyclic vector for M , where ai =
∑n

j=1 ci,jηj.

Proof. See [26, 29].
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Corollary 1. Assume K 6= CK . Every differential module is isomorphic to a module of

the form D/DL for some L ∈ D.

Proof. Assume e is a cyclic vector in M by Lemma 4, we define the D-module homomor-

phism φ : D 7→ M , which is defined by e = φ(1), where 1 ∈ D is the unit element. Then

φ is surjective because e is a cyclic vector in M , furthermore, we know its kernel is a left

ideal and has the form DL for some L ∈ D. Therefore M ∼= D/DL.

This way, we associate a scalar differential operator L over K to a differential module

M .

Remark 4. Note that L is not unique in Corollary 1; A differential module M has many

cyclic vectors. Taking two cyclic vectors, we obtain two operators L1 and L2 such that

M ∼= D/DL1 and M ∼= D/DL2. The property D/DL1
∼= D/DL2 is thus important; we say

L1 and L2 are gauge equivalent when D/DL1
∼= D/DL2.

2.3 Singularities of L

In this thesis, the singularities of differential equations play a significant role. Therefore,

we discuss here some properties of singularities and their roles in finding solutions.

Definition 8. A point p ∈ P1 = C ∪ {∞} is called a singularity of a differential operator

L ∈ K[∂], if p is a zero of the leading coefficient of L or p is a pole of one of the other

coefficients of L. p is called a regular point if it is not a singularity.

Example 4. Let

L = ∂2 +
28x− 5

x(4x− 1)
∂ +

144x2 + 20x− 3

x2(4x− 1)(4x+ 1)
.

To find the singularities of L, we first find the zeros of leading coefficient, since the leading

coefficient is 1, so no zeros for this part. Next, we compute the poles for the other coeffi-

cients, which are the set {0, 14 ,−
1
4}. However, we are not done at this point, we still need

consider the behavior of the point x =∞. To examine this, we should do a change of vari-

able x 7→ 1
x , in this way, ∞ becomes 0 and we only need examine if x = 0 is a singularity

in this new differential operator. After checking, we find x = 0 is a singularity, that means

∞ should be included in the singularities set of L. Therefore, we find the singularities set

of L, which is {0,∞, 14 ,−
1
4}.

8



Remark 5. (Cauchy’s Theorem) If p is a regular point of L, we can write all solutions of

L at p as convergent power series
∑∞

i=0 ait
i
p, where tp denotes the local parameter which is

tp = 1
x if p =∞ and tp = x− p, otherwise.

Among the singularities of a given differential operator L, we classify them into several

classes. For convenience, we suppose our differential operator L to be monic, that means

the leading coefficient is 1.

Definition 9. [30] A singularity p of L is:

1. regular singularity (p 6=∞) if tipan−i is analytic at x = p for 1 ≤ i ≤ n.

2. regular singularity (p =∞) if an−i

ti∞
is analytic at x = p for 1 ≤ i ≤ n.

3. irregular singularity otherwise.

For the 2-descent method we discuss later, the exponents at a singular point of a differ-

ential operator play an important role.

Definition 10. Given a differential operator L ∈ K[∂], an element e ∈ C[[t
−1/r
p ]], r ∈ N

is called a generalized exponent of L at the point p if there exists a formal solution of the

form

y(x) = exp(

∫
e

tp
dtp)S (2.1)

where S ∈ C[[t
1/r
p ]][ln(tp)], and the t0p-term of S is non-zero. If e ∈ C then (2.1) simplifies

to tepS, in which case e is an exponent of L.

Remark 6. Given a differential operator L, we can compute the generalized exponents at

a point p by the Maple command gen exp, we will give more details in the appendix.

Theorem 1. Given a differential operator L ∈ D of order n, suppose that the ramification

indices of the generalized exponents divide r ∈ N. Then there exists a basis {y1, · · · , yn} of

V (L), of the form

yi(x) = exp(

∫
ei
tp
dtp)Si,

with Si ∈ C[[t
1/r
p ]][ln(tp)], where e1, · · · , en ∈ C[[t

−1/r
p ]] are generalized exponents and the

t0p-term of Si is non-zero.

9



Proof. See [17].

For order 2, we give some more details:

Theorem 2. Suppose L is a second order linear differential operator and p is a singularity,

then:

1. If p is a regular singular point of L, then there exist two linearly independent solutions

y1(x) = te1p

∞∑
i=0

ait
i
p, a0 6= 0

and

y2(x) = te2p

∞∑
i=0

bit
i
p + cy1(x) ln(tp),

where e1, e2, ai, bi, c ∈ C and b0 and c are not both 0.

2. If p is an irregular singular point of L, then the two linearly independent solutions are

y1(x) = exp(

∫
e1
tp
dtp)

∞∑
i=0

ait
i/r
p , a0 6= 0

and

y2(x) = exp(

∫
e2
tp
dtp)

∞∑
i=0

bit
−i/r
p + cy1(x) ln(tp),

where ai, bi, c ∈ C, e1, e2 ∈ C[t
−1/r
p ] and b0 and c are not both 0.

Proof. See [24, 30].

Remark 7. In Theorem 2, if e1− e2 /∈ Z, then c = 0 and y2 does not include a logarithmic

term. If c 6= 0, we say L has logarithmic solutions at x = p.

For a given second order linear differential operator L := ∂2 + P (x)∂ + Q(x), if x = p

is a regular singular point, then the exponents e1, e2 can be determined by solving the

corresponding indicial equation:

λ(λ− 1) + p0λ+ q0 = 0

where p0 and q0 are the constant coefficient of the power series expansion of (x − p)P (x)

and (x− p)2Q(x) at the point p, respectively.
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2.4 Transformations

There are three known types of transformations that send, for any n′th order L1 ∈ K[∂],

the solution space of L1 to the solution space of some L2 ∈ K[∂], again of order n. They

are (notation as in [12])

1. change of variables: y(x) 7→ y(f(x)), f(x) ∈ K \ CK .

2. exp-product: y 7→ e
∫
r dx · y, r ∈ K.

3. gauge transformation: y 7→ r0y + r1y
′ + · · ·+ rn−1y

(n−1), r0, r1 · · · , rn−1 ∈ K.

Definition 11. Let L1, L2 ∈ K[∂]. They are called gauge equivalent (notation: L1 ∼g L2) if

there exists a so-called gauge transformation, which means a bijection from V (L1) to V (L2)

of the form in item 3.

Remark 8. Let L1, L2 ∈ K[∂]. The D-modules D/DLi, i = 1, 2 are isomorphic if and only

if L1 ∼g L2. In particular, ∼g is an equivalence relation (see [3]).

Definition 12. Let L1, L2 ∈ K[∂]. They are called projectively equivalent (notation:

L1 ∼p L2) if there exists a bijection V (L1)→ V (L2) of the form

y −→ e
∫
r · (r0y + r1y

′ + · · ·+ rn−1y
(n−1)) (2.2)

for r, r0, · · · , rn−1 ∈ K (i.e. a combination of item 2 and item 3).

Remark 9. [21] Let L1, L2 ∈ K[∂]. L1 ∼p L2 if and only if there exists a D-module E of

dimension 1 over K such that D/DL1
∼= E ⊗ D/DL2.

Remark 10. Projective equivalence is also an equivalence relation, the details are in [3].

A projective equivalence relation between two differential operators L1, L2 is important for

solving because it means we can solve L1 in terms of the solutions of L2, and vice versa.

The algorithm for finding (if it exists) a projective equivalence between two given n’th

order differential operators is also given in [3]. An implementation can be found in Maple

package ISOLDE. Through this thesis, we will frequently decide whether two second order

linear differential operator are projectively equivalence, a typical faster algorithm equiv for

order 2 is developed and implemented in [18]. We use this algorithm to decide if L1 ∼p L2,
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and if so, to find the projective equivalence (the r, r0, r1 in (2.2)). A summary of this

algorithm will be given in the remainder of this chapter.

Theorem 3. Let L1, L2 ∈ K[∂] of order 2, the question of finding the projective equivalence

between L1 and L2 can be reduced to find a hyperexponential solution of a system of linear

differential equations.

Proof. The proof of this theorem is reproduced from [11]. The proof also gives the idea of

how this algorithm works.

If L1 ∼p L2, then there is an operator G = exp(
∫
r)G1 such that L1 is a right factor of L2G,

where r ∈ K and G1 ∈ K[∂] with order one. Set G = r1∂ + r0, where r0 = exp(
∫
r)s0 and

r1 = exp(
∫
r)s1. In this case, we need find two hyperexponential functions r0 and r1. Since

L2G is right divisible by L1, therefore the remainder R should be 0. In general, R is an

operator of order one and its coefficients are K-linear combinations of r0, r
′
0, r
′′
0 , r1, r

′
1 and

r′′1 . Equating these coefficients to 0 yields a system of two differential equations of order

two with two unknowns r0, r1.

After replacing r′0 and r′1 by another two variables r2 and r3, and adding the equations

r′0 − r2 = 0 and r′1 − r3 = 0, we get a new system of differential equations of order 1 with 4

unknowns. Therefore, finding the projective equivalence between L1 and L2 is reduced to

finding hyperexponential solutions r0, r1, r2, r3 of a system of differential equations.

Before giving the procedures of finding hyperexponential solutions of a system of differ-

ential equations, it is necessary to define the adjoint of a differential operator L.

Definition 13. Given a differential operator L := an∂
n + an−1∂

n−1 + · · ·+ a0, the adjoint

of L is defined as L∗ :=
∑n

j=0 (−1)j∂jaj.

Remark 11. For two differential operator L1, L2, we have (L1L2)
∗ = L∗2L

∗
1 and L∗∗1 = L1.

This fact can be verified easily.

The cyclic vector method is used to find the hyperexponential solutions of a system of

differential equations. The proof of this method can be found in [11].

Algorithm: Finding the projective equivalence between L1 and L2.

12



Input: L1, L2 of order 2.

Output: G, if L1 ∼p L2 under G.

Step 1: WriteG = r1∂+r0 with r0 = exp(
∫
r)s0 and r1 = exp(

∫
r)s1 for some r, s0, s1 ∈ K.

Step 2: L2G should be divided by L1, so the remainder R equals to 0. This produces a

system of differential equations of r0, r
′
0, r
′′
0 , r1, r

′
1 and r′′1 .

Step 3: Set r2 = r′0 and r3 = r′1, we get another system of first order differential equations

with variables r0, r1, r2, r3.

Step 4: Pick a random v ∈ K4.

Step 5: Check whether v is cyclic, otherwise, redo step 5 and step 6.

Step 6: Compute L = a0 + a1∂ + a2∂
2 + a3∂

3 + ∂4 such that Lv = 0.

Step 7: Compute a hyperexponential solution s of L∗. (By using the DEtools[expsols]

command in Maple)

Step 8: Compute Q such that L = (∂ + s′

s )(1sQ).

Step 9: Let Q = y0 +y1∂+y2∂
2 +y3∂

3 and y = y0v+y1∂v+y2∂
2v+y3∂

3v. Then y would

be the hyperexponential solution.

Step 10: Take the first two parts of y as r0 and r1 respectively.

Example 5. Consider the following two differential operators L1 and L2:

L1 := 7056x(x− 1)∂2 − (−8232x+ 3528)∂ + 13

L2 := 7056x(x− 1)∂2 + (1176x+ 3528)∂ + 1189

>equiv(L_1,L_2);

G :=
√
x((x− 1)∂ +

13

3528
)

Similarly, we can compute the equivalence from L2 to L1.

>equiv(L_2,L_1);

G :=
1√
x

((x− 1)∂ − 1189

3528
)
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CHAPTER 3

2-DESCENT REDUCTION FOR LINEAR

DIFFERENTIAL OPERATORS

To solve a differential equation, the first way coming to mind is direct solving, i.e. comparing

with textbook equations, and other existing techniques. What should we do if no solution

was found? The next strategy we may consider is trying to reduce this equation to lower

order. This is natural because it is usual easier to solve a lower order equation. Many such

reduction method were developed in [26, 31, 19, 17]. What to do when the order can not

be reduced? Another kind of reduction called descent. This kind of reduction also aims

to reduce our differential equation to one which is easier to solve. In the rest part of this

chapter, the 2-descent method will be developed.

3.1 Introduction of descent method

Definition 14. Let K/k be an extension of differential fields and M be a differential module

over K, we say that M i-descends (i means isomorphism) to k if there exists a differential

module N over k such that M is isomorphic to K ⊗k N .

Remark 12. From the view of differential operators, we say that L i-descends to k if there

exists another differential operator L̃ over k such that L is gauge equivalent to L̃.

Example 6. Consider

L = ∂2 − 1

x
∂ − 4x4 ∈ K[∂]

where K = C(x).

Now let f = x2 and consider k = C(f). In this example, it is easy to find a descent for
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L to k because V (L) = V (L̃) for some L̃ ∈ k[∂f ], namely (see also Lemma 3): less trivial

examples occur when L descents to some L̃ with V (L) 6= V (L̃) (i.e. a nontrivial gauge

transformation is needed.)

Comparing with i-descent, we have the definition of p-descent (p represents projective):

Definition 15. Let K/k be an extension of differential fields and M be a differential module

over K, we say that M p-descends to k if there exist a differential module N over k and an

1-dimension module E such that E ⊗M i-descents to K ⊗k N .

Remark 13. In most content descent means i-descent. Through this thesis, we consider

more general descent: p-descent. That means we find a differential operator L̃ over k such

that L is projectively equivalent to L̃. The algorithm in Section 3.4 will treat i-descent,

the algorithm in Section 3.5 will find a 1-dimension module E that reduces p-descent to

i-descent.

If L descends to L̃ over a subfield k of K, we do not reduce the order of L, however, L̃

is easier to solve. More precisely:

• order(L) = order(L̃).

• L̃ is defined over k and k is a subfield of K.

• The number of singularities of L̃ is no more than that of L’s.

In this thesis, we will focus on developing 2-descent method, which means p-descent to

a subfield of index 2.

3.2 2-descent

Definition 16. Let f = A
B with A,B ∈ C[x] coprime, then the degree of f is defined as

deg(f) = max(deg(A), deg(B)) = [C(x) : C(f)].

Remark 14. If σ ∈ Aut(C(x)/C) has order 2, then the fixed field of σ is a subfield of C(x)

of index 2, and by Lüroth’s theorem this subfield is of the form C(f), for some f ∈ C(x) of

degree 2 (note: we can find such f in {x+ σ(x), xσ(x)} \ C). Any subfield C(f) ⊂ C(x) of
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index 2 is the fixed field of some σ ∈ Aut(C(x)/C) of order 2 (after all, every extension of

degree 2 is Galois). The automorphisms of C(x) over C are Möbius transformations:

x 7→ ax+ b

cx+ d
(3.1)

This chapter treats 2-descent, so we only consider σ of order 2, which is equivalent to

having d = −a in (3.1).

Remark 15. Any σ ∈ Aut(C(x)/C) extends to an automorphism of C(x)[∂]. If σ has finite

order, and if C(f) is the fixed field of σ, and if L ∈ C(x)[∂], then

L = σ(L)⇐⇒ L ∈ C(f)[∂f ], (3.2)

in other words, C(f)[∂f ] is the fixed ring of σ. Here ∂f := d
df = 1

f ′
∂, where ′ is differentiation

w.r.t. x.

Definition 17. Let L ∈ C(x)[∂]. We say that L has 2-descent if ∃f ∈ C(x) with deg(f) = 2

and ∃L̃ ∈ C(f)[∂f ] such that L ∼p L̃.

One could instead use the term “projective 2-descent” for this (because we use projective

equivalence ∼p) but we opted to use the shorter term.

Main goal: Let L ∈ K[∂] be irreducible. The goal of 2-descent is to give an explicit

algorithm that can decide if L has 2-descent, and if so, find it (i.e. find L̃ ∈ C(f)[∂f ] with

L ∼p L̃ for some f of degree 2). Moreover, if L is defined over some field C ⊂ C, we should

only introduce algebraic extensions of C when necessary.

In the following sections, we limit L to be of order 2, unless otherwise specified. We will

divide our algorithm into several steps. The first step is to find candidates for C(f) with

deg(f) = 2. Such a field is the fixed field of a Möbius transformation of order 2.

3.3 Möbius transformations

Proposition 1. A Möbius transformation has order 2 if it is of the form σ(x) = ax+b
cx−a .

Such σ has 2 fixed points in C ∪ {∞}.

One could apply a transformation that moves the fixed points of σ to 0,∞, which reduces

σ to the notationally convenient x 7→ −x. Our algorithm does not do this because it can

introduce an unnecessary algebraic extension of the constants.
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3.3.1 The singularity structure

Definition 18. Let L ∈ D have order n. Assume p is a singularity of L. If there exists a

basis of V (L) of the form e
∫
rf1, . . . , e

∫
rfn where r ∈ C(x) and f1, . . . , fn are analytic at

x = p, then p is called a removable singularity (also called false singularity). Otherwise p

is called a true singularity.

Suppose p is a singularity of L. If there exists a projectively equivalent L̃ for which p is

a regular point, then p is a removable singularity. The true singularities of L are precisely

those p that stay singular when L is replaced by any projectively equivalent operator.

Definition 19. [23, 12] Let L be a second order differential operator, then for each singu-

larity p of L, there are two generalized exponents e1 and e2. The exponent difference of L

at x = p is defined as e1 − e2. We denote it as ∆(L, p) = ±(e1 − e2).

Remark 16. The ± sign appears because there is no canonical way to order the generalized

exponents e1 and e2.

Lemma 5. Let L be a second order differential operator over K = C(x) and p be a singular-

ity. The exponent difference ∆(L, p) modulo 1
rZ is invariant under projective equivalence,

where r is the ramification index.

Proof. For a second order differential operator, the ramification index can be 1 or 2. When

r = 1, then the generalized exponents are unramified, the proof can be found in Section 2.2

in [11]. When r = 2, the generalized exponents are ramified, then proof can be found in

Section 3.3 in [30].

Definition 20. For any true singularity p, denote

type(L, p) :=


′′irreg′′ if ∆(L, p) /∈ C
′′irrat′′ if ∆(L, p) ∈ C \Q
e ∈ [0, 12 ] if ∆(L, p) ∈ Q

Here, e ∈ [0, 12 ] such that ∆(L, p) ∈ (e+ Z) ∪ (−e+ Z).

Then we write the singularity structure of L as

Stype := {(p, type(L, p)) | p true sing}.
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Let πi project on the i′th entry of Stype, then S := π1(S
type) ⊆ P1(C) denotes the set of

true singularities of L.

Lemma 6. If L ∼p L̃ ∈ D then L and L̃ have the same singularity structure Stype ([12, 28]).

If L ∈ C(x)[∂] for some field C ⊂ C, we denote:

MC := {σ =
ax+ b

cx− a
| a, b, c ∈ C and σ(S) = S}

MC := {σ =
ax+ b

cx− a
| a, b, c ∈ C and σ(S) = S}

M type
C := {σ ∈MC |σ(Stype) = Stype}

M type
C := {σ ∈MC |σ(Stype) = Stype}

places(C) :={f ∈ C[x] |f is monic and irreducible}
⋃
{∞}.

Remark 17. places(C) ∼= P1(C) = C
⋃
{∞}

If σ ∈ Aut(C(x)/C) then σ acts on places(C) in a natural way, preserving degrees,

which are defined as:

deg(p) =

{
1 if p =∞;

deg(p) if p is a polynomial .

If L = an∂
n + · · · + a0∂

0 with a0, . . . , an ∈ C[x], then computing the singularities as a

subset of P1(C) ⊂ P1(C) would mean computing all roots (the splitting field) of an. The

algorithm does not compute this splitting field because it could have exponentially high

degree over C. Instead, it uses irreducible factors of an in C[x] (and the point ∞) to

represent the singularities, then we have the notation Stype
C and

M type
C := {σ ∈MC |σ(Stype

C ) = Stype
C }

To ensure that S is invariant under∼p it is essential to discard all removable singularities.

Example 7. Let C = Q, and

L := ∂2 +
12x4 + 1

x(2x2 − 1)(2x2 + 1)
∂ − 8

(2x2 − 1)2

18



For this example we find

Stype := {(∞, 0), (0, 0), (
−1√

2
, 0), (

1√
2
, 0), (

−1√
−2

, 0), (
1√
−2

, 0)}.

The set of true singularities is

S = π1(S
type) = {∞, 0, 1√

2
,
−1√

2
,

1√
−2

,
−1√
−2
}

Written in terms of places(Q) it becomes

SC := {∞, x, x2 +
1

2
, x2 − 1

2
} ⊂ places(Q),

Stype
C := {(∞, 0), (x, 0), (x2 +

1

2
, 0), (x2 − 1

2
, 0)}

and

M type
C = {−x, 1

2x
,
−1

2x
}.

This example was quite easy because it has obvious 2-descent. Moreover, all singularities

were true singularities with type(L, p) = 0. Removable singularities are common in larger

examples, such as Example 3 in Section 7. Using S instead of SC would have introduced

an extension of C = Q of degree 4 in this example, however, such an extension could have

been much larger (e.g. if x5 − x − 1 had appeared in the denominator of L, which has a

splitting field of degree 120).

3.3.2 Finding candidates for σ

For i = 1, 2, . . ., let Si denote the set of all p ∈ SC with deg(p) = i.

Algorithm: Compute Möbius transformations.

Input: The singularity structure Stype
C .

Output: The set M type
C , i.e., the set of all σ ∈ Aut(C(x)/C) of order 2 that fix Stype

C . (In

this paper we omit 2-descent for σ’s that are not defined over C because in that case it is

better to compute a larger descent, of type C2 × C2, Dn, A4, S4, or A5).

Step 1: Compute Si from Stype
C and let ni denote the number of elements of Si.

Step 2: Let nsing :=
∑
i ni (the total number of true singularities when counted in P1(C)).
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Step 3: If nsing < 3 then return “With < 3 singularities, descent is not necessary nor

implemented” and stop.

Step 4: Now nsing ≥ 3.

1. If n1 ≥ 3, then call Case1

2. If n1 = 1, n2 = 1, then call Case2

3. If n1 = 2, n2 = 1, then call Case3

4. If n2 ≥ 2, then call Case4

5. If ni ≥ 1 for some i ≥ 3, then call Case5

Algorithm: Case1.

Input: Stype
C with S1 having ≥ 3 elements.

Output: The set M type
C .

Before describing Algorithm Case1, first some remarks. In general σ = ax+b
cx+d is deter-

mined by the image of three points σ(p1), σ(p2), σ(p3). Since we assume |σ| = 2, we can

write σ = ax+b
cx−a . In general, such σ is determined by two points σ(p1), σ(p2) except in one

case: when σ(p1) = p2, σ(p2) = p1. In that case one more point is needed to determine

σ = ax+b
cx−a .

Algorithm Case1 will choose a pair p1, p2 ∈ S1 (p1 6= p2) and loops over all n(n−1) pairs

q1, q2 ∈ S1 (q1 6= q2). If the types of q1, q2 match those of p1, p2, the algorithm will compute

the σ that maps p1, p2 to q1, q2. In the one case that q1, q2 = p2, p1, a third point p3 is used

to determine σ. There are n− 2 choices for σ(p3), namely from S1 − {p1, p2}. The number

of computed σ’s is then ≤ n(n− 1)− 1 + (n− 2) (equality if they all have the same type).

Then we remove those σ for which Stype
C is not σ-invariant (That means remove all σ’s that

send a true singularity to a non-singular point or to a false singularity (Definition 18), and,

remove all σ’s that send a singularity to a singularity of a different type).

Algorithm: Case2

Input: Stype
C with S1 having 1 element and S2 having 1 element.

Output: The set M type
C .
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Step 1: Let the polynomial in S2 be x2 + c1x+ c0.

Step 2: Write σ1 = − c1 x+2c0
2x+c1

and σ2 = a x+c0 c+c1 a
c x−a .

Remark 18. σ1 is the unique Möbius transformation of order 2 that fixes the roots

of x2 + c1x+ c0; σ2 is the parameterized family of all σ of order 2 that swap the roots

of x2 + c1x+ c0.

Step 3: Let p1 be the one element of S1. Equating σ(p1) to p1 gives a linear equation that

determines the values of the homogeneous parameters a, c in σ2.

Step 4: Check which (if any) of σ1, σ2 fix Stype
C and return those.

Algorithm Case3 is similar to Algorithm Case2.

Algorithm: Case4

Input: Stype
C with S2 having ≥ 2 elements.

Output: The set M type
C .

Step 1: Choose one polynomial from S2. Denote it as f1 = x2 + c1 x+ c0.

Step 2: Do the following substeps 1− 4 to get the set T1:

1. Write σ1 = − c1 x+2c0
2x+c1

and σ2 = a x+c0 c+c1 a
c x−a (See the Remark in Algorithm Case2).

2. Choose another polynomial in S2, and denote it as f2 = x2 + d1 x+ d0.

3. Write σ3 = −d1 x+2d0
2x+d1

and σ4 = a x+d0 c+d1 a
c x−a .

4. Let a := d0 − c0, c := c1 − d1, then σ2 = σ4 swaps the roots of f1 as well as the

roots of f2.

T1 := {σ ∈ {σ1, σ2, σ3}|σ fixes Stype
C }.

Step 3: Denote the polynomials in S2 as fi, then T2 :=

n2⋃
i=2

FindMaps(f1, fi)

(See below for the subalgorithm FindMaps)

Step 4: T3 :=

n2⋃
i=3

FindMaps(f2, fi).

Step 5: T1
⋃
T2
⋃
T3.

Remark. Taking a set union means removing duplicates. The duplicates are the

elements of T3 that do not swap the roots of f1, and σ3 might also be duplicate (it

could be in T2 if n2 > 2).
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Subalgorithm: FindMaps

Input: Two irreducible polynomials f, g ∈ C[x] of equal degree.

Output: All σ ∈M type
C that map roots of f to roots of g.

1. Compute the roots of g in C(α) ∼= C[x]/(f).

2. For each root βj , compute a, b, c ∈ C (not all 0) with aα+b
c α−a = βj .

This is done by computing coefficients (w.r.t α) of aα+ b− βj(c α− a) and equating

them to 0.

3. For each a x+b
c x−a found in step 2 check if it fixes Stype

C , if so, include it in the output.

Algorithm: Case5

Input: Stype
C with Si having ≥ 1 elements and i ≥ 3.

Output: The set M type
C .

Step 1: Find Si for an i ≥ 3 with ni > 0.

Step 2: Choose a polynomial f in Si. Denote C(α) ∼= C[x]/(f), with f(α) = 0.

Step 3: For each polynomial g ∈ Si, call FindMaps(f, g). Then M type
C would be⋃

g∈Si

FindMaps(f, g).

3.4 Computing 2-descent, Case A

Definition 21. Given two differential operators L1, L2∈ C(x)[∂], we define:

HomD(L1, L2) := {ϕ : V (L1)→ V (L2) | ∃ G ∈ D s.t. G(y) = ϕ(y) for all y ∈ V (L1)}.

Notation 1. We will usually use G to denote an element of Hom(L1, L2).

Remark 19. Note that G ∈ Hom(L1, L2) is equivalent to saying that L2G is right divisible

by L1. Viewed this way, it is clear that if G ∈ Hom(L1, L2) then σ(G) ∈ Hom(σ(L1), σ(L2))

for any automorphism σ.

Remark 20. Given ϕ, the operator G is not unique, because G and G+ L1 give the same

map V (L1) → V (L2). However, if we require Ord(G) < Ord(L1) (which one can do using

division with remainder), then ϕ uniquely determines G.
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Remark 21. If ϕ in Definition 21 is a bijection between L1 and L2, then it is called a

gauge transformation as defined in Chapter 2. In this case, the map ϕ−1 : V (L2)→ V (L1)

is also a gauge transformation, the corresponding operator G̃ with G̃G : V (L1) → V (L1)

being the identity map can be found using the Extended Euclidean Algorithm [11].

The above definition leads the following lemma for the irreducibility of the differential

operator.

Lemma 7. Given a differential operator L ∈ C(x)[∂]. If L is irreducible in C(x)[∂], then

dim(HomC(x)[∂](L,L)) = 1.

Notations: In the rest of this chapter, let L ∈ C(x)[∂] have order 2, and be irreducible

(even in C(x)[∂]). Let σ ∈ Aut(C(x)/C) have order 2 and fixed field C(f) ⊂ C(x).

Lemma 8. If ∃L̃ ∈ C(f)[∂f ] with L ∼p L̃, then L ∼p σ(L).

Proof. L ∼p L̃ = σ(L̃) ∼p σ(L).

So if not L ∼p σ(L) then L ∈ C(x)[∂] ⊂ C(x)[∂] does not descend to C(f). If L ∼p σ(L)

then we will consider two cases:

Notation 2. Case A is when there exists G = r0 + r1 ∂ ∈ C(x)[∂] such that G(V (L)) =

V (σ(L)), i.e. L ∼g σ(L).

Case B is when there exists G = e
∫
r· (r0 + r1 ∂) such that G(V (L)) =

V (σ(L)), i.e. L ∼p σ(L).

(Note: Case A ⇒ Case B.)

This section treats only Case A. Section 3.5 will reduce Case B to Case A.

In Case A, when L ∼g σ(L), it is known in [21] that there exists L̃ ∈ C(f)[∂f ] with

L̃ ∼g L. Then we have the following diagram:

Diagram 1

V (L)
G - V (σ(L))

V (L̃)
�

σ(
A
)

A

-
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Here, A, σ(A), and L̃ are unknown. Whether or not such a diagram commutes is studied

in Theorem 4 below.

Remark 22. A gauge transformation is a bijective map A : V (L) → V (L̃) that can be

represented by a differential operator in C(x)[∂]. So we can define σ(A) simply by applying

σ to the operator that represents the map A.

Theorem 4. Let L and σ be as before, and G : V (L)→ V (σ(L)) be a gauge transformation.

Suppose L̃1, L̃2 ∈ C(f)[∂f ] and Ai : V (L)→ V (L̃i) are gauge transformations. Then:

1. For each i = 1, 2, there is exactly one λi ∈ C∗ such that the following diagram com-

mutes.

Diagram 2

V (L)
λiG - V (σ(L))

V (L̃i)
�

σ(
A i
)

A
i

-

2. If L̃1 ∼g L̃2 over C(f), then λ1 = λ2; Otherwise, λ1 = −λ2.

3. In particular, {λ1,−λ1} depends only on (L, σ,G).

Proof. First consider the diagram without λi in it. In it we find two gauge transformations

V (L) → V (L̃i), namely Ai and σ(Ai)G. After choosing bases of V (L) and V (L̃i), we can

view these gauge transformations as bijections: C2 → C2. Then by linear algebra, there is

a constant λi ∈ C∗ such that the map:

Ai − λiσ(Ai)G : V (L)→ V (L̃i). (3.3)

has a non-zero kernel. The kernel of (3.3) corresponds to a right hand factor of L, namely,

the GCRD of L and the operator in (3.3). However, L is irreducible so this kernel must

be V (L) itself. That means Diagram 2 commutes. That λi is unique follows from linear

algebra: there can be at most one λi for which (3.3) is the zero map. Item 1 follows.

For item 2, since L̃1 ∼g L ∼g L̃2, there exists a gauge transformation B : V (L̃1) →

V (L̃2). This B is unique up to multiplying by a constant that we choose in such a way that
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the composition BA1 : V (L) → V (L̃2) coincides with A2. Since σ(L̃1) = L̃1, σ(L̃2) = L̃2

one sees that σ(B) maps V (L̃1) to V (L̃2) as well. So σ(B) must be c · B for some c ∈ C∗.

Then |σ| = 2 implies that c = ±1. Now c = 1 iff σ(B) = B iff B ∈ C(f)[∂f ] iff L̃1, L̃2

are gauge-equivalent over C(f). Otherwise, if c = −1, then B 6∈ C(f)[∂f ] and L̃1, L̃2 are

gauge-equivalent over C(x) but not over C(f). To prove item 2 we now have to show that

λ2 = cλ1.

If λi is such that Diagram 2 commutes (for i = 1, 2) then the following diagram com-

mutes:

Diagram 3

V (L)
c λ1G - V (σ(L))

V (L̃1)
c -

A
1
-

V (σ(L̃1))
� σ(

A1
)

V (L̃2)
� σ(

B
)

B
-

The composed map BA1 at the left of Diagram 3 coincides with the map A2 in Diagram 2

for i = 2. Applying σ to BA1 and A2, we see that the composed map at the right of

Diagram 3 coincides with the map σ(A2) in Diagram 2 for i = 2. Then the maps at the

top of Diagram 3 and Diagram 2 for i = 2 must coincide as well, i.e., λ2G = cλ1G. Hence

λ2 = cλ1. Item 2 (and hence item 3) follow.

3.4.1 Algorithm for finding 2-descent in Case A

Notations L, C, G, σ, A are as in above. Our goal is to compute 2-descent: L ∼p L̃ ∈

C(f)[∂f ]. Here f is determined from σ as in Remark 14. We will compute A : V (L)→ V (L̃)

first, then use A to find L̃.

Algorithm: Case A for computing a 2-descent L̃ for L.

Input: L, G, σ and C.

Output: L̃ and A, defined over an optimal extension of C.

Step 1: Write A = (a00 + a01x)∂ + (a10 + a11x), with a00, a01, a10, a11 unknowns (which

will take values in C(f)).
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Step 2: The operator A − λσ(A)G in (3.3) should vanish on V (L), so the remainder of

A − σ(A)λG right divided by L must be 0. This remainder is of the form (R00 +

R01x)∂0 + (R10 +R11x)∂, where the Rij are C(λ, f)-linear combinations of aij . This

produces a system of 4 equations Rij = 0 in 4 unknowns aij .

Step 3: To have a nontrivial solution, the corresponding 4× 4 matrix M must have deter-

minant 0. Equating det(M) to 0 gives a degree 4 equation for λ. Solve for λ.

Remark. The equation for λ is of the form (λ2 − a)2 = 0, where a = λ21 = λ22 with

λ1, λ2 as in Theorem 4. If L and σ are defined over a field C ⊆ C then L̃ and A are

defined over C(
√
a).

If
√
a 6∈ C then it follows from Theorem 4 that the extension by λi = ±

√
a is necessary.

Step 4: Plug in one value for λ in M , then solve M to find values for a00, a01, a10, a11 in

C(
√
a, f).

Step 5: Compute LCLM(A,L) to obtain L̃A. Right divide by A to find L̃ ∈ C(
√
a, f)[∂f ].

Step 6: (optional) Introduce a new variable, say x1, and compute an operator Lx1 ∈
C(
√
a, x1)[∂x1 ] that corresponds to L̃ under the change of variables x1 7→ f .

3.5 Computing 2-descent, Case B

Definition 22. Let L1, L2 ∈ D = K[∂]. The symmetric product L1sL2 is defined as the

monic differential operator in D with minimal order for which y1 y2 ∈ V (L1sL2) for all

y1 ∈ V (L1), y2 ∈ V (L2).

Lemma 9. If L = ∂2 + c0 ∈ C(x)[∂], and G := e
∫
r · (r0 + r1∂) is a bijection from V (L) to

V (σ(L)), then (e
∫
r)2 is a rational function.

If L := ∂2 + a1∂ + a0 ∈ C(x)[∂], then L1 := Ls(∂ − 1
2a1) is of the form ∂2 + c0 (with

c0 = a0 − 1
4a

2
1 − 1

2a
′
1).

The proof of the lemma follows by computing the effect of G on the Wronskian, and

the fact that the Wronskians of ∂2 + c0 and σ(∂2 + c0) are rational functions (1 and σ(x)′

respectively).

Let L ∈ C(x)[∂] irreducible (even over C) and of order 2, and σ ∈ Aut(C(x)/C) of order

2. The implementation equiv [18] can check if L ∼p σ(L), and if so, find r, r0, r1 ∈ C(x)

for which G := e
∫
r · (r0 + r1∂) is a bijection from V (L) to V (σ(L)). Assume that such σ
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and G are given. After the simple transformation in the lemma above, we may assume that

(e
∫
r)2 is a rational function.

If e
∫
r itself is a rational function, then we are in Case A. Otherwise, we can write

e
∫
r = p(x)

√
f(x) for some square-free polynomial f(x), and some p(x) ∈ C(x).

Definition 23. The branch points of G are the roots of f(x), and ∞ if f(x) has odd degree.

To reduce Case B to Case A, we have to eliminate the branch points. Our algorithm

will first eliminate all branch points that can be eliminated without a field extension of C.

It will only extend C if there is no descent w.r.t. σ defined over C.

3.5.1 Branch points

It is convenient to view the set of branch points as a subset of P1(C). However, to

avoid splitting fields, the algorithm represents the branch points with a set B ⊂ places(C)

instead. This B is the set of irreducible factors of f(x) in C[x], as well as ∞ if f(x) has

odd degree. The goal is to eliminate branch points until we reach B = ∅, i.e., Case A.

Definition 24. If σ(∞) = ∞, then denote Inf := {∞}, otherwise Inf := {∞, x − σ(∞)}.

Denote BI = B
⋂

Inf and BN = B \BI .

Let f1(x), f2(x) ∈ BN . We say that f1(x) matches f2(x) when the roots of f2(x) are the

same as the roots of f1(σ(x)) (i.e. the numerator of f1(σ(x)) is f2).

If σ(∞) 6=∞, then we say that the polynomial x− σ(∞) matches ∞.

Lemma 10. If f1(x) 6= f2(x) ∈ BN and f1(x) matches f2(x), then BN turns into BN \

{f1, f2} when we replace L by Lnew := Ls(∂ − 1
2 ·

f1(x)′
f1(x)

).

Proof. The composed transformation

V (Lnew)→ V (L)→ V (σ(L))→ V (σ(Lnew))

is √
σ(f1) ·G ·

1√
f1
.

The polynomial f equals f1f2 · · · where the · · · refer to the other factors of f in B \ {∞}.

The transformation G is of the form
√
f1f2 · · · · (r0 + r1∂). Factors can be removed from
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the square-root in G either by division or by multiplication by a square-root (factors in

C(x) can be moved to r0, r1). So in the composed transformation, the factors f1 and f2

will disappear from the square-root in G (note: this uses the assumption f1 6= f2 (which

implies that their gcd is 1 since they are monic irreducible polynomials)).

A subtlety is that if σ(∞) 6=∞, then σ(f1) is not f2 but cf2/(x− σ(∞))d, for some c ∈ C,

where d is the degree of f1 and f2. This means that if σ(∞) 6= ∞ and d is odd, then the

set BI will change when we replace L by Lnew (BI = ∅ will change to Inf, and BI = Inf

will change to ∅).

Lemma 11. If σ(∞) 6= ∞, and BI = {∞, f1} (here f1 = x − σ(∞)) then the factor

f1 inside the square root in G will cancel out (i.e. BI will become ∅) if we replace L by

Lnew := Ls(∂ − 1
4 ·

1
f1

).

Proof. The solutions of Lnew differ a factor 4
√
f1 from the solutions of L. The lemma follows

from a similar computation as the proof of Lemma 10, except that this time σ(f1) is of the

form c/f1 for some constant c. Thus, the composed map is of the form 4
√
c/f1 ·G · 1/ 4

√
f1,

and
√
f1 is canceled from the square root in G.

In the following algorithm, L and σ are as in Section 4, and G = e
∫
r · (r0 + r1∂) with

r, r0, r1 ∈ C(x).

Algorithm: Case B for computing a 2-descent L̃ for L.

Input: L, G, σ and C.

Output: L̃ and A (defined over C whenever possible).

Step 1 Initialization: If (e
∫
r)2 is not a rational function, then replace L by Ls(∂− 1

2 ·
a1
a2

)

as in Lemma 9 and update G accordingly.

Rewrite G as
√
f(x)(r0 + r1∂) with f(x) monic and square-free (updating r0, r1 ∈

C(x) to move any rational factor from e
∫
r to r0, r1).

If f(x) = 1 then call Case A and stop.

Step 2: Factor f(x) in C[x] to find B,BI , BN ⊂ places(C).

Step 3: g :=Findg(BN , σ, C).

(See below for the subalgorithm Findg)

28



Step 4: Let h := 1
2 ·

g′
g . Replace L by Ls(∂ − h) and update G,B,BI , BN accordingly.

Now BN should be ∅.

Step 5: If BI 6= ∅ then let h := 1
4 ·

1
f1

with f1 as in Lemma 11. Replace L by Ls(∂ − h)

and update G,B accordingly. Now B should be ∅.

Step 6: Call Case A.

Subalgorithm: Findg.

Input: BN , σ, C.

Output: g.

Step 1: If BN = ∅, return 1 and stop.

Step 2: Else, for each Pi ∈ BN ,

1. Find its matched (Def. 24) element Pj ∈ BN .

2. If Pi 6= Pj then g := Findg(BN \ {Pi, Pj}, σ, C), return g · Pi and stop.

Step 3: Now each P ∈ BN matches itself, and hence has even degree. Choose P ∈ BN
with minimal degree, and let α ∈ C be one root of P , so C(α) ∼= C[x]/(P ). Let Bα

N be

the set of all irreducible factors in C(α)[x] of all elements of BN . Return Findg(Bα
N ,

σ, C(α)).

3.6 Main Algorithm of 2-descent

Given a second order irreducible linear differential operator L ∈ C(x)[∂], we can now

decide if there exists a 2-descent for L, and if so, we can find this descent.

Algorithm 2-descent.

Input: A second order irreducible differential operator L ∈ C(x)[∂] and the field C.

Output: descent, if it exists for some σ ∈ Aut(C(x)/C) of order 2.

Step 1: Compute the set of true singularities, and the singularity structure Stype
C .

Step 2: Call Compute Möbius transformations in Section 3.3 to compute the set

M type
C .

Step 3: For each σ ∈M type
C , call [18] to check if L ∼p σ(L), and if so, to find G : V (L)→

V (σ(L)).

If we find σ with L ∼p σ(L), then call algorithm Case B in Section 3.5 and stop.
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3.7 Examples of 2-descent

We give two examples. The first example is easy (it has G = r0 + r1∂ with r1 = 0).

The second one is less trivial. The first example is in Case A as in Section 3.4, the second

example involves both Case A and Case B.

Example 8. Let

L = ∂2 +
28x− 5

x(4x− 1)
∂ +

144x2 + 20x− 3

x2(4x− 1)(4x+ 1)

Step 1: Compute the singularity structure of L

Stype
C := {(x, 0), (∞, 0), (x− 1

4
, 0), (x+

1

4
, 0)}

Step 2: Compute Möbius transformations. Since S1 has n1 = 4 elements, we end up in

algorithm Case1 of Section 3.3 which produces:

{−x, −1

16x
,

1

16x
,
−1

4

4x− 1

4x+ 1
,
1

4

4x+ 1

4x− 1
}

Step 3: There are 5 choices for σ. The first one is x 7→ −x corresponding to the subfield

C(f) = C(x2). The equiv [18] program finds G = 4x−1
4x+1 . Next we compute A := −4x2 + x,

and then L̃. After applying a change of variable x 7→ √x1 the result reads

Lx1 := (16x1 − 1)x1∂
2 + (32x1 − 2)∂ + 4

which has 3 true singularities and is easy to solve.

Example 9. Consider the operator:

L := ∂2 +
4(1296x5 + 576x4 − 144x3 − 72x2 + x+ 1)

x(6x− 1)(2x+ 1)(6x+ 1)(12x2 − 1)
∂+

2(5184x6 − 864x5 − 1656x4 + 48x3 + 162x2 + 6x− 1)

(−1 + 2x)x2(6x− 1)(2x+ 1)(6x+ 1)(12x2 − 1)

Step 1: Compute the singularity structure of L

StypeC := {(x, 0), (∞, 0), (x− 1

2
, 0), (x+

1

2
, 0), (x− 1

6
, 0), (x+

1

6
, 0)}

(12x2 − 1 is a removable singularity, Definition 18).
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Step 2: Compute Möbius transformations. Since S1 has n1 = 6 elements, we are again in

Case1, and find:

{−x, −1

12x
,

1

12x
,
−1

2

2x− 1

6x+ 1
,
1

2

2x+ 1

6x− 1
,
−1

6

6x− 1

2x+ 1
,
1

6

6x+ 1

2x− 1
}

Step 3: The first σ we try is x 7→ −x. The equiv program finds

G :=
x(12x2 + 4x− 1)

12x2 − 1
∂ +

3

2

(2x+ 1)(10x− 1)

12x2 − 1

so G(V (L)) = V (σ(L)). Then compute a 4 by 4 matrix from the linear equations for the

aij, equate the determinant to 0 and find λ = ±2. We choose λ = 2 and find

A := (−36x4 − 1

4
+ 10x2)∂ + 1− 1

4

(288x4 + 1− 84x2)

x
.

We get

Lx1 :=4x21(−1 + 36x1)(4x1 − 1)(12x1 − 1)2∂2+

8x1(12x1 − 1)(4x1 − 1)(216x21 − 54x1 + 1)∂−

3− 2544x21 + 10368x31 + 48x1

which is L̃ ∈ C(x2)[∂x2 ] rewritten with x 7→ √x1. This Lx1 has 4 true singularities, and

allows a further 2-descent. Applying steps (1)(2)(3) to Lx1 again, we are actually in Case

B as in Section 3.5, applying the algorithm (details are given in a Maple worksheet [13])

we find a new operator L̃1 ∼p Lx1 defined over the subfield C(f1) where f1 := x1 + 1
144x1

.

Replacing f1 by a new variable x2 we get:

Lx2 :=4(36x2 + 11)(18x2 − 5)(6x2 + 1)(6x2 − 1)2∂2+

36(6x2 − 1)(1296x32 + 1620x22 + 20x2 − 9)∂+

34992x32 − 207036x22 − 2331 + 3456x2

which has 3 true regular singularities (as well as a few removable singularities).
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CHAPTER 4

AN IMPROVED ALGORITHM FOR

COMPUTING 2-DESCENT, CASE A

In Chapter 3, we use algorithm Case A to compute the 2-descent when there is only gauge

equivalence involved between our input operator L and σ(L). This algorithm computes a

set of linear equations to determine A = (a10 + a11x)∂ + (a00 + a01x) and a constant λ.

Once we have A we get L̃ correspondingly. In Step 4 of algorithm Case A, we select one

(a00, a01, a10, a11) from a vector space of dimension 2. So our output L̃ is just one member

of a 2-dimensional set of possible outcomes. The question for this situation is: Which A

gives us the shortest L̃? Without a good answer, we can not expect the output to be of

optimal size. The improved algorithm proposed in this chapter will avoid computing linear

equations and usually produce a smaller output L̃.

4.1 An improved algorithm for Case A

In this section, we still assume that L ∈ C(x)[∂] has order 2, and is irreducible. Let

σ ∈ Aut(C(x)/C) have order 2 and fixed field C(f) ⊂ C(x).

The goal of 2-descent problem is: find L̃ ∈ C(f)[∂f ] that is projectively equivalent to L.

The 2-descent L̃ is not unique; any operator equivalent to L̃ ∈ C(f)[∂f ] is also a solution

of the 2-descent problem. In our improved algorithm we add additional conditions which

will limit the number of output candidates. In experiments, this usually turns out to lead

shorter output.

Suppose G : V (L)→ V (σ(L)) is a gauge transformation, where σ has order 2. We have

the following fact.
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Lemma 12. Given a second order differential operator L. If V (L) = V (σ(L)) then ∃c ∈

C(x)− {0} such that cL = σ(cL).

Proof. Take c = ((f ′)2 · leading coefficient(L, ∂))−1. Then cL and σ(cL) have the same

leading coefficient. Since V (cL) = V (L) = V (σ(L)) = V (σ(cL)), then by Lemma 3, we

have cL = σ(cL).

Let L4 := LCLM(L, σ(L)) ∈ C(f)[∂f ] then V (L4) = V (L) + V (σ(L)). The order of L4

is 4 except if V (L) = V (σ(L)), but we will exclude that case since descent is trivial in that

case (see Lemma 12). Consider the following diagram:

Diagram 4

V (L)
G - V (σ(L))

V (L4)
�

σ(
G
)+
1

1+
G

-

In the above Diagram 4, we have G ∈ Hom(L, σ(L)), so 1 + G ∈ Hom(L,L4). Similarly,

after applying σ to 1 +G (see also Remark 19), we know 1 + σ(G) ∈ Hom(σ(L), L4). The

question is still Diagram 4 commutes.

Lemma 13. Given a second order irreducible differential operator L and second order

automorphism σ as in Section 3.4, and a gauge transformation G : V (L)→ V (σ(L)), then

there exist a constant λ such that the following diagram commutes.

Diagram 5

V (L)
λG - V (σ(L))

V (L4)
�

λσ
(G
)+
1

1+
λG

-

Proof. Let G̃ : V (σ(L)) → V (L) be the inverse of G : V (L) → V (σ(L)) as in Remark 21.

Since G ∈ Hom(L, σ(L)) and σ has order 2, then σ(G) ∈ Hom(σ(L), L) by Remark 19. This

time we have the following diagram:

V (L)
G - V (σ(L))

σ(G) -

G̃
- V (L)
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From this diagram, we have two gauge transformations of V (L) to itself, namely 1 and

σ(G)G. After choosing a basis of V (L), we can view these two gauge transformations as

bijections of C2. Then by linear algebra, there is a constant b such that the map:

1− bσ(G)G : V (L)→ V (L). (4.1)

has a non-zero kernel. The kernel of (4.1) corresponds to a right hand factor of L, namely,

the GCRD of L and the operator in (4.1). However, L is irreducible so this kernel must be

V (L) itself. That means there is a unique b such that (4.1) is the zero map, i.e. bσ(G)G is

an identity map. Let’s take λ =
√
b (or −

√
b). Now consider the map 0 = 1 − λ2σ(G)G=

1 +λG− ((1 +λσ(G))λG) from V (L) to V (L4). This shows that Diagram 5 commutes.

Theorem 5. Given a second order differential operator L with σ, G, λ as in Lemma 13.

Then there exists a second order differential operator L̃ such that L̃ is invariant under σ

and (1 + λG)V (L) = V (L̃).

Proof. Let M :=LCLM(L, 1 + λG). Then there exists a second order differential operator

L̃ such that M = L̃(1 +λG). Then 1 +λG sends V (L) to V (L̃), that means V (L̃) ⊆ V (L4).

Next we will prove that L̃ invariant under σ. Since Diagram 5 is commutative, therefore

(1 + σ(λG))V (σ(L))=V (σ(L̃)) is the same as (1 + λG)(V (L))=V (L̃). i.e V (σ(L̃)) = V (L̃).

Then we can conclude that after a suitable scaling L̃ is invariant under σ by Lemma 12.

From the proof of Lemma 13 and Theorem 5, we obtain the following algorithm:

Algorithm: Improved Case A.

Input: L, G, σ and C.

Output: L̃, defined over an optimal extension of C.

Step 1: b′ :=the remainder of σ(G)G right divided by L (b′ is a constant, it corresponds

to 1
b from Lemma 13).

Step 2: Take λ = 1√
b′

(− 1√
b′

is another option).

Step 3: Compute LCLM(1 + λG,L) to obtain L̃(1 + λG). Right divide by 1 + λG to find

L̃ ∈ C(
√
b′, f)[∂f ].
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Step 4: (optional) Introduce a new variable, say x1, and compute an operator Lx1 ∈
C(
√
b, x1)[∂x1 ] that corresponds to L̃ under the change of variables x1 7→ f .

4.2 Application for Second Order Differential Operators

As we stated at the beginning of this chapter, we assume the second order differential

equation L is in Case A after we found the Möbius transformation σ of order 2 and the

gauge transformation G between L and σ(L). For Case B, we still adopt the algorithm as

stated in Section 3.5 to reduce Case B to Case A.

For the second order differential operators that can be descent by the algorithm from

Chapter 3 ”Case A for computing a 2-descent L̃ for L” can also be handled by this new

improved algorithm. This section will compare these two algorithms by using the example

in the following page.

Example 10. Consider the operator

L := (293760x7 − 131976x6 + 52704x5 − 768x4 − 5934x3 + 1536x2 − 141x+ 4)(24x2 − 1)

(24x2 + 1)(15x2 − 12x+ 2)2x2(x− 1)(3x− 1)(5x− 1)∂2+

2x(15x2 − 12x+ 2)(228427776000x16 − 570570220800x15 + 602649020160x14−

369855875520x13 + 139073599296x12 − 21164284260x11 − 8253615204 ∗ x10+

6008280732x9 − 1783030374x8 + 306396972x7 − 25463352x6 − 2334069x5 + 1189734x4−

202401x3 + 19026x2 − 960x+ 20)∂+

6(2855347200000x18 − 8603249760000x17 + 11530367884800x16 − 9209871460800x15+

4758150957696x14 − 1429804773504x13 + 33955024284x12 + 196108583976x11−

104762250864x10 + 31219995024x9 − 6220268763x8 + 851673432x7 − 71711194x6+

887473x5 + 722720x4 − 110630x3 + 8460x2 − 368x+ 8)

which is in C(x)[∂], where C = Q.

Compute the singularity structure of L

Stype
C := {(x, 0), (x2 − 1

24
, 0), (x2 +

1

24
, 0)}
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Compute Möbius transformations σ. Since S2 has n2 = 2 elements, we end up in

algorithm Case4 of Section 3.2 which produces:

{−x}

Next, we compute gauge transformation between L and σ(L), we have

G := 2(15x2 − 12x+ 2)(183600x6 − 16074x4 + 15x2 + 14)x2(24x2 + 1)(5x− 1)(3x− 1)

(x− 1)∂ + 10905840000x14 − 22058811000x13 + 15983811000x12 − 5250125160x11 + 812

324646x10 − 36081666x9 − 47254221x8 + 34684731x7 − 10450293x6 + 1048791x5 + 17298

0x4 − 53432x3 + 3484x2 + 156x− 16

We use Algorithm ”Case A” to produce L̃ as follows which is sitting in the subring Q(x1)[∂x1 ]

(where x1 represents x2):

L̃1 := x21(24x1 − 1)(24x1 + 1)(−10626876000x71 + 63527793750x81 + 52 + 188x1 − 1887743124

x51 + 802266795x61 − 144191x21 + 123638094x41 + 1154836x31)(33786388528427808000x121 +

11164492206068474880x111 − 580795413631130880x101 − 144483644561742720x91+

1081610867047824x81 + 909455229664560x71 − 49295733535944x61 + 484813472760x51+

28547793075x41 − 764703410x31 + 1536111x21 + 119780x1 − 836)(225x21 − 84x1 + 4)2∂2+

2x1(225x21 − 84x1 + 4(347776− 41223648x1 + 973595573895266289349068960000000000

x241 + 30250401648537042957705233068800000x211 − 21018276104127753020083766640

0000000x231 + 1423480608029898171146041502607360x191 − 22895214245597476790648

4355695360x181 − 2253512624x21 − 1964395078919206x51 + 69067782015691945x61 + 280

6272132256900113x71 − 223968216975735205710x81 + 2273602097570737769532x91 + 19

6850728103762396782395x101 − 6892534474897535787439701x111 + 27899632327308274

441196406x121 + 2743880866587702980516609838x131 − 593426116804027115320067230

92x141 + 319239741422425726536129316440x151 + 2862503876942953519772991317904x161

− 152398285440x41 + 809629852713545176680181262860800x201 − 20688565926743344188

855508948560x171 − 148143619872282935386996226928000000x221 + 423419352832x31)∂−
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49970776875487681807655448213600000000x241 − 486942258594418672174083542914473

600x211 + 1391104− 23104000x1 − 325812146127808721739341697900000000000x251 + 349

3665339401891501786031958772640x191 + 65286723868013597415843176170272000000x231

− 19173223296x21 − 14238685474284608x51 + 169378340955991608x61 − 52507859521071

8729558176886016720x181 − 1901929311166539383292x81 + 18808220394605923034922x91

+ 1951901333819610473221164x101 − 85988517249689587718972568x111 + 969959260249

293849600647844x121 + 28711240128464090390303244750x131 − 1212927424542577673412

703176456x141 + 18991645846029770132790464223600x151 − 1396883480747208689358908

29032660x161 + 158990516835104x41 + 147103940875221273545369340949713600x201 +

372359132677171993047639226052760x171 + 33438688925144477112x71 − 1103962286732

4169262895935597950080000x221 + 547647510316087287758851290000000000000x261 +

642275140992x31

L̃1 has three true regular singularities {0, 1
24 ,−

1
24}, which will help us to find the hyper-

geometric solution of L in the later chapter. The length of L̃1 to be 2200.

Next, we will use the improved algorithm to find L̃.

Step 1: The remainder of σ(G)G right divided by L is a constant b, we compute this

b = 1
4 .

Step 2: Take λ = 1√
b

= 2 (−2 is another option).

Step 3: Compute LCLM(1 + λG,L) to obtain L̃(1 + λG). Right divide by 1 + λG to

find L̃, which is also sitting in Q(x1)[∂x1 ], we still use the variable x1 to represent x2 here:

L̃2 :=(1852470465750000000x151 − 3133868014170000000x141 + 1609763031521606250x131 −

425874593515515750x121 + 132740261271836595x111 − 41369947864562889x101 +

6579339419282373x91 − 444742282853595x81 + 3133639552077x71 + 1113115312041x61

− 46785562799x51 − 140959783x41 + 42396400x31 − 520232x21 − 10896x1 + 208)x1∂
2+
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2(6483646630125000000x151 − 8260896456961875000x141 + 3126521472447037500x131

− 810828950512484250x121 + 402040898799896475x111 − 123637939965146322x101 +

15248640997597149x91 − 621601157188350x81 − 17573671307349x71 + 1858874046582

x61 − 9641820645x51 − 2263988288x41 + 53034286x31 + 423420x21 − 25416x1 + 208)∂+

2(8104558287656250000x141 − 6941568580410937500x131 + 1776968746215750000x121

− 819387345274638750x111 + 556421023172069325x101 − 127645594966265238x91+

9723104314831908x81 − 57017629317087x71 − 20820322303191x61 + 443420532966x51+

17438903612x41 − 60688347x31 − 47088630x21 + 1654156x1 − 17224)

L̃2 has three true regular singularities {0, 1
24 ,−

1
24} as well. Actually, L̃1 is gauge equivalent

to L̃2. However, getting L̃2 by the improved algorithm takes less CPU time than getting L̃1

by using the original algorithm, and also L̃2 has shorter length than L̃1 (1315 VS. 2200).

In general, the improved algorithm is faster than the previous algorithm, especially for

differential operators of large size. Moreover, the improved algorithm tends to produce

a simpler descent. The algorithm from Chapter 3 had to choose an element from a 2-

dimensional vector space. The algorithm in this Chapter does not make any choice other

than ±
√

1
b because it computes an L̃ with an additive property, namely V (L̃) ⊆ V (L4).

4.3 Application for Higher Order Differential Operators

2-descent is not limited to second order linear differential equations. It can also be

applied to higher order linear differential equations. For higher order equations, one can still

define the type of a singularity, but it will involve more than just one exponent-difference,

so the algorithm for finding the Möbius transformations needs to be adjusted. Once we have

the subfield the differential operator is supposed to descend to, the algorithms for finding

the 2-descent still work. However, the equiv program will be replaced by Homomorphisms

in maple because equiv program is designed only for second order differential operators. In

this section, two examples are presented. One of them is a fourth order differential operator,

the 2-descent of which can be found by both the old algorithm and the improved algorithm;

Another example is a third order differential operator, the 2-descent of which can be found

by the improved algorithm, but not by the old algorithm in limited CPU time.
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The following fourth order linear differential equation example comes from [2].

L :=∂4 +
(7x4 − 68x3 − 114x2 + 52x− 5)

(x+ 1)(x2 − 10x+ 1)(x− 1)x
∂3+

2(5x5 − 55x4 − 169x3 + 149x2 − 28x+ 2)

(x+ 1)x2(x2 − 10x+ 1)(x− 1)2
∂2+

2(x4 − 13x3 − 129x2 + 49x− 4)

(x+ 1)x2(x2 − 10x+ 1)(x− 1)2
∂−

3(x+ 1)2

(x− 1)2x3(x2 − 10x+ 1)

L has 4 regular true singularities:

p = 0,∞, 1,−1

Among these 4 singularities, 0,∞ have the same type (at both points, the formal solutions

involve the cube of a logarithm). At the singularities 1,−1, the solutions also have a

logarithm (but not a square or a cube of a logarithm). Hence σ({0,∞}) must be {0,∞}

and σ({−1, 1}) must be {−1, 1}. Then we find the set of Möbius transformations with order

2 as follows:

M type
C = {−x, 1x ,

−1
x }

Here, C = Q. For these 3 Möbius transformations, we find 3 subfields Q(x2), Q(x+ 1
x) and

Q(x− 1
x) of index 2 respectively.

The possible 2-descent reductions for L:

Diagram 6

Q(x)

Q(x2)
�

Q(x+
1

x
)

?

Q(x− 1

x
)

-

Q(x2 +
1

x2
)

? �
-
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Next, take σ = −x for example, we will show how to find L̃ defined over Q(x2).

We compute the gauge transformation between L and σ(L):

G :=
x3(x− 1)2(x4 + 24x3 − 18x2 + 24x+ 1)

(x+ 1)4(x2 − 10x+ 1)
∂3+

3x2(x− 1)(x5 + 39x4 − 26x3 + 58x2 − 7x− 1)

(x+ 1)4(x2 − 10x+ 1)
∂2+

x6 + 88x5 − 65x4 + 240x3 − 65x2 − 8x+ 1)x

(x4 − 8x3 − 18x2 − 8x+ 1)(x+ 1)2
∂+

x3 + 9x2 − 9x− 1

2(x3 − 9x2 − 9x+ 1)

Since L ∼g σ(L) we can compute the 2-descent L̃ by both the algorithm ”Case A” and

the improved algorithm ”Improved Case A”. We will show both of the computation in the

following:

Case A

We follow the steps of the algorithm in Section 4.1.

Step 1, set A := (a30 + a31x)∂3 + (a20 + a21x)∂2 + (a10 + a11x)∂ + a00 + a01x.

Step 2, compute A − σ(A)λG right divided by L, set the remainder to be 0, we get 8

equations in 8 unknowns aij . Let M be the corresponding 8× 8 matrix.

Step 3, compute the determinant of M , we find an equation of λ: (λ−2)4(λ+2)4R(x2),

here R(x2) ∈ Q(x2). We solve for λ and find λ = ±2. We choose λ = 2 and find

A :=
(3 + 3x8 − 12x6 + 18x4 − 12x2)

6(5x4 + 10x2 + 1)(x2 + 3)
∂3 + (1 +

1 + 3x8 − 42x6 − 52x4 − 38x2

2x(5x4 + 10x2 + 1)(x2 + 3)
)∂2+

(
3x10 − 135 + 414x6 − 273x2 + 90x4 − 99x8

6(x4 + 2x2 − 3)(5x6 + 5x4 − 9x2 − 1)
− −27x8 + 132x6 + 6x4 − 108x2 − 3

6x(5x8 − 14x4 + 8x2 + 1)
)∂

Note 3: The kernel of M−λ is a 4-dimensional Q(x)-vector space, and any nonzero element

in it provides an equally valid A. This corresponds to the non uniqueness of L̃.
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Finally, we found 2-descent L̃ of L in Q(x2)[∂], which is written by new variable x1 with

x1 = x2:

L̃x1 :=16x41(x1 + 3)(5x21 + 10x1 + 1)(9x81 + 1008x71 − 31820x61 + 264480x51

− 14194x41 + 162992x31 − 8156x21 + 18368x1 + 529)(x1 − 1)4∂4

+ 32x31(−7935− 358000x1 − 3502550x21 − 24264785x41 − 1520720x31

− 12737440x51 − 13562976x71 − 20800372x61 − 905046x101 + 20706063x81

+ 28080x111 + 6593808x91 + 225x121 )(x1 − 1)3∂3

+ 8x21(2250x131 + 312135x121 − 12439492x111 + 134614866x101

− 42449802x91 − 470021643x81 + 267358792x71 − 102361428x61 + 163767350x51

+ 221768417x41 − 11134724x31 + 48114210x21 + 3717898x1 + 77763)(x1 − 1)2∂2

+ 8x1(x1 − 1)(1350x141 + 230355x131 − 10741153x121 + 169118578x111

− 503407892x101 + 340703465x91 + 768939585x81 − 411403540x71

+ 839007558x61 − 333028107x51 − 52500447x41 + 44391810x31 − 43359960x21

− 2602385x1 − 42849)∂

+ 720x151 + 210495x141 − 9498286x131 + 240224513x121 − 1412138412x111

+ 4365382207x101 − 7520009378x91 − 2959167271x81 − 2667880856x71

− 5367819659x61 − 136668050x51 − 365681445x41 − 305688780x31 + 30068365x21

+ 2524194x1 + 14283

By intersecting the set of singularities of L̃x1 and of LCLM(L̃x1 , ∂x1), we see that the set of

true singularities of L̃x1 is {0, 1,∞}. By observing the exponents at these 3 points, we can

guess that L̃x1 has 4F3 type solutions. We check this guess with DEtools[Homomorphisms]

and also get the 4F3 type solution of L in this way, see [13] for details.

Improved Case A

In this part, we follow the algorithm in previous section.

Step 1, Compute σ(G), the remainder of σ(G)G right divided by L is a constant b, we

compute this constant b = 1
4 .

Step 2, Take λ = 1√
b

= 2 (−2 is another option).
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Step 3, Compute LCLM(1 +λG,L) to obtain L̃(1 +λG). Right divide by 1 +λG to find

L̃, which is also sitting in C(x2)[∂], we still use the normal variable x1 to represent x2 here:

L̃1x1 :=∂4 +
77x61 − 1709x51 − 11250x41 − 11530x31 + 10377x21 − 2457x1 + 108

(x1 − 1)x1(11x51 − 215x41 − 1250x31 − 1278x21 + 711x1 − 27)
∂3+

220x71 − 6063x61 − 46066x51 − 40985x41 + 71024x31 − 30225x21 + 3078x1 − 135

2(x21 − 2x1 + 1)x21(11x51 − 215x41 − 1250x31 − 1278x21 + 711x1 − 27)
∂2+

22x61 − 931x51 − 10011x41 − 12590x31 + 15680x21 − 3039x1 + 117

(x21 − 2x1 + 1)x21(11x51 − 215x41 − 1250x31 − 1278x21 + 711x1 − 27)
∂−

3(121x51 + 175x41 − 166x31 + 1118x21 − 227x1 + 3)

16(x21 − 2x1 + 1)x41(11x41 − 248x31 − 506x21 + 240x1 − 9)

L̃1x1 also has three true regular singularities {0, 1,∞}, Same as L̃x1 , we can also find the

4F3 type solution of L in terms of the solution of L̃1x1 .

We compare the computation of these two algorithms and find that both algorithms

give us nice results. However, the CPU time of the improved algorithm is less than the

original algorithm. Also, the length of L̃1x1 is 635 which is shorter than the length of L̃x1

with 1080, which speeds up the computation of their hypergeometric solutions (the topic of

Chapter 5).

The 2-descent algorithm can also be applied to third order differential operators:

L :=3x2(x− 1)(5x− 1)(4x+ 1)(3x+ 1)(4x− 1)(16x2 + 1)(2x− 1)3(214412820480x16+

88785027072x15 + 285633675264x14 + 284788850688x13 + 147070844928x12+

114581954560x11 + 51090012160x10 + 17924375232x9 + 3547140288x8 + 648475792x7

+ 87537568x6 + 13777552x5 + 1569564x4 + 94964x3 + 6785x2 + 7x− 4)∂3+
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x(2x− 1)2(−76− 47131072304x8 + 1448683614064640x15 − 613999773351936x16+

558927118911488x14 + 18917847105536x12 − 57777188555980800x23+

92859308588672x13 − 261437033408x9 − 6861938291671040x17 + 82334523064320000

x24 + 636x+ 289279x4 − 1116375620x6 − 309547373472x10 + 96872577191903232x22−

6931213924x7 + 251437x3 − 2922154920247296x21 − 75903825x5 − 56076956998828032

x20 − 382098270624x11 + 7266970890141696x19 − 19960928256655360x18 + 89101x2)∂2+

2(2x− 1)(42− 164733425514112x14 + 542953828x7 + 4958782856183808x17 + 51655341

2x6 + 13654978x4 + 88274057x5 + 468530151700480x15 + 13574817550831616x16+

7938858033610752x18 + 378738806095872000x25 − 370975395010314240x24 − 532x+

614766332960833536x23 + 779481x3 − 28835162990304x12 + 161978322335563776x20−

5421251819504x11 − 265449451743608832x21 − 2102081792240x10−

132961869294993408x22 − 127565903402176x13 − 219975800720x9 − 7594x2 − 268267913

68x8 − 128756752067854336x19)∂+

2(−42 + 822089881567100928x20 − 108284x2 + 86052887x4 + 50815388553347072x16−

746638764675170304x22 + 40457986512x7 − 8698569821650944x17 + 7663479184x6 − 73

30x+ 589950026x5 + 209100374400x8 + 922146658320384000x25 − 741370413975601152

x21 − 584062130062360576x19 + 159863982109491200x18 − 1193304779988664320x24−

18516469065879552x15 + 1998109551643066368x23 + 3545939x3 − 1289881326127104x14+

48693630623040x12 − 1154208533965952x13 − 21793466677984x11 + 279526241680x10+

283473002608x9)

This is a huge linear operator with length 2686. Due to the limitation of the page space,

the computation of the 2-descent is displayed in [13]. In this example both the 2-descent

algorithms work. After analyzing the singularity structure, we found that his example

involves 2 rounds of 2-descent, both of these two rounds belong to Case A. Our improved

algorithm gave us a less complex first round 2-descent L̃ with a length of 3115. On the other

hand, the old algorithm produced a L̃ with length 11857. More interesting, the improved

algorithm found a final 2-descent with 3 true regular singularities {0,∞, 1
256} which will
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help us find the hypergeometric solution of L. However, the old algorithm did not produce

any result because the L̃ of length 11857 was too large to handle. The following will show

the result gotten from the new algorithm.

We compute the singularities: {0,∞, 14 ,−
1
4 , RootOf(x2 + 1

16)}. After comparing their

singularities structure, we found the Möbius transformations set as {−x}. Apply the im-

proved algorithm to L, we computed the constant c = 1
9 and then took λ = 3, we finally

found the first round of 2-descent as follows (Here x1 = x2 ):

L̃x1 :=24(9x1 − 1)(4x1 − 1)x31(x1 − 1)(16x1 − 1)(25x1 − 1)(16x1 + 1)(1793782427575910

400x141 − 1643131946359848960x131 + 912748687492055040x121 − 405864704917757

952x111 + 81349312593244416x101 + 6283677216516864x91 − 1373341443512208x81−

195499004118816x71 + 40385401814084x61 − 2377302231583x51 + 32081727473x41 − 4

31018582x31 + 80624374x21 + 48229x1 + 21)∂3+

4x21(26863685635376834150400000x201 − 52424537837370484772044800x191 + 460489

03813350605224673280x181 − 28135252076018193326407680x171 + 1251967251316321

2375982080x161 − 3145534448819730638831616x151 + 191129085534662653148160x141

+ 51989538076553856787200x131 − 2123835153209662680768x121 − 2257867229628

918509488x111 + 410731343746448763296x101 − 29720555165638734704x91 + 7895751

19423787437x81 + 7217554368774676x71 + 174819060613672x61 − 41762810727548x51−

1253808426758x41 + 94361582476x31 − 496804000x21 − 592516x1 − 399)∂2+

· · ·

we computed the singularity structure of L̃x1 and found the singularities set as {0,∞, 1
16 ,
−1
16 }

and the Möbius transformations set {−x}. The gauge transformation between L̃x1 and

σ(L̃x1) also exists, that means there may be another round of 2-descent. We got the

constant c = 8696601
766846864 and took λ = 27692

2949 . It finally produced the 2-descent with three true

singularities in the subfield C(x4)[∂x4 ] as follows (Here x2 = x4):
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L̃x2 :=192(81x2 − 1)(16x2 − 1)x32(x2 − 1)(256x2 − 1)(625x2 − 1)(4457363797211875293265

920000000x142 + 4970260598069982994272092160000x132 + 3957394564454233940362

1084037120x122 − 14859423192438230254391260274688x112 + 25430559136939896736

02589291776x102 − 203376093370423991502195912480x92 + 8491023214562278168287

435425x82 − 204339945587236704539870700x72 + 2740732307783696683533956x62 − 1

8172014331390231832342x52 + 50975451390360846905x42 + 76207691332194700x32−

431118318161370x22 − 48918288818x2 − 5159484)∂3+

16x22(76715153430157920247364557209600000000000x192 + 525379228275058725709

33057431797760000000x182 + 813326022483654690136213457078279208960000x172 −

982051053594012376437817765218055115243520x162 + 3494788740751717653380718

93415409506320384x152 − 65411798958513496924199600103814900740096x142 + 6617

054262324834793393646871926881238784x132 − 3941828107061412920169761225329

00245616x122 − 14838948683522506411033428013706326049x112 − 3621830288256391

84297104546784658503x102 + 5619469815341606859027741800016907x92 − 529910956

20480687328937681546903x82 + 283549451334446370876297379147x72 − 56134735439

0083375782779573x62 − 2148290744200387280792981x52 + 12345858301352074998439

x42 − 15298732572527379256x32 − 1967162004830656x22 + 307613990294x2 + 1289871

00)∂2 + · · ·
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CHAPTER 5

SOLVING SECOND ORDER LINEAR

HOMOGENEOUS DIFFERENTIAL

EQUATIONS IN TERMS OF

HYPERGEOMETRIC FUNCTIONS

For a given linear differential operator L over K, after 2-descent if it exists, we end up with

another differential operator L̃. This time L̃ is defined over a subfield k and has the same

order as L. Under 2-descent, L̃ is easier to solve because L̃ has fewer true singularities. The

number of true singularities of L̃ is at most n/2 + 2 (n is the number of true singularities

of L). When L has order 2 and the number of true singularities of L̃ drops to 3, we can

find hypergeometric solutions of L̃, and use them to find the closed form solutions of L in

terms of 2F1 hypergeometic functions. Therefore in this chapter, we focus on solving second

order linear homogeneous differential equations in terms of 2F1 type solutions by 2-descent

reduction.

5.1 The general hypergeometric Series

A series with the form
∑∞

i=0 xi is called hypergeometric if xi+1/xi is a rational function

of i.

Definition 25. The Pochhammer symbol (a)k is defined as the factorial a(a + 1)(a +

2) · · · (a+ k − 1).

With this definition, we have the formal definition of the general hypergeometric series:
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Definition 26. A generalized hypergeometric series is defined by

pFq

(
a1, a2, · · · , ap
b1, b2, · · · , bq

x

)
:=

∞∑
n=0

(a1)n(a2)n · · · (ap)n
(b1)n · · · (bq)nn!

xn (5.1)

Note: To ensure the denominator on the right-hand side is not zero, we assume that none

of the bi is a non positive integer. For convenience, the left-hand side is also denoted as

pFq(a1, a2, · · · , ap; b1, b2, · · · , bq;x).

There are many fundamental functions can be written as the the generalized hypergeo-

metric form.

Example 11.

1.

ex =
∞∑
n=0

xn

n!
= 0F0(x),

2.

cosx =
∞∑
n=0

(−1)nx2n

(2n)!
= 0F1(−;

1

2
;−x

2

4
),

3.
1

1− x
= 1F0(1;−;x), with |x| < 1.

4.

sin−1 x = x2F1(
1

2
,
1

2
;
3

2
;x2), with |x| < 1.

For any pFq hypergeometric series, we need consider the convergence properties.

Theorem 6. The generalized hypergeometric series pFq

(
a1, a2, · · · , ap
b1, b2, · · · , bq

x

)
1. converges absolutely for all x if p < q + 1,

2. diverges for all x 6= 0 if p > q + 1,

3. converges absolutely for |x| < 1 if p = q + 1,

4. diverges for |x| > 1 if p = q + 1.

Proof. Check by the ratio test from calculus.

Remark 23. From the above theorem we know, when p ≤ q + 1, the series converges for

|x| < 1. The series defines a hypergeometric function when it converges.
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Theorem 7. The generalized hypergeometric function pFq satisfies the following differential

equation:

x

p∏
n=1

(x
d

dx
+ an)y(x) = x

d

dx

q∏
n=1

(x
d

dx
+ bn − 1)y(x)

Proof. Plug the function y(x) = pFq to both sides of the equation, the corresponding

coefficients will become equal.

5.2 Gauss hypergeometric equation

When p = 2 and q = 1 the generalized hypergeometric function becomes the Gauss

Hypergeometric function 2F1(x):

2F1

(
a, b
c

x

)
:=

∞∑
n=0

(a)n(b)n
(c)nn!

xn (5.2)

The Gauss hypergeometric function (5.2) satisfies a second order differential operator

L := x(x− 1)∂2 + [(a+ b+ 1)x− c]∂ + ab (5.3)

It has 3 singularities 0, 1 and ∞, and all of them are regular singularities. Then we can

consider the indicial equation in chapter 2 or use the Maple command gen exp, we get the

exponents at each of these 3 singularities points:

x = 0 e1 = 0 e2 = 1− c
x = 1 e1 = 0 e2 = c− a− b
x =∞ e1 = a e2 = b

As stated in Chapter 2, we can always find a fundamental system of solutions of L at

the singularities points. Consider e2 − e1 at x = 0, 1,∞, if none of 1− c, c− a− b, b− a is

integer value, we can write the fundamental system of L in terms of 2F1(x) at each of these

3 points (See [4]).
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At x = 0, we have

y1(x) =2F1(a, b; c;x)

=(1− x)c−a−b2F1(c− a, c− b; c;x)

=(1− x)−a2F1(a, c− b; c;
x

x− 1
)

=(1− x)−b2F1(a− c, b; c;
x

x− 1
)

y2(x) =x1−c2F1(a− c+ 1, b− c+ 1; 2− c;x)

=x1−c(1− x)c−a−b2F1(1− a, 1− b; 2− c;x)

=x1−c(1− x)c−a−12F1(a− c+ 1, 1− b; 2− c; x

x− 1
)

=x1−c(1− x)c−b−12F1(1− a, b− c+ 1; 2− c; x

x− 1
)

At x = 1, we have

y1(x) =2F1(a, b; a+ b+ 1− c; 1− x)

=x1−c2F1(a− c+ 1, b− c+ 1; a+ b+ 1− c; 1− x)

=x−a2F1(a, a− c+ 1; a+ b+ 1− c; 1− 1

x
)

=x−b2F1(b− c+ 1, b; a+ b+ 1− c; 1− 1

x
)

y2(x) =(1− x)c−a−b2F1(c− b, c− a; c− a− b+ 1; 1− x)

=(1− x)c−a−bx1−c2F1(1− a, 1− b; c− a− b+ 1; 1− x)

=(1− x)c−a−bxa−c2F1(1− a, c− a; c− a− b+ 1; 1− 1

x
)

=(1− x)c−a−bxb−c2F1(c− b, 1− b; c− a− b+ 1; 1− 1

x
)

At x =∞, we have

y1(x) =x−a2F1(a, a− c+ 1; a− b+ 1;x−1)

=x−a(1− 1

x
)c−a−b2F1(1− b, c− b; a− b+ 1;x−1)

=x−a(1− 1

x
)c−a−12F1(a− c+ 1, 1− b; 2− c; 1

1− x
)

=x−a(1− 1

x
)−a2F1(a, c− b; a− b+ 1;

1

1− x
)

49



y2(x) =x−b2F1(b, b− c+ 1; b− a+ 1;x−1)

=x−b(1− 1

x
)c−a−b2F1(1− a, c− a; b− a+ 1;x−1)

=x−b(1− 1

x
)c−b−12F1(b− c+ 1, 1− a; 2− c; 1

1− x
)

=x−b(1− 1

x
)−b2F1(b, c− a; b− a+ 1;

1

1− x
)

According to [4], the above 24 solutions are essentially the same except when c, c−a−b, a−

b /∈ Z. If one of exponent difference 1 − c, c − a − b, b − a is integer value, there would be

a logarithmic solution at that point. The corresponding logarithmic solutions are given in

[32, 4].

5.3 Solutions of second order differential operator with 3
true singularities

Consider the following example:

Example 12.

L := x(x− 1)(x+ 1)∂2 + (1− x)∂ +
6

25
x− 1

5

L has 3 true singularities at 1,−1,∞, so L is among our target differential operators that

may have 2F1 type solutions. Then how to find those solutions? When we study L closer,

we find out L actually has 4 singularities at 0, 1,−1,∞, the generalized exponents at these

points are as follows:

>gen_exp(L,T, x=0);

[[0, 2, T = x]]

>gen_exp(L,T, x=1);

[[0, 1, T = x− 1]]

>gen_exp(L,T, x=-1);

[[0, 0, T = x+ 1]]

>gen_exp(L,T, x=0);
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[[−2/5, T = 1/x], [−3/5, T = 1/x]]

We can see 0 is an apparent singularity. The number of counted singularities is 3. However,

it is still necessary to take this apparent singularity account when we are trying to find the

2F1 type solutions.

L as in this example is a typical differential operator that we want to find its 2F1 type

solutions. Next, we will make it clear about the information we have regarding to the

hypergeometric equations and our input operator L.

From section 5.2, we know that a hypergeometric function is a solution of a Gauss

hypergeometric equation (5.2). This hypergeometic equation has:

(a) Three true regular singularities, located at 0, 1,∞.

(b) No apparent singularities.

In this chapter, our input differential operator L has

(a) Three true regular singularities, located say at p1, p2, p3 ∈ P1.

(b) Any number of apparent singularities.

Our goal in this chapter is to solve L in terms of hypergeometric functions. Thus, to solve

L in terms of hypergometric functions, we need to apply two types of transformations:

(a) A Möbius transformation (a change of variables) to move p1, p2, p3 to 0, 1,∞.

(b) A projective equivalence ∼p to eliminate all apparent singularities.

For the rest of this section, we will focus on handling these problems.

The general question in this section is how can we find the 2F1 type solution for L. i.e

How can we solve L in terms of the solution of a hypergeometric equation? If we find the

2F1 solution of a hypergeometric differential operator L1 which is projectively equivalent to

L, then we also find the 2F1 type solution of L. This suggests the goal of this chapter:

Goal: Solve L ∈ C(x)[∂] in terms of 2F1-function. But if L is solvable in terms of solution

of L1 which is projectively equivalent to L, then we also achieve our goal.
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Example 13. Consider the differential operator

L1 := 64(x− 1)x∂2 + 16(3x− 1)∂ + 1

which is a Gauss hypergeometric equation. We find its 2F1 solution as

y1 = 2F1(−
1

8
,−1

8
;
1

4
;x).

Consider another differential operator

L2 := 64(x− 1)x∂2 + 16(3x− 1)∂ − 15

which is also a hypergeometric equation and has the solution as

y2 = 2F1(−
5

8
,
3

8
;
1

4
;x)

Now L1 ∼p L2, we spell out this projective equivalence with the following relations:

y2 =
√

1− x(y1 − 8x
d(y1)

dx
)

y1 =
√

1− x(y2 −
8

5
x
d(y2)

dx
)

for all x of absolute value less than 1.

So if L can not be solved in terms of solutions of L1, then there is no need to check if

L can be solved in terms of any L2 with L2 ∼p L1.

This raises the question: How to classify Gauss hypergeometric equations up to projec-

tive equivalence?

Theorem 8. Let L1, L2 be two Gauss hypergeometric differential operators. Assume the

exponent difference set of L1 at 0, 1,∞ is {e0, e1, e∞}, and the exponent difference set of L2

at 0, 1,∞ is {d0, d1, d∞}. If

1. ei − di ∈ Z for all i ∈ {0, 1,∞}
and

2.
∑

i∈{0,1,∞}(ei − di) is an even integer,

Then L1 ∼p L2.
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Proof. Assume {e0−d0, e1−d1, e∞−d∞} ∈ {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (0, 1, 1), (1, 0, 1)}.

We treat the first case in the following computation (all other cases can be obtained from

these by induction).

In the first case, when (e0 − d0, e1 − d1, e∞ − d∞) = (2, 0, 0). We start with L1, with the

exponent difference e0, e1, e∞ at 0, 1,∞, reconstruct L1 by e0, e1, e∞, we have

L1 := x(x− 1)∂2 − (−2x+ xe0 + xe1 + 1− e0)∂ +
(e0 − 1 + e1 + e∞)(e0 − 1 + e1 − e∞)

4

Since (e0− d0, e1− d1, e∞− d∞) = (2, 0, 0), then we have d0 = e0− 2,e1 = d1 and e∞ = d∞,

After replacing d0, d1, d∞ by the corresponding ei value, we have:

L2 :=x(x− 1)∂2 − (−2x+ x(e0 − 2) + xe1 + 1− (e0 − 2))∂+

((e0 − 2)− 1 + e1 + e∞)((e0 − 2)− 1 + e1 − e∞)

4

After applying the equiv to L1 and L2, we do get an equivalence operator between L1 and

L2

equiv(L1, L2) = x(x− 1)∂ − 2xe0 + e2∞x+ 3xe20 − x− e21x− 4e20 + 2xe1 + 2xe2e1
4(1 + e0)

We proves the conclusion.

The theorem can also be proved by considering the so-called monodromy of L1 and L2,

but to give this proof requires making introduction more background.

This theorem says that if we have two Gauss hypergeometric equations, we can verify

if they are equivalent based on the difference of the exponent difference at the singularities

0, 1,∞.

Corollary 2. Let L1, L2 be two Gauss hypergeometric differential operator. Assume the

exponent difference set of L1 at 0, 1,∞ is {e0, e1, e∞}, and the exponent difference set of

L2 at 0, 1,∞ is {d0, d1, d∞}. If 1
2 + Z appears in {e0, e1, e∞} and {d0, d1, d∞}, then L1 is

projectively equivalent to L2 if ei − di ∈ Z for all i ∈ {0, 1,∞}.

Proof. Since 1
2 + Z appears in each ordered triple, so it must appear at the same place in

each ordered triple, otherwise, it will violate the condition ei − di ∈ Z for all i ∈ {0, 1,∞}.

We suppose it occurs at the first place, i.e., e0 = 1
2 +Z and d0 = 1

2 +Z. If
∑

i∈{0,1,∞}(ei−di)
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is an even integer, then by Theorem 8, we have L1 ∼p L2.

Otherwise, if
∑

i∈{0,1,∞}(ei− di) is an odd integer. then we can still use the similar method

as in Theorem 8 to verify the conclusion, the only difference is the set for (e0 − d0, e1 −

d1, e∞−d∞) in Theorem 8 changes from {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (0, 1, 1), (1, 0, 1)}

to {(1, 0, 0), (0, 0, 1), (0, 1, 0)} (all the other cases can be obtained by induction). Here, we

present another way to prove this. Since exponent-difference is written up to ± sign.

Therefore, if d0, e0 are both 1
2 + Z and

∑
i∈{0,1,∞}(ei − di) is an odd integer, then we

can rewrite d0 or e0 to −1
2 + Z, in this way, our difference becomes an even integer. By

Theorem 8, L1 ∼p L2. This proves this corollary.

Next we would discuss how to solve a second order linear homogeneous differential

operator with 3 true regular singularities in terms of Gauss hypergeometric functions.

5.3.1 Finding the equivalent Gauss hypergeometric equation

Given L, we can compute the exponent difference d0, d1, d∞ at p1, p2, p3, respectively.

Having these information, we are able to decide that if there is one Gauss hypergeometric

equation with the same exponent differences module Z as L at the three regular singularities

0, 1,∞. (This means the three exponent differences d0 + Z, d1 + Z, d∞ + Z must be the

exponent difference at 0, 1,∞, the order of these three may be switched.). The following

lemma ensures us the possible singularities structure of the possible L2F1 .

Lemma 14. Suppose L is projectively equivalent to a hypergeometric equation. suppose that

the exponent-differences of L at 0, 1,∞ are d0, d1, d∞. Let L1 be a hypergeometric equation

with exponent-differences: d0, d1, d∞ and L2 be a hypergeometric equation with exponent-

differences: d0 + 1, d1, d∞. Then L ∼p L1 or L ∼p L2 (both are true if {d0, d1, d∞}
⋂
{12 +

Z} 6= ∅).

Note: The easiest case is when L has no apparent singularities, then L can be reduced

to L1 using just an exp-product.

Proof. Assume L ∼p L0, where L0 is a hypergeometric equation, then L0 must have the same

exponent-difference as L module Z, because ∼p preserve the exponent-difference module Z.

Since L1, L2 both have same exponent-difference as L and L0 module Z. that means the first
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hypothesis in Theorem 8 is satisfied. If L0 has the exponent-differences: d0, d1, d∞, then

the second hypothesis of Theorem 8 is satisfied, then L0 ∼p L1, i.e L ∼p L1. Otherwise, if

L0 has the exponent-differences: d0 + 1, d1, d∞, then L0 ∼p L2, i.e L ∼p L2. Particularly, if

{d0, d1, d∞}
⋂
{12 + Z} 6= ∅, then L0 ∼p L1 ∼p L2 by Corollary 2, i.e L ∼p L1 ∼p L2.

Example 14. Let

L := 4x2(16x− 1)∂2 + 12x(16x− 1)∂ + 64x− 3

we compute its singularities and found that it has three true regular singularities 0, 1
16 ,∞ ,

and also we have ∆(L, 0) = 0, ∆(L, 1
16) = 0, ∆(L,∞) = 0. Based on these three exponent-

differences, we can construct the Gauss hypergeometric equations L1, L2 as follows:

Case 1: Set ∆(L1, 0) = 0, ∆(L1, 1) = 0, and ∆(L1,∞) = 0 and plug them in the formula

we have

L1 := x(x− 1)∂2 − (−2x+ 1)∂ +
1

4
,

which is a hypergeometric equation with singularities 0, 1,∞ and exponent-differences 0, 0, 0,

respectively.

Case 2: Set ∆(L1, 0) = 0, ∆(L1, 1) = 0, and ∆(L1,∞) = 1 and similarly we have

L2 := x(x− 1)∂2 − (−2x+ 1)∂,

which is a hypergeometric equation with singularities 0, 1,∞ and exponent-differences 0, 0, 1,

respectively.

From the above theorem, we know that L1 is not projectively equivalent to L2. Check

by using the equiv program:

>equiv(L_1,L_2)

0

Note: We can construct more than two such Gauss hypergeometric equations with the

same exponent-difference module Z at 0, 1,∞. But all of them are projectively equivalent

to L1 or L2.
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Remark 24. For a given second order differential operator L with three true regular sin-

gularities p1, p2, p3, by Lemma 14, we know there are two Gauss hypergeometric equations

L1, L2 (probably one) which have the same exponent-difference (module Z)at 0, 1,∞ as at

p1, p2, p3. However, L1, L2 are not necessarily projectively equivalent to L after certain

transformation.

To check if L1, L2 are projectively equivalent to L, we first need find the transformation

which sends p1, p2, p3 to 0, 1,∞. Möbius transformation m(x) = ax+b
cx+d would be such a

transformation. (We can switch the order of p1, p2, p3, the procedure would be the same).

After the change of variable by m(x) for L1, L2, we get two new differential operator L
′
1, L

′
2,

both of them have the true regular singularities p1, p2, p3. We will explain this by continuing

example 14:

we compute the Möbius transformation m(x), which sends 0, 1
16 ,∞ to 0, 1,∞, we get

m(x) = 16x,

then we conduct the change of variable for L1 and L2 by x 7→ 16x, we have

L′1 = x(16x− 1)∂2 + (32x− 1)∂ + 4

and

L′2 = x(16x− 1)∂2 + (32x− 1)∂

We check by the equiv again to see if these two operators are projectively equivalent to L:

>equiv(L,L’_1);

x
3
2∂ +

3

2

√
x

>equiv(L,L’_2);

0

We can see that after change of variable L1 is projectively equivalent to L, while L2 is not.

That means L2 would be discarded.
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5.3.2 Algorithm

Once we have the appropriate Gauss hypergeometric equation, we now can compute the

2F1 solution of the second order differential operator L with three true regular singularities.

Given the Gauss hypergeometric equation L1 as found previously, which is projectively

equivalent to L under certain Möbius transformation m(x). That means we can find the

solution space V (L) by finding the solution space V (L1) of L1, furthermore the solution

space V (L′1) of L′1.

Given the exponent-differences of L1, to find the 2F1 solution we need find the corre-

sponding a, b, c as in equation (5.2). Assume the exponent-difference at 0, 1,∞ are e0, e1, e∞,

respectively, then we compute the a, b, c by the information given previously, we get:

a =
1

2
− 1

2
e0 −

1

2
e∞ −

1

2
e1

b =
1

2
− 1

2
e0 +

1

2
e∞ −

1

2
e1

c = 1− e0

Now, if 1− c is not an integer , then we have the two independent solutions as:

y1(x) = 2F1(a, b; c;x)

y2(x) = x1−c2F1(a− c+ 1, b− c+ 1; 2− c;x)

and then the general solution would be

C1y1(x) + C2y2(x),

where C1, C2 ∈ K.

If 1−c is integer, the first solution is still the same as y1(x) and we can select the second

solution as

y2(x) = 2F1(a, b; a+ b+ 1− c; 1− x)

which is also independent with y1(x). Under the Möbius transformation m(x), we can write

out the basis of the solution space V (L′1): if 1− c is not an integer , then we have the two

independent solutions as:

y′1(x) = 2F1(a, b; c;m(x))
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y′2(x) = m(x)1−c2F1(a− c+ 1, b− c+ 1; 2− c;m(x))

If 1− c is integer, we have the same y′1(x), but

y′2(x) = 2F1(a, b; a+ b+ 1− c; 1−m(x)).

Since we can find the equivalence G between V (L
′
1) and V (L) by equiv, that means for

any general solution C1y
′
1(x) +C2y

′
2(x) of L

′
1, G(C1y1(x) +C2y2(x)) would be a solution of

L.

We will show this procedure by continuing example 14. We have

L1 := x(x− 1)∂2 − (−2x+ 1)∂ +
1

4
,

and

L′1 = x(16x− 1)∂2 + (32x− 1)∂ + 4,

which is projectively equivalent to L. Since L1 has the exponent-difference 0, 0, 0 at 0, 1,∞,

respectively. so we have a = 1
2 , b = 1

2 and c = 1, that means the two independent solutions

would be

y1(x) = 2F1(
1

2
,
1

2
; 1;x)

y2(x) = 2F1(
1

2
,
1

2
; 1; 1− x)

Furthermore, we have:

y′1(x) = 2F1(
1

2
,
1

2
; 1; 16x)

y′2(x) = 2F1(
1

2
,
1

2
; 1; 1− 16x)

the general solution of L′1 would be C1y
′
1(x) +C2y

′
2(x). Next, we find the solution of L.

First we compute G, which would be

G :=
16x− 1√

x
∂

Then, we can compute the solution of L by the following commands:

>eval(DEtools[diffop2de](G, y(x)), y(x) = C_1*y_1(x)+C_2*y(x));
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C1
4(16x− 1)√

x
2F1(

3

2
,
3

2
; 2; 16x)− C2

4(16x− 1)√
x

2F1(
3

2
,
3

2
; 2; 1− 16x)

Algorithm finding 2F1-type solution with 3 singularities

Input: A second order irreducible differential operator L with 3 true regular singularities.

Output: 2F1-type solution, if it exists..

Step 1: Compute the exponent-difference at the three singularities of L module Z. Denote

them as e1, e2, e3.

Step 2: Find the two Gauss hypergeometric equations L1, L2 by the formula, whose expo-

nent difference at 0, 1,∞ module Z is e1, e2, e3 if 1
2 /∈ {e1, e2, e3}; Otherwise, compute

just one such equation L1.

Step 3: Find the Möbius transformation m(x) between p1, p2, p3 and 0, 1,∞.

Step 4: Call equiv to check if L1 (after change of variable) is projectively equivalent to L,

if so, go to next step. Otherwise, check L2. Or stop if both of them are not projective

equivalence to L. Denote the equivalence as G

Step 5: Find the Gauss hypergeometric solutions of Sol := C1y1(m(x)) + C2y2(m(x)) if

e1 6= 0, otherwise, compute Sol := C1y1(m(x)) + C2y
′
2(m(x)).

Step 6: Compute the 2F1-type solution of L by computing G(Sol).

5.4 Final solving after 2-descent

In this section, we assume our differential operator are all defined over K = C(x). From

Chapter 3, we descended a second order differential operator L defined over K to another

differential operator L̃ which is defined over C(f), where deg(f) = 2, if it exists. This time

L̃ is easier to solve as it will have few true singularities. Sometime we can reduce L̃ further

to another even easier operator. If the new differential operator L̃ has three true regular

singularities, we can find its 2F1 solutions from previous section. Moreover, we can find the

2F1 solutions of the original operator L.

5.4.1 Algorithm of finding 2F1-type solution by 2-descent

We assume L descends to L̃ which have three true regular singularities. Actually, L̃ is

written in the small field C(f)[∂] . For example, if L ∈ C(x)[∂] descends to L̃ ∈ C(x2)[∂],
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then we usually write L̃ in the new variable x1, which is actually x2. Only in this way, L̃

have few singularities than L. All the new singularities are about x1.

Now, we assume L̃ is gotten after one round of 2-descent (Similar procedure can also

applied to several rounds of 2-descent).

Since L̃ is defined over the subfield C(f) of C(x), that means after the transformation

x 7→ f , we get a new differential operator L̃′ which is defined over C(x). From Chapter 3,

we also know that L̃′ is projectively equivalent to L, that means we can find the solution

space V (L) by computing V (L̃′). The Algorithm of finding the final solutions of L is as

follows:

Algorithm of finding 2F1-type solution by 2-descent

Input: A second order irreducible differential operator L ∈ C(x)[∂] and the field C.

Output: 2F1-type solution, if it exists..

Step 1: Call Algorithm 2-descent in Chapter 3 to Compute the 2-descent of L, L̃, if it

exists.

Step 2: Compute the true singularities of L̃.

Step 3: If L̃ has 3 true regular singularities, then call Algorithm finding 2F1-type

solution with 3 singularities and find the solution sol; Otherwise, stop and return

NULL.

Step 4: Apply the Change of variable x 7→ f to L̃, Sol, we get L̃′ and its 2F1 solution Sol
′
.

Step 5: Call equiv to Compute the equivalence G between L̃′ and L.

Step 6: Compute the 2F1-type solution of L by computing G(Sol
′
).

Remark 25. We may have the descent L̃ with 3 true regular singularities by conducting

more than one rounds of 2-descent. If so, to compute the 2F1-type solution of L, we only

need repeat Step 4 and Step 5 in this algorithm.

5.4.2 Examples

In this section, we would compute the 2F1-type solutions of the examples listed in

Chapter 3.
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Example 15. Let

L = ∂2 +
28x− 5

x(4x− 1)
∂ +

144x2 + 20x− 3

x2(4x− 1)(4x+ 1)

Step 1: Compute the 2-descent of L from Section 3.7, we have

L̃ := (16x− 1)x∂2 + (32x− 2)∂ + 4

step 2: Compute the true singularities of L̃, we found it has 3 true regular singularities:

0, 1
16 ,∞.

step 3: Call Algorithm finding 2F1-type solution with 3 singularities, we found the 2F1

solution of L̃ as

Sol := C1(64x− 4)2F1(
3

2
,
3

2
; 2; 16x)− C2(64x− 4)2F1(

3

2
,
3

2
; 2; 1− 16x)

Step 4: From Section 3.7, we know that f = x2, so the change of variable would be x 7→ x2.

Apply transformation to L̃ and Sol, we have

L̃′ := x(4x+ 1)(4x− 1)∂2 + (12x− 3)(4x+ 1)∂ + 16x

Sol
′

:= C1(64x2 − 4)2F1(
3

2
,
3

2
; 2; 16x2)− C2(64x2 − 4)2F1(

3

2
,
3

2
; 2; 1− 16x2)

Step 5: Compute the equivalence between L̃′ and L, we have

G :=
1

x(4x− 1)

Step 6: Compute G(Sol
′
), we have the final solution as

C1
16x+ 1

x
2F1(

3

2
,
3

2
; 2; 16x2)− C2

16x+ 1

x
2F1(

3

2
,
3

2
; 2; 1− 16x2)

Example 16. Consider the example 9

L := ∂2 +
4(1296x5 + 576x4 − 144x3 − 72x2 + x+ 1)

x(6x− 1)(2x+ 1)(6x+ 1)(12x2 − 1)
∂+

2(5184x6 − 864x5 − 1656x4 + 48x3 + 162x2 + 6x− 1)

(−1 + 2x)x2(6x− 1)(2x+ 1)(6x+ 1)(12x2 − 1)

We apply the same procedures to get its 2F1-type solution.

Step 1: After 2 rounds of 2-descent as in Section 3.7, we have

L̃ :=4(36x+ 11)(18x− 5)(6x+ 1)(6x− 1)2∂2+

36(6x− 1)(1296x3 + 1620x2 + 20x− 9)∂+

34992x3 − 207036x2 − 2331 + 3456x
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This time L̃ is defined over the subfield C(f), where f := x2 + 1
144x2

.

Step 2: Compute the singularities of L̃, we have 3 true regular singularities 5
18 ,−

1
6 ,∞.

For these 3 regular singularities, we have their exponent-difference module Z as 0, 12 , 0,

respectively.

Step 3: Call Algorithm finding 2F1-type solution with 3 singularities. We can see 1
2 is

one of the exponent-difference, that means there is only one possible Gauss hypergeometric

equation which is projectively equivalent to L̃. We found its

mbox2F1 solution:

Sol := C1(
−3
√

6x− 1(90x− 1)

10(18x− 5)
2F1(

1

4
,
1

4
;
3

2
;
9

4
x+

3

8
)−

3
√

6x− 1(6x+ 1)

160
2F1(

5

4
,
5

4
;
5

2
;
9

4
x+

3

8
))+

C2(
−54
√

6x− 1(6x+ 1)

5(18x− 5)
√

36x+ 6
2F1(

−1

4
,
−1

4
;
1

2
;
9

4
x+

3

8
)−

9
√

6x− 1(6x+ 1)

40
√

36x+ 6
2F1(

3

4
,
3

4
;
3

2
;
9

4
x+

3

8
))

Step 4: Apply 2 rounds of change of variable x 7→ x2 and x 7→ x+ 1
144x , we finally have

L̃′ :=4x2(6x− 1)(2x+ 1)(−1 + 2x)(6x+ 1)(44x2 + 144x4 + 1)(12x2 − 1)2∂2+

8(152064x8 − 1920x6 + 1360x4 + 96x2 − 1)x(12x2 − 1)∂+

2985984x12− 17667072x10 + 357120x8 − 444288x6 + 2480x4 − 852x2 + 1

We skip the solution of L̃′. To get its solution, we just replace x by x2 + 1
144x2

in Sol.

Step 5: Compute equivalence between L̃′ and L, we have

G :=
(1− 6x+ 8x2 − 72x3 + 144x4)(24x3 + 4x2 − 6x− 1)

8(12x2 − 1)2(44x2 + 144x4 + 1)
√
x

∂−

(20736x8 + 17280x7 − 16128x6 − 2208x5 + 864x4 − 184x3 − 112x2 + 10x+ 1)(−1 + 2x)

16(44x2 + 144x4 + 1)x
3
2 (12x2 − 1)3)
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Step 6: Compute G(Sol
′
), we finally solve L in terms of 2F1 function as:

Sol := C1(
−
√

6(12x2 − 16x+ 1)

160x
5
2 (6x− 1)

2F1(
1

4
,
1

4
;
3

2
;

1

64

144x4 + 1 + 24x2

x2
)−

√
6(2x− 1)(12x2 + 1)2

61440x
9
2

2F1(
5

4
,
5

4
;
5

2
;

1

64

144x4 + 1 + 24x2

x2
))+

C2(

√
6

20x
3
2 (6x− 1)

2F1(
−1

4
,
−1

4
;
1

2
;

1

64

144x4 + 1 + 24x2

x2
)−

√
6(2x− 1)(12x2 + 1)2

2560x
7
2

2F1(
3

4
,
3

4
;
3

2
;

1

64

144x4 + 1 + 24x2

x2
))

The following example from the combinatorics. Once we have the 2F1 solution, we can

find the generating function of that problem.

Example 17. Let

L :=x2(x− 1)(3x− 1)(5x− 1)(15x2 − 12x+ 2)2(24x2 − 1)(24x2 + 1)(293760x7−

131976x6 + 52704x5 − 768x4 − 5934x3 + 1536x2 − 141x+ 4)∂2+

x(15x2 − 12x+ 2)(456855552000x16 − 1141140441600x15 + 1205298040320x14−

739711751040x13 + 278147198592x12 − 42328568520x11 − 16507230408x10+

12016561464x9 − 3566060748x8 + 612793944x7 − 50926704x6 − 4668138x5+

2379468x4 − 404802x3 + 38052x2 − 1920x+ 40)∂+

17132083200000x18 − 51619498560000x17 + 69182207308800x16 − 55259228764800x15

+ 28548905746176x14 − 8578828641024x13 + 203730145704x12 + 1176651503856x11−

628573505184x10 + 187319970144x9 − 37321612578x8 + 5110040592x7 − 430267164x6

+ 5324838x5 + 4336320x4 − 663780x3 + 50760x2 − 2208x+ 48

For this long equation, we compute its singularity structure as:

StypeC := {(x, 0), (x2 − 1

24
, 0), (x2 +

1

24
, 0)}

and then we compute its only Möbius transformation as −x such that StypeC is invariant

under −x. We apply for the left part of the 2-descent program and get the descent operator
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L̃ as (we still use variable x instead of x1 but be aware that x actually represent x2):

L̃ :=4x2(24x− 1)(24x+ 1)(146307465x4 − 559059678x5 − 9913872x3 − 741616803x6−

77365538100x7 − 4160x+ 273551782500x8 + 305032x2 + 16(73095026633625600000

x14 + 28314832760022528000x13 + 3075687232950222720x12 + 1686893870166480576

x11 − 133823109463151832 ∗ x10 − 28232747654035032x9 + 1106153331674814x8+

245685032190468x7 − 26914802257107x6 + 1279546596900x5 − 35033084322x4+

574811724x3 − 5335541x2 + 23464x− 32)(225x2 − 84x+ 4)2∂2+

4x(225x2 − 84x+ 4)(6144 + 18428098532233370484049175795112x17 − 5757952x+

2252752704x2 − 266841689335640118516106344741696000x22+

66595167451675298440090133084540160x21 + 2620890700448638404996208062x13−

212231204683471195034982255x12 + 10371484121995537119544356x11−

290255030129731146342021x10 + 1895854709589052854474x9 + 21669638418794553

2469x8 − 11057404214131957476x7 + 296895554744808636x6 − 5202269056218912

x5 + 10365550470582872593460428800000000000x26 − 84646848223116922414737669

5952x18 + 61390742993968x4 − 475387061184x3 − 15217448405898551717440986439

50x16 + 92688772882960644198325145424x15 − 18127963562453424563394497103

x14 + 585517501019365906538514682022400000x23 − 214338784196356831349508096

0000000000x25 − 1136574746430415325640162126404064x19 − 2014113521485588153

31974581524640x20 − 1391308117985050025638968069120000000x24)∂+

2444299641716262090366562170512364x17 − 14469120x+ 24576− 2765727782766074

763344823063473886336x21 + 94849160322224272541478887736x13 − 55482750391443

98932873564299x12 + 231087350065182408253632762x11 − 65727832354093144830228

21x10 + 111600071753291735706000x9 − 268607171394918291024x8 − 4383900087965

5673664x7 + · · ·

Part of the coefficients for the ∂0 term is skipped. We found the singularities structure of

L̃ as:

StypeC := {(x, 0), (x− 1

24
, 0), (x+

1

24
, 0)}.
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In the following, we compute the 2F1 solution for L̃ and furthermore the final 2F1 solution

of L as follows:

C1(
468x4 + 162x3 − 216x2 + 43x− 2√

24x2 + 1x(24x2 − 1)(x− 1)(3x− 1)(5x− 1)(15x2 − 12x+ 2)
2F1(

1

2
,
1

2
; 3;

48x2

24x2 + 1
)+

2x(1926x4 − 216x3 − 216x2 + 43x− 2)

(24x2 + 1)3/2(24x2 − 1)(x− 1)(3x− 1)(5x− 1)(15x2 − 12x+ 2)
2F1(

3

2
,
3

2
; 4;

48x2

24x2 + 1
))

C2(
9576x4 − 216x3 − 1485x2 + 281x− 16√

24x2 + 1x3(x− 1)(3x− 1)(5x− 1)(15x2 − 12x+ 2)
2F1(

1

2
,
1

2
; 3;−24x2 − 1

24x2 + 1
)−

(24x2 − 1)(1926x4 − 216x3 − 216x2 + 43x− 2)

3(24x2 + 1)3/2(x− 1)(3x− 1)(5x− 1)(15x2 − 12x+ 2)x3
2F1(

3

2
,
3

2
; 4;−24x2 − 1

24x2 + 1
))
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CHAPTER 6

CONCLUSION

6.1 Contribution of this thesis

In this thesis, we developed 2-descent method for a linear differential operator L defined

over C(x). We restrict our algorithm to second order differential operator. By using 2-

descent, the number of true singularities of L will be reduced to no more than n/2 + 2 (n

is the number of true singularities of L). To find the 2-descent of L, we have 2 steps to go:

1. Finding the subfield C(f) with [C(f) : C(x)] = 2, i.e. finding f ∈ C(x) of degree 2.

2. Finding the projectively equivalent differential operator L̃ ∈ C(f)[∂f ].

To realize the first task, we found the Möbius transformation σ, which satisfies the

following conditions:

• σ = ax+b
cx+d with d = −a;

• σ should preserve the set of true singularities of L and their exponent-difference mod

Z.

Once we have σ, we find the corresponding subfield C(f) by taking f = x + σ(x) or

f = x× σ(x).

To realize the second task, we construct a commutative diagram

Diagram 7

V (L)
λG - V (σ(L))

V (L̃)
�

σ(
A
)

A

-
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From this diagram, we see that A−σ(A)λG becomes a map from V (L) to V (L̃), and has

a nonzero kernel. This kernel corresponds to a right hand factor of L, since L is irreducible,

the kernel is V (L) itself. This fact enable us to construct equations about the unknowns in

A, furthermore, we find the descent L̃.

In this thesis, we apply our 2-descent method to solve L in terms of Gauss hypergeo-

metric solution if L̃ has 3 true regular singularities. To find the 2F1 solution, we are finding

the solutions with the form:

y1 =r1 · 2F1

(
a1, a2
a3

f

)
+ r2 · 2F1

(
b1, b2
b3

f

)
(with r1, r2 ∈ C(x))

y2 = · · ·

In the above formula, f is gotten from our 2-descent, it would be x + σ(x) or x × σ(x) if

there is only one round of 2-descent. Otherwise, it would be the combination of several f ’s.

The parameters ai, bi for i = 1, 2, 3 are gotten from the connecting between the exponent-

difference of the singularities of L̃ with the Gauss hypergeometric equation. r1, r2 are

calculated from the projective equivalence, which have the form:

e
∫
r dx · (r0y + r

′
y′)

with r, r0, r
′ ∈ C(x). This is computed by the equiv program.

In this thesis, an improved algorithm for computing the 2-descent of Case A (i.e there

is only gauge equivalence involved between L and σ(L)) is also proposed. This improved

algorithm avoids computing the linear system especially for a complex differential operator.

Also, this improved algorithm works better when we apply our 2-descent algorithms to the

higher order differential operator.

6.2 Future Work

Second order differential equations with 2F1 solutions exist widely in Physics, Combi-

natorics. Unfortunately, these solutions can not be found by the existing computer system.

This situation makes the work presented in this thesis meaningful and valuable. Also, if,
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after 2-descent, L̃ turns out to have 4 true singularities instead of 3. we can still find its

2F1 solutions which will be one direction of future work.

At the moment, we only consider σ’s in 2-descent that are defined over the same field of

constants C over which L is defined. We can modify the Compute Möbius transformations

algorithm to also find σ’s defined over an extension of C. However, for such σ we do not

plan to compute 2-descent because if there exists descent w.r.t. a σ that is not defined over

C, then a larger descent should exist as well, like C2 × C2, Dn, A4, S4, or A5, descent.

Another future direction of this work is on finding (if it exists) descent to subfields of

index 3. Degree 3 extensions need not be Galois, and so in general, to find 3-descent it is

not enough to try all Möbius transformations that fix the singularity structure.
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APPENDIX A

MAPLE COMMANDS

All the algorithms in this thesis are implemented in Maple. Therefore, this appendix will

demonstrate the most commonly used commands in this thesis.

>With(DEtools):

This command downloads the DEtools package. This package includes all the commands

related to the differential equations solving. By using this command, you can use any

command by just typing the command name. Otherwise, without With(DEtools) command,

you have to use the long version of the command DEtools[command name]

>de2diffop(equation,y(x)); diffop2de(operator, y(x));

The de2diffop(equation, y(x)) command converts a differential equation to a differential

operator. On the other hand, diffop2de(operator, y(x)) converts a differential operator to

its corresponding differential equation in y(x).

>gen_exp(L,T,x=a)

This command computes the generalized exponents for L at the point x = a.

Example 18. let L := (x− 1)∂2 + ∂

>gen_exp(L,T,x=infinity)

[[0, 0, T =
1

x
]]

We can see from this result, we have two exponents 0, 0 at x =∞ for L.
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>LCLM(L_1, L_2);

This command computes the Least Common Left Multiple of L1 and L2, which is the

operator with the minimal order such that all solutions of L1 and L2 are solutions of

LCLM(L1,L2).

>symmetric_product(L_1,L_2);

This command computes a differential operator which is the homomorphic image of the

tensor product L1sL2. The result of this command is a linear differential operator of

minimal order such that for every solution y1 of L1, y2 of L2, the product y1 × y2 is a

solution of it.

>Homomorphisms(L_1,L_2);

This command computes the homomorphisms between the solution spaces V (L1) and

V (L2). Assume this homomorphisms is h, then h(V (L1)) would be a subset of V (L2).

This command differs the equiv program because equiv computes an equivalence be-

tween V (L1) and V (L2) and only for order 2 differential operators. However, Homomor-

phisms computes a one way map and for any order.

Example 19. Let L1 = ∂3, L2 := Dx2;

>Homomorphisms(L_1, L_2);

[∂, x∂ − 2, ∂2, x∂2 − ∂, x2∂2 − 2x∂ + 2, x3∂2 − 2x2∂ + 2x]

which is a basis of all the operators h.

>expsols(L, v); expsols(list, g, x);

This command computes the exponential solutions of a linear ordinary differential equation.

There are two input formats. In the first one expsols(L, v), L is a linear differential equation,

and v is the dependent variable of L. In the second format expsols(list, g, x), list represents

the list of coefficients of a linear differential equation, g is the right hand side of the equation,

and x is the independent variable of the equation.
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[5] Bostan, A., and Kauers, M. Automatic Classification of Restricted lattice Walks
http://arxiv.org/abs/0811.2899, 2008.

[6] Bronstein, M. An improved algorithm for factoring linear ordinary differential op-
erators. In ISSAC 1994, 336–340.

[7] Churchill, R. C., and Kovacic, J.J. Cyclic vectors. In Differential algebra and
related topics (Newark, NJ, 2000). World Sci, Publ., River Edge, NJ, 2002.

[8] Compoint, E.,van der Put, M.,and Weil, J.A. Effective descent for differential
operators. J. Algebra. 324 (2010), 146–158.

[9] Cope, F. Formal solutions of irregular linear differential equations, I. American
Journal of Mathematics, 56(1934), 411-437.

[10] Cope, F. Formal solutions of irregular linear differential equations, II. American
Journal of Mathematics, 58(1936), 130-140.

[11] Debeerst, R. Solving Differential Equations in Terms of Bessel Functions. Master’s
thesis, Universit́’at Kassel, (2007).

[12] Debeerst, R. van Hoeij, M, and Koepf. W. Solving Differential Equations in
Terms of Bessel Functions. In ISSAC 2008, 39–46.

71

http://arxiv.org/abs/1110.1705
http://arxiv.org/abs/0811.2899


[13] Fang, T. Implementation and examples for 2-descent www.math.fsu.edu/~tfang/

2descentprogram/

[14] Fang, T., and van Hoeij, M. 2-descent for Second Order Linear Differential Equa-
tions. In ISSAC’2011 Proceedings(2011), 107-114.

[15] Finney, R., Ostberg, D., and Kuller, R. Elementary Differential Equations with
Linear Algebra, Addison-Wesley Publishing Co., Reading, 1976.

[16] van Hoeij, M., and Vidunas, R. All non-Liouvillian 2F1-solvable Heun equations
with pullbacks in C(x). www.math.fsu.edu/~hoeij/files/Heun/TextFormat/

[17] van Hoeij, M. Factorization of Linear Differential Operators. PhD thesis, Universiteit
Nijmegen, 1996.

[18] van Hoeij, M. Implementation for finding equivalence map. www.math.fsu.edu/

~hoeij/files/equiv.

[19] van Hoeij, M. Solving Third Order Linear Differential Equations in Terms of Second
Order Equations. In ISSAC 2007, 355–360. Implementation at: www.math.fsu.edu/

~hoeij/files/ReduceOrder

[20] van Hoeij, M, and Cremona, J. Solving conics over function fields. J. de Theories
des Nombres de Bordeaux.18 (2006), 595–606.

[21] van Hoeij, M, and van der Put, M. Descent for differential modules and skew
fields. J. Algebra. 296 (2006), 18–55.

[22] van Hoeij, M Closed Form Solutions for Linear Differential and Difference Equations,
Project Description of NSF grant 0728853, Sept. 2007 - Aug.2010.

[23] van Hoeij, M., and Yuan, Q Finding all Bessel type solutions for Linear Differential
Equations with Rational Function Coefficients. In ISSAC 2010, 37–44

[24] van der Hoeven, J. Around the Numeric-Symbolic Computation of Differential
Galois Groups. J. Symb. Comp. 42 (2007), 236–264.

[25] Katz, N. A simple algorithm for cyclic vectors. American Journal of Mathematics,
109(1987), 65-70.

[26] Kovacic, J. An algorithm for solving second order linear homogeneous equations. In
J. Symb. Comp, vol 2(1986), 3-43.

[27] Mishna, M. Classifying lattice walks restricted to the quarter plane. J. Combin.
Theory Ser. A, 116(2)(2009), 460-477.

[28] Nguyen, A. K. A modern perspective on Fano’s approach to linear differential equa-
tions. PhD thesis (2008).

72

www.math.fsu.edu/~tfang/2descentprogram/
www.math.fsu.edu/~tfang/2descentprogram/
www.math.fsu.edu/~hoeij/files/Heun/TextFormat/
www.math.fsu.edu/~hoeij/files/equiv
www.math.fsu.edu/~hoeij/files/equiv
www.math.fsu.edu/~hoeij/files/ReduceOrder
www.math.fsu.edu/~hoeij/files/ReduceOrder


[29] van der Put, M., and Singer, M. F. Galois Theory of Linear Differential Equa-
tions, vol. 328 of A Series of Comprehensive Studies in Mathematics. Springer, Berlin,
2003.

[30] Yuan, Q. Finding a Bessel type Solutions for Linear Differential Equations with
Rational Function Coefficients, PhD thesis (2012).

[31] Singer, M. F. Solving Homogeneous Linear Differential Equations in Terms of Second
Order Linear Differential Equations, American Journal of Mathematics, vol 107(1985),
663-696.

[32] Temme, N. M. Special functions: An introduction to the classical Functions of Math-
ematical Physics, John Wiley & Sons, New York, 1996.

[33] Vidunas, R. Algebraic Transformations of Gauss Hypergeometric Functions. http:
//arxiv.org/abs/math/0408269, 2009.
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