Solving Linear Differential Equations in terms of Hypergeometric Functions

Tingting Fang
Florida State University

October 16th, 2012
Differential operator and differential equation

Let

\[L = a_n \partial^n + a_{n-1} \partial^{n-1} + \cdots + a_1 \partial + a_0 \]

be a differential operator, with \(a_n, a_{n-1}, \ldots, a_1, a_0 \in \mathbb{C}(x) \) and \(n \) positive integer. The corresponding differential equation is

\[a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_1 y' + a_0 y = 0. \]
Differential operator and differential equation

Let

\[L = a_n \partial^n + a_{n-1} \partial^{n-1} + \cdots + a_1 \partial + a_0 \]

be a differential operator, with \(a_n, a_{n-1}, \cdots, a_1, a_0 \in \mathbb{C}(x) \) and \(n \) positive integer. The corresponding differential equation is

\[a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_1 y' + a_0 y = 0. \]

We are interested in finding the closed form solution of such second order differential equations.
Closed Form Solution

Closed form solutions are solutions that are written in terms of functions from a defined set of functions, under operations from a defined set of operations.
Closed form solutions are solutions that are written in terms of functions from a defined set of functions, under operations from a defined set of operations.

Defined Function Set

\{ \mathbb{C}(x), \exp, \log, \text{Airy}, \text{Bessel}, \text{Kummer}, \text{Whittaker}, \text{and } \,_{2}F_{1}-\text{Hypergeometric functions} \}
Closed form solutions are solutions that are written in terms of functions from a defined set of functions, under operations from a defined set of operations.

Defined Function Set

\{ \mathbb{C}(x), \exp, \log, \text{Airy}, \text{Bessel}, \text{Kummer}, \text{Whittaker}, \text{and } _2F_1\text{-Hypergeometric functions} \}

Defined Operations Set

\{\text{field operations, algebraic extensions, compositions, differentiation and } \int dx\}
Solving second order differential equations in terms of Bessel Functions are finished by Debeerst, Ruben (2007) and Yuan, Quan (2012). In this thesis we focus on a class of equations that can be solved in terms of Hypergeometric Functions.
Solving second order differential equations in terms of Bessel Functions are finished by Debeerst, Ruben (2007) and Yuan, Quan (2012). In this thesis we focus on a class of equations that can be solved in terms of **Hypergeometric Functions**.

\[
\begin{align*}
\sum_{n=0}^{\infty} & \frac{\Gamma(a)\Gamma(b)\Gamma(c)}{\Gamma(a+n)\Gamma(b+n)\Gamma(c+n)} \frac{z^n}{n!} \\
& = {}_{2}F_{1}(a, b | c | x)
\end{align*}
\]
Traditional Methods of Solving Differential Operator L

- Direct solving by the existing techniques.
- Factor L as a product of lower order differential operators, then solve L by solving the lower order ones.
- Solve L in terms of lower order differential operator.
Introduction

Traditional Methods of Solving Differential Operator L

- Direct solving by the existing techniques.
- Factor L as a product of lower order differential operators, then solve L by solving the lower order ones.
- Solve L in terms of lower order differential operator.
Traditional Methods of Solving Differential Operator L

- Direct solving by the existing techniques.
- Factor L as a product of lower order differential operators, then solve L by solving the lower order ones.
- Solve L in terms of lower order differential operator.
Solving Differential Equations

Traditional Methods of Solving Differential Operator L

- Direct solving by the existing techniques.
- Factor L as a product of lower order differential operators, then solve L by solving the lower order ones.
- Solve L in terms of lower order differential operator.
Traditional Methods of Solving Differential Operator L

- Direct solving by the existing techniques.
- Factor L as a product of lower order differential operators, then solve L by solving the lower order ones.
- Solve L in terms of lower order differential operator.

In this thesis we focus on second order linear differential equations (differential operators) which are irreducible and have no Liouvillian solutions.
Traditional Methods of Solving Differential Operator L

- Direct solving by the existing techniques.
- Factor L as a product of lower order differential operators, then solve L by solving the lower order ones.
- Solve L in terms of lower order differential operator.

In this thesis we focus on second order linear differential equations (differential operators) which are irreducible and have no Liouvillian solutions.

Question: For the equations that we can’t solve by the above techniques, what should we do?
Overview of the methods

We consider to reduce the differential operator L, if possible, to another differential operator \tilde{L} that is easier to solve (with same order, but with fewer true singularities) by using the 2-descent method or other descent methods.

1. If the above 2-descent exists, we find \tilde{L}.

2. If the number of true singularities of \tilde{L} drops to 3, we find its $2\, {}_1F_1$-type solutions, furthermore, find the $2\, {}_1F_1$ solution of L in terms of \tilde{L}’s.

3. If the number of true singularities of \tilde{L} drops to 4, we can decide if \tilde{L}, furthermore $\exists \ 2\, {}_1F_1$-type solutions by building a large table that covers the differential operators with 4 true singularities.
Overview of the methods

We consider to reduce the differential operator L, if possible, to another differential operator \tilde{L} that is easier to solve (with same order, but with fewer true singularities) by using the 2-descent method or other descent methods.

1. If the above 2-descent exists, we find \tilde{L}.

2. If the number of true singularities of \tilde{L} drops to 3, we find its $\, _2F_1$-type solutions, furthermore, find the $\, _2F_1$ solution of L in terms of \tilde{L}’s.

3. If the number of true singularities of \tilde{L} drops to 4, we can decide if \tilde{L}, furthermore L, $\exists \, _2F_1$-type solutions by building a large table that covers the differential operators with 4 true singularities.
Overview of the methods

We consider to reduce the differential operator L, if possible, to another differential operator \tilde{L} that is easier to solve (with same order, but with fewer true singularities) by using the 2-descent method or other descent methods.

1. If the above 2-descent exists, we find \tilde{L}.
2. If the number of true singularities of \tilde{L} drops to 3, we find its $2F_1$-type solutions, furthermore, find the $2F_1$ solution of L in terms of \tilde{L}’s.
3. If the number of true singularities of \tilde{L} drops to 4, we can decide if \tilde{L}, furthermore L, $\exists 2F_1$-type solutions by building a large table that covers the differential operators with 4 true singularities.
Overview of the methods

We consider to reduce the differential operator L, if possible, to another differential operator \tilde{L} that is easier to solve (with same order, but with fewer true singularities) by using the 2-descent method or other descent methods.

1. If the above 2-descent exists, we find \tilde{L}.
2. If the number of true singularities of \tilde{L} drops to 3, we find its $2F_1$-type solutions, furthermore, find the $2F_1$ solution of L in terms of \tilde{L}'s.
3. If the number of true singularities of \tilde{L} drops to 4, we can decide if \tilde{L}, furthermore L, \exists $2F_1$-type solutions by building a large table that covers the differential operators with 4 true singularities.
Transformations

When we talk about that L can be solved in terms of the solutions of \tilde{L}, we mean that \tilde{L} can be transformed to L.
When we talk about that L can be solved in terms of the solutions of \tilde{L}, we mean that \tilde{L} can be transformed to L.

There are three types of transformations that preserve order 2:

1. **change of variables:** $y(x) \rightarrow y(f(x))$, $f(x) \in \mathbb{C}(x) \setminus \mathbb{C}$.
2. **exp-product:** $y \rightarrow e^{\int r \, dx} \cdot y$, $r \in \mathbb{C}(x)$.
3. **gauge transformation:** $y \rightarrow r_0 y + r_1 y'$, $r_0, r_1 \in \mathbb{C}(x)$.

Example 1

Tingting Fang

Solving Differential Equations

October 16th, 2012

Slide 7/42
Transformations

When we talk about that L can be solved in terms of the solutions of \tilde{L}, we mean that \tilde{L} can be transformed to L.

There are three types of transformations that preserve order 2:

1. **change of variables**: $y(x) \rightarrow y(f(x))$, $f(x) \in \mathbb{C}(x) \setminus \mathbb{C}$.
2. **exp-product**: $y \rightarrow e^{\int r \, dx} \cdot y$, $r \in \mathbb{C}(x)$.
3. **gauge transformation**: $y \rightarrow r_0 y + r_1 y'$, $r_0, r_1 \in \mathbb{C}(x)$.

Given $L_1, L_2 \in \mathbb{C}(x)[\partial]$ with order 2:
When we talk about that L can be solved in terms of the solutions of \tilde{L}, we mean that \tilde{L} can be transformed to L.

There are three types of transformations that preserve order 2:

1. **change of variables**: $y(x) \rightarrow y(f(x))$, $f(x) \in \mathbb{C}(x) \setminus \mathbb{C}$.

2. **exp-product**: $y \rightarrow e^{\int r \, dx} \cdot y$, $r \in \mathbb{C}(x)$.

3. **gauge transformation**: $y \rightarrow r_0 y + r_1 y'$, $r_0, r_1 \in \mathbb{C}(x)$.

Given $L_1, L_2 \in \mathbb{C}(x)[\partial]$ with order 2:

If $L_1 \xrightarrow{2\&3} L_2$, then $L_1 \sim_p L_2$ (projectively equivalent).

If $L_1 \xrightarrow{3} L_2$, then $L_1 \sim_g L_2$ (gauge equivalent).
Example 1

\[L = x^2(36x^2 - 1)(4x^2 - 1)(12x^2 - 1)\partial^2 + 4x(2x - 1)(1296x^5 + 576x^4 - 144x^3 - 72x^2 + x + 1)\partial + 2(5184x^6 - 864x^5 - 1656x^4 + 48x^3 + 162x^2 + 6x - 1) \]

Question: How to find the \(_2F_1 \) solution of \(L \) as follows:

\[y_1 = r_1 \cdot _2F_1 \left(\begin{array}{c} 1/4, 1/4 \\ 3/2 \end{array} \right| \frac{144x^4 + 24x^2 + 1}{64x^2} \right) \]

\[+ r_2 \cdot _2F_1 \left(\begin{array}{c} 5/4, 5/4 \\ 5/2 \end{array} \right| \frac{144x^4 + 24x^2 + 1}{64x^2} \right) \]

(with \(r_1, r_2 \in \mathbb{C}(x) \))

\[y_2 = \cdots \]
Informal definition for 2-descent

For a second order differential operator L over $\mathbb{C}(x)$, we say that L has 2-descent if L can be reduced to \tilde{L} with the same order defined over a subfield $k \subset \mathbb{C}(x)$ with index 2.
Informal definition for 2-descent

For a second order differential operator L over $\mathbb{C}(x)$, we say that L has 2-descent if L can be reduced to \tilde{L} with the same order defined over a subfield $k \subset \mathbb{C}(x)$ with index 2.

Benefits for finding 2-descent of L

- Reduce the number of true singularities from n to $\leq \frac{n}{2} + 2$.
- Help to find the $2F_1$-type solutions.
Introduction

Informal definition for 2-descent

For a second order differential operator L over $\mathbb{C}(x)$, we say that L has 2-descent if L can be reduced to \tilde{L} with the same order defined over a subfield $k \subset \mathbb{C}(x)$ with index 2.

Benefits for finding 2-descent of L

- Reduce the number of true singularities from n to $\leq \frac{n}{2} + 2$.
- Help to find the $\mathbf{2F}_1$-type solutions.
For a second order differential operator L over $\mathbb{C}(x)$, we say that L has 2-descent if L can be reduced to \tilde{L} with the same order defined over a subfield $k \subset \mathbb{C}(x)$ with index 2.

Benefits for finding 2-descent of L

- Reduce the number of true singularities from n to $\leq \frac{n}{2} + 2$.
- Help to find the $2F_1$-type solutions.
Compoint, van Hoeij, van der Put reduced the problem of 2-descent to another problem, which involved in trivializing a 2-cocycle.

- No explicit algorithms are given.

- van Hoeij proposed that we first compute the symmetric product of L and $\sigma(L)$, and then factor it to the product of a first order equation and third order equation and then use another method to find the equivalent second order differential equation of the third order factor.

- The method here involves to calculate the point on a conic. Algorithms were only given when the conic is defined over \mathbb{Q} or the transcendental of \mathbb{Q}. NO algorithms are given for the general ground field.
Compoint, van Hoeij, van der Put reduced the problem of 2-descent to another problem, which involved in trivializing a 2-cocycle.

No explicit algorithms are given.

van Hoeij proposed that we first compute the symmetric product of L and $\sigma(L)$, and then factor it to the product of a first order equation and third order equation and then use another method to find the equivalent second order differential equation of the third order factor.

The method here involves to calculate the point on a conic. Algorithms were only given when the conic is defined over \mathbb{Q} or the transcendental of \mathbb{Q}. NO algorithms are given for the general ground field.
Compoint, van Hoeij, van der Put reduced the problem of 2-descent to another problem, which involved in trivializing a 2-cocycle.

- No explicit algorithms are given.

van Hoeij proposed that we first compute the symmetric product of L and $\sigma(L)$, and then factor it to the product of a first order equation and third order equation and then use another method to find the equivalent second order differential equation of the third order factor.

- The method here involves to calculate the point on a conic. Algorithms were only given when the conic is defined over \mathbb{Q} or the transcendental of \mathbb{Q}. NO algorithms are given for the general ground field.
Compoint, van Hoeij, van der Put reduced the problem of 2-descent to another problem, which involved in trivializing a 2-cocycle.

No explicit algorithms are given.

van Hoeij proposed that we first compute the symmetric product of L and $\sigma(L)$, and then factor it to the product of a first order equation and third order equation and then use another method to find the equivalent second order differential equation of the third order factor.

The method here involves to calculate the point on a conic. Algorithms were only given when the conic is defined over \mathbb{Q} or the transcendental of \mathbb{Q}. NO algorithms are given for the general ground field.
Main Goal

Given a second order differential operator L, our goal is to give an explicit algorithm to decide if L has 2-descent, and if so, find this descent.
Formal definition for 2-descent

Given a second order differential operator L defined over $\mathbb{C}(x)$, we say that L has 2-descent if $\exists f \in \mathbb{C}(x)$ with $\text{degree}(f) = 2$, and $\exists \tilde{L} \in \mathbb{C}(f)[\partial_f]$ such that $L \sim_p \tilde{L}$.

Note: $\partial_f = \frac{d}{df} = \frac{1}{f'} \partial$.

Two steps to achieve the main goal

1. Finding the subfield $\mathbb{C}(f)$ with $[\mathbb{C}(x) : \mathbb{C}(f)] = 2$, i.e. finding $f \in \mathbb{C}(x)$ of degree 2.
2. Finding the projectively equivalent differential operator $\tilde{L} \in \mathbb{C}(f)[\partial_f]$.

Tingting Fang

Solving Differential Equations

October 16th, 2012

Slide 12/42
Formal definition for 2-descent

Given a second order differential operator L defined over $\mathbb{C}(x)$, we say that L has 2-descent if $\exists f \in \mathbb{C}(x)$ with $\text{degree}(f) = 2$, and $\exists \tilde{L} \in \mathbb{C}(f)[\partial_f]$ such that $L \sim_p \tilde{L}$.

Note: $\partial_f = \frac{d}{df} = \frac{1}{f'} \partial$
Formal definition for 2-descent

Given a second order differential operator L defined over $\mathbb{C}(x)$, we say that L has 2-descent if $\exists f \in \mathbb{C}(x)$ with degree(f) = 2, and $\exists \tilde{L} \in \mathbb{C}(f)[\partial_f]$ such that $L \sim_p \tilde{L}$.

Note: $\partial_f = \frac{d}{df} = \frac{1}{f'} \partial$

Two steps to achieve the main goal

1. Finding the subfield $\mathbb{C}(f)$ with $[\mathbb{C}(x) : \mathbb{C}(f)] = 2$, i.e. finding $f \in \mathbb{C}(x)$ of degree 2.

2. Finding the projectively equivalent differential operator $\tilde{L} \in \mathbb{C}(f)[\partial_f]$.
Formal definition for 2-descent

Given a second order differential operator L defined over $\mathbb{C}(x)$, we say that L has 2-descent if $\exists f \in \mathbb{C}(x)$ with degree(f) = 2, and $\exists \tilde{L} \in \mathbb{C}(f)[\partial_f]$ such that $L \sim_p \tilde{L}$.

Note: $\partial_f = \frac{d}{df} = \frac{1}{f'} \partial$

Two steps to achieve the main goal

1. Finding the subfield $\mathbb{C}(f)$ with $[\mathbb{C}(x) : \mathbb{C}(f)] = 2$, i.e. finding $f \in \mathbb{C}(x)$ of degree 2.

2. Finding the projectively equivalent differential operator $\tilde{L} \in \mathbb{C}(f)[\partial_f]$.
Given a second order differential operator L defined over $\mathbb{C}(x)$, we say that L has 2-descent if $\exists f \in \mathbb{C}(x)$ with degree(f) = 2, and $\exists \tilde{L} \in \mathbb{C}(f)[\partial_f]$ such that $L \sim_p \tilde{L}$.

Note: $\partial_f = \frac{d}{df} = \frac{1}{f^\prime}$ ∂

Two steps to achieve the main goal

1. **Finding the subfield $\mathbb{C}(f)$ with $[\mathbb{C}(x) : \mathbb{C}(f)] = 2$, i.e. finding $f \in \mathbb{C}(x)$ of degree 2.**

2. **Finding the projectively equivalent differential operator $\tilde{L} \in \mathbb{C}(f)[\partial_f]$.**
Finding the subfield $\mathbb{C}(f)$

Since every extension of degree 2 is Galois, so by Lüroth's theorem, we have the following relationship:
Since every extension of degree 2 is Galois, so by Lüroth’s theorem, we have the following relationship:

\[\mathbb{C}(f) \subset \mathbb{C}(x) \text{ with } [\mathbb{C}(x) : \mathbb{C}(f)] = 2 \iff \sigma \in \text{Aut}(\mathbb{C}(x)/\mathbb{C}) \text{ with degree 2} \]
Since every extension of degree 2 is Galois, so by Lüroth’s theorem, we have the following relationship:

\[
\text{Remark} \quad \sigma \in \text{Aut}(\mathbb{C}(x)/\mathbb{C}) \text{ with degree } 2
\]

The automorphisms of \(\mathbb{C}(x)\) over \(\mathbb{C}\) are Möbius transformations:

\[
x \mapsto \frac{ax + b}{cx + d}
\]
Finding the subfield $\mathbb{C}(f)$

Requirements for σ

- $\sigma = \frac{ax+b}{cx+d}$ with $d = -a$;
- σ should preserve the set of true singularities of L and their exponent-difference mod \mathbb{Z}.
Requirements for σ

- $\sigma = \frac{ax+b}{cx+d}$ with $d = -a$;
- σ should preserve the set of true singularities of L and their exponent-difference mod \mathbb{Z}.
Requirements for σ

- $\sigma = \frac{ax+b}{cx+d}$ with $d = -a$;
- σ should preserve the set of true singularities of L and their exponent-difference mod \mathbb{Z}.

For each such σ, we compute a candidate subfield $\mathbb{C}(f) \subseteq \mathbb{C}(x)$.
Requirements for σ

- $\sigma = \frac{ax+b}{cx+d}$ with $d = -a$;
- σ should preserve the set of true singularities of L and their exponent-difference mod \mathbb{Z}.

For each such σ, we compute a candidate subfield $\mathbb{C}(f) \subseteq \mathbb{C}(x)$. To determine σ, basically, we need find 2 equations of variables a, b, c and then verify if it satisfies the requirements mentioned above.
Example 2

Let $C = \mathbb{Q}$, and

$$L = \partial^2 + \frac{(44x^4 - 7)}{x(2x^2 - 1)(2x^2 + 1)} \partial + \frac{8(24x^6 - 14x^4 - 3x^2 + 1)}{x^2(2x^2 + 1)(2x^2 - 1)^2}$$

- The set of true singularities is
 $$S = \{\infty, 0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{-2}}, \frac{1}{\sqrt{-2}}\}$$

- and
 $$S^\text{type}_C = \{(\infty, 0), (x, 0), (x^2 + \frac{1}{2}, 0), (x^2 - \frac{1}{2}, 0)\}.$$
Example 2

Let $C = \mathbb{Q}$, and

$$L = \partial^2 + \frac{44x^4 - 7}{x(2x^2 - 1)(2x^2 + 1)} \partial + \frac{8(24x^6 - 14x^4 - 3x^2 + 1)}{x^2(2x^2 + 1)(2x^2 - 1)^2}$$

- The set of true singularities is $S = \{\infty, 0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{-2}}, \frac{1}{\sqrt{-2}}\}$

- and $S_{\mathcal{C}}^{\text{type}} = \{\infty, 0\}, (x, 0), (x^2 + \frac{1}{2}, 0), (x^2 - \frac{1}{2}, 0)\}$.
Example 2

Let $C = \mathbb{Q}$, and

$$L = \partial^2 + \frac{44x^4 - 7}{x(2x^2 - 1)(2x^2 + 1)} \partial + \frac{8(24x^6 - 14x^4 - 3x^2 + 1)}{x^2(2x^2 + 1)(2x^2 - 1)^2}$$

The set of true singularities is

$S = \{\infty, 0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{-2}}, \frac{1}{\sqrt{-2}}\}$

and

$S^\text{type}_C = \{ (\infty, 0), (x, 0), (x^2 + \frac{1}{2}, 0), (x^2 - \frac{1}{2}, 0) \}.$
Example 2

Let $C = \mathbb{Q}$, and

$$L = \partial^2 + \frac{(44x^4 - 7)}{x(2x^2-1)(2x^2+1)} \partial + \frac{8(24x^6 - 14x^4 - 3x^2 + 1)}{x^2(2x^2+1)(2x^2-1)^2}$$

- The set of true singularities is
 $$S = \{ \infty, 0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{-2}}, \frac{1}{\sqrt{-2}} \}$$

- and
 $$S_{\text{type}}^C = \{ (\infty, 0), (x, 0), (x^2 + \frac{1}{2}, 0), (x^2 - \frac{1}{2}, 0) \}.$$

Analyze example 2, we get the set of candidates for σ is:

$$\{-x, -\frac{1}{2x}, \frac{1}{2x}\}$$

The corresponding subfields set is:

$$\{ \mathbb{C}(x^2), \mathbb{C}(x - \frac{1}{2x}), \mathbb{C}(x + \frac{1}{2x}) \}$$
The following σ and $\mathbb{C}(f)$ represent the Möbius transformation found previously and the corresponding fixed field, respectively. Suppose L descends to $\tilde{L} \in \mathbb{C}(f)[\partial_f]$, we have

$$L \sim_p \tilde{L} = \sigma(\tilde{L}) \sim_p \sigma(L),$$

and so $L \sim_p \sigma(L)$.
The following σ and $\mathbb{C}(f)$ represent the Möbius transformation found previously and the corresponding fixed field, respectively. Suppose L descends to $\tilde{L} \in \mathbb{C}(f)[\partial f]$, we have

$$L \sim_p \tilde{L} = \sigma(\tilde{L}) \sim_p \sigma(L),$$

and so $L \sim_p \sigma(L)$

which means we can find the projective equivalence:

$$y \rightarrow e^{\int r \, dx} \cdot (r_0 y + r_1 y')$$

from the solution space of L to the solution space of $\sigma(L)$.
The following σ and $\mathbb{C}(f)$ represent the Möbius transformation found previously and the corresponding fixed field, respectively. Suppose L descends to $\tilde{L} \in \mathbb{C}(f)[\partial_f]$, we have

$$L \sim_p \tilde{L} = \sigma(\tilde{L}) \sim_p \sigma(L), \text{ and so } L \sim_p \sigma(L)$$

which means we can find the projective equivalence:

$$y \rightarrow e^{\int r \, dx} \cdot (r_0 y + r_1 y')$$

from the solution space of L to the solution space of $\sigma(L)$.

Question: How to compute \tilde{L} from it?
Case A is when $L \sim_g \sigma(L)$, in other words, there exists $G = r_0 + r_1 \partial \in \mathbb{C}(x)[\partial]$ with $G(V(L)) = V(\sigma(L))$. Then $\exists \tilde{L} \in \mathbb{C}(f)[\partial_f]$ with $\tilde{L} \sim_g L$.

Question: Given G, how to find \tilde{L}?
Case A is when $L \sim_g \sigma(L)$, in other words, there exists $G = r_0 + r_1 \partial \in \mathbb{C}(x)[\partial]$ with $G(V(L)) = V(\sigma(L))$. Then $\exists \tilde{L} \in \mathbb{C}(f)[\partial_f]$ with $\tilde{L} \sim_g L$.

Question: Given G, how to find \tilde{L}?
Case A is when \(L \sim_g \sigma(L) \), in other words, there exists \(G = r_0 + r_1 \partial \in \mathbb{C}(x)[\partial] \) with \(G(V(L)) = V(\sigma(L)) \). Then \(\exists \tilde{L} \in \mathbb{C}(f)[\partial_f] \) with \(\tilde{L} \sim_g L \).

Question: Given \(G \), how to find \(\tilde{L} \)?
Case A is when \(L \sim_{g} \sigma(L) \), in other words, there exists \(G = r_0 + r_1 \partial \in \mathbb{C}(x)[\partial] \) with \(G(V(L)) = V(\sigma(L)) \). Then \(\exists \tilde{L} \in \mathbb{C}(f)[\partial_f] \) with \(\tilde{L} \sim_{g} L \).

Question: Given \(G \), how to find \(\tilde{L} \)?
Case A is when $L \sim_{g} \sigma(L)$, in other words, there exists $G = r_0 + r_1 \partial \in \mathbb{C}(x)[\partial]$ with $G(V(L)) = V(\sigma(L))$. Then $\exists \tilde{L} \in \mathbb{C}(f)[\partial_f]$ with $\tilde{L} \sim_{g} L$.

Question: Given G, how to find \tilde{L}?

\[V(L) \xrightarrow{A} V(\tilde{L}) = V(\sigma(\tilde{L})) \]
Question arising in the above diagram

Question: When does the above diagram commute?
Question arising in the above diagram

Question: When does the above diagram commute?

Theorem

Let L and σ be as before, and $G : V(L) \rightarrow V(\sigma(L))$ be a gauge transformation. Suppose $\tilde{L}_1, \tilde{L}_2 \in \mathbb{C}(f)[\partial_f]$ and $A_i : V(L) \rightarrow V(\tilde{L}_i)$ are gauge transformations. Then:

1. For each $i = 1, 2$, there is exactly one $\lambda_i \in \mathbb{C}^*$ such that the following diagram commutes.

2. If $\tilde{L}_1 \sim_g \tilde{L}_2$ over $\mathbb{C}(f)$, then $\lambda_1 = \lambda_2$; Otherwise, $\lambda_1 = -\lambda_2$.

3. In particular, $\{\lambda_1, -\lambda_1\}$ depends only on (L, σ, G).
Finding the projectively equivalent operator \tilde{L}

Diagram

$$V(L) \xrightarrow{\lambda_i G} V(\sigma(L))$$

$$V(\tilde{L}_i) \xleftarrow{\sigma(A_i)}$$
Finding the projectively equivalent operator \tilde{L}

Finding \tilde{L} in Case A

$V(L) \xrightarrow{\lambda G} V(\sigma(L))$

\xrightarrow{A}

$\xrightarrow{\sigma(A)}$

$V(\tilde{L})$

$A^{-\sigma(A)} \lambda G$ becomes a map from $V(L)$ to $V(\tilde{L})$, and has a nonzero kernel. This kernel corresponds to a right hand factor of L, since L is irreducible, the kernel is $V(L)$ itself.

$A^{-\sigma(A)} \lambda G$ right divided by L, and this gives us 4 equations for coefficients of A.

Tingting Fang

Solving Differential Equations

October 16th, 2012
Finding \tilde{L} in Case A

$A - \sigma(A) \lambda G$ becomes a map from $V(L)$ to $V(\tilde{L})$, and has a nonzero kernel. This kernel corresponds to a right hand factor of L, since L is irreducible, the kernel is $V(L)$ itself.
Finding \tilde{L} in Case A

$V(L)$ \xrightarrow{\lambda G} V(\sigma(L)) \xrightarrow{\sigma(A)} V(\tilde{L})$

$A - \sigma(A)\lambda G$ becomes a map from $V(L)$ to $V(\tilde{L})$, and has a nonzero kernel. This kernel corresponds to a right hand factor of L, since L is irreducible, the kernel is $V(L)$ itself.

$A - \sigma(A)\lambda G$ right divided by L, and this gives us 4 equations for coefficients of A.
Example 3

\[L = \partial^2 + \frac{8(8x+1)}{(4x+1)(4x-1)} \partial + \frac{4(8x+1)}{x(4x-1)(4x+1)}. \]

One of the candidates we found for \(\sigma \) is \(-x\) and
\[G = \frac{x(4x-1)}{4x+1} \partial + \frac{12x+1}{2(4x+1)}. \]

We implement the algorithm as follows:

- Write \(A = (a_{10} + a_{11}x)\partial + (a_{00} + a_{01}x) \), with \(a_{00}, a_{01}, a_{10}, a_{11} \) unknown and over \(\mathbb{C}(f) \).
- Get \(\sigma(A) = -(a_{10} - a_{11}x)\partial + a_{00} - a_{01}x \). Set the remainder of \(A - \sigma(A)\lambda G \) right divided by \(L \) to be 0. We get a set of the coefficients as:

\[
\begin{align*}
2a_{01} - 16\lambda a_{00} + \lambda a_{01} - 64\lambda a_{10} + 32fa_{10} + 48f\lambda a_{01} + 16a_{00}, \\
16fa_{01} + 2a_{00} + 32fa_{00} + 64f\lambda a_{11} - \lambda a_{00} - 48f\lambda a_{00} + 16f\lambda a_{01}, \\
16\lambda a_{10} + 2\lambda a_{00} + 32fa_{11} + 48f\lambda a_{11} - 32f\lambda a_{00} + 16a_{10} + \\
\lambda a_{11} + 2a_{11}, -16f\lambda a_{11} + 2a_{10} + 32f^2\lambda a_{01} + 16fa_{11} - 48f\lambda a_{10} - \\
\lambda a_{10} + 32fa_{10} - 2f\lambda a_{01}.
\end{align*}
\]
Example 3

\[L = \partial^2 + \frac{8(8x+1)}{(4x+1)(4x-1)} \partial + \frac{4(8x+1)}{x(4x-1)(4x+1)}. \]

One of the candidates we found for \(\sigma \) is \(-x\) and \(G = \frac{x(4x-1)}{4x+1} \partial + \frac{12x+1}{2(4x+1)}. \)

We implement the algorithm as follows:

- Write \(A = (a_{10} + a_{11}x) \partial + (a_{00} + a_{01}x) \), with \(a_{00}, a_{01}, a_{10}, a_{11} \) unknown and over \(\mathbb{C}(f) \).
- Get \(\sigma(A) = -(a_{10} - a_{11}x) \partial + a_{00} - a_{01}x \). Set the remainder of \(A - \sigma(A) \lambda G \) right divided by \(L \) to be 0. We get a set of the coefficients as:

 \[\{ 2a_{01} - 16\lambda a_{00} + \lambda a_{01} - 64\lambda a_{10} + 32fa_{10} + 48f \lambda a_{01} + 16a_{00}, 16fa_{01} + 2a_{00} + 32fa_{00} + 64f \lambda a_{11} - \lambda a_{00} - 48f \lambda a_{00} + 16f \lambda a_{01}, 16\lambda a_{10} + 2\lambda a_{00} + 32fa_{11} + 48f \lambda a_{11} - 32f \lambda a_{00} + 16a_{10} + \lambda a_{11} + 2a_{11}, -16f \lambda a_{11} + 2a_{10} + 32f^2 \lambda a_{01} + 16fa_{11} - 48f \lambda a_{10} - \lambda a_{10} + 32fa_{10} - 2f \lambda a_{01} \}. \]
Example 3

\[L = \partial^2 + \frac{8(8x+1)}{(4x+1)(4x-1)} \partial + \frac{4(8x+1)}{x(4x-1)(4x+1)}. \]

One of the candidates we found for \(\sigma \) is \(-x\) and \(G = \frac{x(4x-1)}{4x+1} \partial + \frac{12x+1}{2(4x+1)}. \)

We implement the algorithm as follows:

- Write \(A = (a_{10} + a_{11}x) \partial + (a_{00} + a_{01}x), \) with \(a_{00}, a_{01}, a_{10}, a_{11} \) unknown and over \(\mathbb{C}(f) \).
- Get \(\sigma(A) = -(a_{10} - a_{11}x) \partial + a_{00} - a_{01}x. \) Set the remainder of \(A - \sigma(A) \lambda G \) right divided by \(L \) to be 0. We get a set of the coefficients as:

\[
\{2a_{01} - 16\lambda a_{00} + \lambda a_{01} - 64\lambda a_{10} + 32fa_{10} + 48f\lambda a_{01} + 16a_{00},
16fa_{01} + 2a_{00} + 32fa_{00} + 64f\lambda a_{11} - \lambda a_{00} - 48f\lambda a_{00} + 16f\lambda a_{01},
16\lambda a_{10} + 2\lambda a_{00} + 32fa_{11} + 48f\lambda a_{11} - 32f\lambda a_{00} + 16a_{10} +
\lambda a_{11} + 2a_{11}, -16f\lambda a_{11} + 2a_{10} + 32f^2\lambda a_{01} + 16fa_{11} - 48f\lambda a_{10} -
\lambda a_{10} + 32fa_{10} - 2f\lambda a_{01} \}.
\]
Example 3, continued...

- Equate the determinant of the corresponding matrix M to 0 gives a degree 4 equation for λ. Solve for λ.

- Plug in one value for λ in M, then solve M to find values for $a_{00}, a_{01}, a_{10}, a_{11}$ in A. We take $\lambda = 2$ and get

$$A = \left(\frac{4}{3}x^2 - \frac{1}{12}\right)\partial + \frac{4x}{3} + 1$$

- Implement the Maple Command LCLM of A and L, and then the Command rightdivision of the result gotten just now by A, we get the 2-descent \tilde{L}:

$$\tilde{L} = (16x_1 - 1)x_1\partial^2 + (32x_1 - 1)\partial + 4$$
Example 3, continued...

- Equate the determinant of the corresponding matrix M to 0 gives a degree 4 equation for λ. Solve for λ.

 $\det(M) = 65536(\lambda - 2)^2 \cdot (\lambda + 2)^2 \cdot (f - 1/16)^4$ and $\lambda = \pm 2$.

- Plug in one value for λ in M, then solve M to find values for $a_{00}, a_{01}, a_{10}, a_{11}$ in A. We take $\lambda = 2$ and get

 $$A = \left(\frac{4}{3}x^2 - \frac{1}{12}\right)\partial + \frac{4x}{3} + 1$$

- Implement the Maple Command LCLM of A and L, and then the Command rightdivision of the result gotten just now by A, we get the 2-descent \tilde{L}:

 $$\tilde{L} = (16x_1 - 1)x_1 \partial^2 + (32x_1 - 1)\partial + 4$$
Equate the determinant of the corresponding matrix M to 0 gives a degree 4 equation for λ. Solve for λ.

$$\det(M) = 65536(\lambda - 2)^2 \cdot (\lambda + 2)^2 \cdot (f - 1/16)^4$$

and $\lambda = \pm 2$.

Plug in one value for λ in M, then solve M to find values for $a_{00}, a_{01}, a_{10}, a_{11}$ in A. We take $\lambda = 2$ and get

$$A = \left(\frac{4}{3}x^2 - \frac{1}{12}\right)\partial + \frac{4x}{3} + 1$$

Implement the Maple Command LCLM of A and L, and then the Command rightdivision of the result gotten just now by A, we get the 2-descent \tilde{L}:

$$\tilde{L} = (16x_1 - 1)x_1\partial^2 + (32x_1 - 1)\partial + 4$$
Example 3, continued...

- Equate the determinant of the corresponding matrix M, $\det(M)$ to 0 gives a degree 4 equation for λ. Solve for λ.

 $\det(M) = 65536(\lambda - 2)^2 \cdot (\lambda + 2)^2 \cdot (f - 1/16)^4$ and $\lambda = \pm 2$.

- Plug in one value for λ in M, then solve M to find values for $a_{00}, a_{01}, a_{10}, a_{11}$ in A. We take $\lambda = 2$ and get

 $$A = \left(\frac{4}{3}x^2 - \frac{1}{12}\right)\partial + \frac{4x}{3} + 1$$

- Implement the Maple Command LCLM of A and L, and then the Command rightdivision of the result gotten just now by A, we get the 2-descent \tilde{L}:

 $$\tilde{L} = (16x_1 - 1)x_1\partial^2 + (32x_1 - 1)\partial + 4$$
Case B is when \(L \sim_p \sigma(L) \), in other words, there exists \(G = e^{\int r} \cdot (r_0 + r_1 \partial) \) such that \(G(V(L)) = V(\sigma(L)) \).
Case B

Case B is when $L \sim_p \sigma(L)$, in other words, there exists $G = e^{ \int r \cdot (r_0 + r_1 \partial) }$ such that $G(V(L)) = V(\sigma(L))$.

Difficulty

We have an exponential part in G comparing with **Case A**. The algorithm mentioned above fails.
Case B

Case B is when $L \sim_{p} \sigma(L)$, in other words, there exists $G = e^{\int r}$ $(r_0 + r_1 \partial)$ such that $G(V(L)) = V(\sigma(L))$.

Difficulty

We have an exponential part in G comparing with **Case A**. The algorithm mentioned above fails.

Solution

After multiplying solution of L by a suitable $e^{\int s}$, we can reduce this case to Case A.
Sketch of the Main Algorithm

Main Algorithm:

Input: A second order differential operator L;
Output: Another second order differential operator \tilde{L}.

1. Compute the set of true singularities of L, and their exponent-difference mod \mathbb{Z}.
2. Compute the candidates set for σ.
3. For each σ, check if $L \sim_p \sigma(L)$, and if so, to find $G : V(L) \to V(\sigma(L))$.
4. If we find σ with $L \sim_g \sigma(L)$, then call algorithm Case A and stop; otherwise, if $L \sim_p \sigma(L)$ reduce Case B to Case A.
Sketch of the Main Algorithm

Main Algorithm:

Input: A second order differential operator L;

Output: Another second order differential operator \tilde{L}.

1. Compute the set of true singularities of L, and their exponent-difference mod \mathbb{Z}.

2. Compute the candidates set for σ.

3. For each σ, check if $L \sim_p \sigma(L)$, and if so, to find $G : V(L) \to V(\sigma(L))$.

4. If we find σ with $L \sim_g \sigma(L)$, then call algorithm Case A and stop; otherwise, if $L \sim_p \sigma(L)$ reduce Case B to Case A.
Main Algorithm:

Input: A second order differential operator \(L \);

Output: Another second order differential operator \(\tilde{L} \).

1. Compute the set of true singularities of \(L \), and their exponent-difference mod \(\mathbb{Z} \).

2. Compute the candidates set for \(\sigma \).

3. For each \(\sigma \), check if \(L \sim_p \sigma(L) \), and if so, to find \(G : V(L) \to V(\sigma(L)) \).

4. If we find \(\sigma \) with \(L \sim_g \sigma(L) \), then call algorithm Case A and stop; otherwise, if \(L \sim_p \sigma(L) \) reduce Case B to Case A.
Sketch of the Main Algorithm

Main Algorithm:

Input: A second order differential operator L;

Output: Another second order differential operator \tilde{L}.

1. Compute the set of true singularities of L, and their exponent-difference mod \mathbb{Z}.

2. Compute the candidates set for σ.

3. For each σ, check if $L \sim \sigma(L)$, and if so, to find $G : V(L) \rightarrow V(\sigma(L))$.

4. If we find σ with $L \sim_\sigma \sigma(L)$, then call algorithm Case A and stop; otherwise, if $L \sim \sigma(L)$ reduce Case B to Case A.
Sketch of the Main Algorithm

Main Algorithm:

Input: A second order differential operator L;

Output: Another second order differential operator \tilde{L}.

1. Compute the set of true singularities of L, and their exponent-difference mod \mathbb{Z}.
2. Compute the candidates set for σ.
3. For each σ, check if $L \sim_p \sigma(L)$, and if so, to find $G: V(L) \rightarrow V(\sigma(L))$.
4. If we find σ with $L \sim_g \sigma(L)$, then call algorithm Case A and stop; otherwise, if $L \sim_p \sigma(L)$ reduce Case B to Case A.
To decide \tilde{L}, we first compute λ and then a set of linear equations to determine $A = (a_{10} + a_{11}x)\partial + (a_{00} + a_{01}x)$.

Advantage

This algorithm does give us one \tilde{L} which is equivalent to our input L.

Disadvantage

When we compute A, we select one $(a_{00}, a_{01}, a_{10}, a_{11})$ from a vector space of dimension 2, that means our output \tilde{L} is just one member of a 2-dimensional set of possible outcomes. We can't expect \tilde{L} to have the optimal size.
To decide \tilde{L}, we first compute λ and then a set of linear equations to determine $A = (a_{10} + a_{11}x)\partial + (a_{00} + a_{01}x)$.

Advantage

This algorithm does give us one \tilde{L} which is equivalent to our input L.

Disadvantage

When we compute A, we select one $(a_{00}, a_{01}, a_{10}, a_{11})$ from a vector space of dimension 2, that means our output \tilde{L} is just one member of a 2-dimensional set of possible outcomes. We can't expect \tilde{L} to have the optimal size.
To decide \tilde{L}, we first compute λ and then a set of linear equations to determine $A = (a_{10} + a_{11}x)\partial + (a_{00} + a_{01}x)$.

Advantage

This algorithm does give us one \tilde{L} which is equivalent to our input L.

Disadvantage

When we compute A, we select one $(a_{00}, a_{01}, a_{10}, a_{11})$ from a vector space of dimension 2, that means our output \tilde{L} is just one member of a 2-dimensional set of possible outcomes. We can’t expect \tilde{L} to have the optimal size.
What is improved in the new Algorithm

The improved algorithm will avoid computing a set of possible \tilde{L}s and apt to give a smaller output.
Main Idea for the Improved Case A algorithm

We consider the following algorithm, here we denote
\[L_4 := \text{LCLM}(L, \sigma(L)) \in C(f)[\partial_f] \] then
\[V(L_4) = V(L) + V(\sigma(L)). \]
The order of \(L_4 \) is 4 except if \(V(L) = V(\sigma(L)) \).
We consider the following algorithm, here we denote
\[L_4 := \text{LCLM}(L, \sigma(L)) \in C(f)[\partial_f] \] then
\[V(L_4) = V(L) + V(\sigma(L)). \]

The order of \(L_4 \) is 4 except if \(V(L) = V(\sigma(L)) \).
Main Idea for the Improved Case A algorithm

We consider the following algorithm, here we denote
\[L_4 := \text{LCLM}(L, \sigma(L)) \in C(f)[\partial_f] \] then \(V(L_4) = V(L) + V(\sigma(L)) \). The order of \(L_4 \) is 4 except if \(V(L) = V(\sigma(L)) \).
Main Idea for the Improved Case A algorithm

We consider the following algorithm, here we denote $L_4 := \text{LCLM}(L, \sigma(L)) \in C(f)[\partial_f]$ then $V(L_4) = V(L) + V(\sigma(L))$. The order of L_4 is 4 except if $V(L) = V(\sigma(L))$.

\[V(L) \xrightarrow{1+G} \]
\[\sigma(1+G) \xrightarrow{V(L_4)} V(\sigma(L)) \]
Main Idea for the Improved Case A algorithm

We consider the following algorithm, here we denote
\[L_4 := \text{LCLM}(L, \sigma(L)) \in C(f)[\partial_f] \text{ then } V(L_4) = V(L) + V(\sigma(L)). \]
The order of \(L_4 \) is 4 except if \(V(L) = V(\sigma(L)) \).
Main Idea for the Improved Case A algorithm

We consider the following algorithm, here we denote $L_4 := LCLM(L, \sigma(L)) \in C(f)[\partial_f]$ then $V(L_4) = V(L) + V(\sigma(L))$. The order of L_4 is 4 except if $V(L) = V(\sigma(L))$.

\[
\begin{align*}
V(L) \quad \xrightarrow{1+G} \quad V(L_4) \\
\downarrow \quad \quad \quad \quad \downarrow \\
V(\sigma(L)) \quad \quad \quad \xrightarrow{\sigma(1+G)}
\end{align*}
\]
Main Idea for the Improved Case A algorithm

We consider the following algorithm, here we denote
\(L_4 := \text{LCLM}(L, \sigma(L)) \in C(f)[\partial_f] \) then \(V(L_4) = V(L) + V(\sigma(L)) \).

The order of \(L_4 \) is 4 except if \(V(L) = V(\sigma(L)) \).

Question: Is this a commutative diagram?
Support Theorem

Given a second order irreducible differential operator L and second order automorphism σ as in Section 3.4, and a gauge transformation $G : V(L) \rightarrow V(\sigma(L))$, then there exist a constant λ such that the following diagram commutes.

$$V(L) \xrightarrow{\lambda G} V(\sigma(L))$$

$$V(L^4) \xrightarrow{\lambda \sigma(G) + 1} 1 + \lambda G$$

Tingting Fang
Solving Differential Equations
October 16th, 2012
Slide 28/42
Support Theorem

Lemma

Given a second order irreducible differential operator L and second order automorphism σ as in Section 3.4, and a gauge transformation $G : V(L) \rightarrow V(\sigma(L))$, then there exist a constant λ such that the following diagram commutes.
Support Theorem

Lemma

Given a second order irreducible differential operator L and second order automorphism σ as in Section 3.4, and a gauge transformation $G : V(L) \rightarrow V(\sigma(L))$, then there exist a constant λ such that the following diagram commutes.

$$
\begin{align*}
V(L) & \xrightarrow{\lambda G} V(\sigma(L)) \\
& \xleftarrow{1 + \lambda G} V(L_4) \\
& \xrightarrow{\lambda \sigma(G) + 1}
\end{align*}
$$
Finding \tilde{L}

Questions: with the above diagram, do we have the \tilde{L} already? Is L_4 the descent we want? If not, how do we find \tilde{L}?
Finding \tilde{L}

Questions: with the above diagram, do we have the \tilde{L} already? Is L_4 the descent we want? If not, how do we find \tilde{L}?

Theorem

Given a second order differential operator L. σ, G, λ are as stated previously in the diagram. Then there exists a second order differential operator \tilde{L} such that \tilde{L} is invariant under σ and $(1 + \lambda G)V(L) = V(\tilde{L})$.

Computing \tilde{L}

1. Compute $M := LCLM(L_1 + \lambda G)$
2. Compute the \tilde{L} such that $M = \tilde{L}(1 + \lambda G)$
3. Verify $V(\tilde{L}) \subseteq V(L_4)$ and $V(\sigma(\tilde{L})) = V(\tilde{L})$
Finding \tilde{L}

Questions: with the above diagram, do we have the \tilde{L} already? Is L_4 the descent we want? If not, how do we find \tilde{L}?

Theorem

Given a second order differential operator L. σ, G, λ are as stated previously in the diagram. Then there exists a second order differential operator \tilde{L} such that \tilde{L} is invariant under σ and $(1 + \lambda G)V(L) = V(\tilde{L})$.

Computing \tilde{L}

1. Compute $M := \text{LCLM}(L, 1 + \lambda G)$.
2. Compute the \tilde{L} such that $M = \tilde{L}(1 + \lambda G)$.
3. Verify $V(\tilde{L}) \subseteq V(L_4)$ and $V(\sigma(\tilde{L})) = V(\tilde{L})$.
Application for Fourth Order Differential Equation

\[L := \partial^4 + \frac{(7x^4 - 68x^3 - 114x^2 + 52x - 5)}{(x + 1)(x^2 - 10x + 1)(x - 1)x} \partial^3 + \frac{2(5x^5 - 55x^4 - 169x^3 + 149x^2 - 28x + 2)}{(x + 1)x^2(x^2 - 10x + 1)(x - 1)^2} \partial^2 + \frac{2(x^4 - 13x^3 - 129x^2 + 49x - 4)}{(x + 1)x^2(x^2 - 10x + 1)(x - 1)^2} \partial^- + \frac{3(x + 1)^2}{(x - 1)^2x^3(x^2 - 10x + 1)} \partial^{'} \]

\[L \] has 4 regular true singularities:
Result after 2-descent Algorithm, Case A

\[\tilde{\mathcal{L}}_1 := 16x_1^4(x_1 + 3)(5x_1^2 + 10x_1 + 1)(9x_1^8 + 1008x_1^7 - 31820x_1^6 + 264480x_1^5 \\
- 14194x_1^4 + 162992x_1^3 - 8156x_1^2 + 18368x_1 + 529)(x_1 - 1)^4 \partial^4 \\
+ 32x_1^3(-7935 - 358000x_1 - 3502550x_1^2 - 24264785x_1^4 - 1520720x_1^3 \\
- 12737440x_1^5 - 13562976x_1^7 - 20800372x_1^6 - 905046x_1^{10} + 20706063x_1^8 \\
+ 28080x_1^{11} + 6593808x_1^9 + 225x_1^{12})(x_1 - 1)^3 \partial^3 \\
+ 8x_1^2(2250x_1^{13} + 312135x_1^{12} - 12439492x_1^{11} + 134614866x_1^{10} \\
- 42449802x_1^9 - 470021643x_1^8 + 267358792x_1^7 - 102361428x_1^6 + 163767350x_1^5 \\
+ 221768417x_1^4 - 11134724x_1^3 + 48114210x_1^2 + 3717898x_1 + 77763)(x_1 - 1)^2 \partial^2 \\
+ 8x_1(x_1 - 1)(1350x_1^{14} + 230355x_1^{13} - 10741153x_1^{12} + 169118578x_1^{11} \\
- 503407892x_1^{10} + 340703465x_1^9 + 768939585x_1^8 - 411403540x_1^7 \\
+ 839007558x_1^6 - 333028107x_1^5 - 52500447x_1^4 + 44391810x_1^3 - 43359960x_1^2 \\
- 2602385x_1 - 42849) \partial + \cdots \]
Result after Improved 2-descent Algorithm, Case A

\[\tilde{L}_2 := \partial^4 + \frac{77x_1^6 - 1709x_1^5 - 11250x_1^4 - 11530x_1^3 + 10377x_1^2 - 2457x_1 + 108}{(x_1 - 1)x_1(11x_1^5 - 215x_1^4 - 1250x_1^3 - 1278x_1^2 + 711x_1 - 27)} \partial^3 + \]
\[\frac{220x_1^7 - 6063x_1^6 - 46066x_1^5 - 40985x_1^4 + 71024x_1^3 - 30225x_1^2 + 3078x_1 - 135}{2(x_1^2 - 2x_1 + 1)x_1^2(11x_1^5 - 215x_1^4 - 1250x_1^3 - 1278x_1^2 + 711x_1 - 27)} \partial^2 + \]
\[\frac{22x_1^6 - 931x_1^5 - 10011x_1^4 - 12590x_1^3 + 15680x_1^2 - 3039x_1 + 117}{16(x_1^2 - 2x_1 + 1)x_1^4(11x_1^4 - 248x_1^3 - 506x_1^2 + 240x_1 - 9)} \partial - \]
\[3(121x_1^5 + 175x_1^4 - 166x_1^3 + 1118x_1^2 - 227x_1 + 3) \]

Where \(x_1 \) represents \(x^2 \). \(\tilde{L}_2 \) has length 635.
After implementing 2-decent, we may end up with \(\tilde{L} \) with 3 true singularities. If so, we can solve such \(\tilde{L} \) in terms of hypergeometric functions, further more \(L \).

To find the \({}_2F_1 \) Solutions, we need connect with the hypergeometric equations, which have the following properties:

(a) Three true regular singularities, located at 0, 1, \(\infty \).
(b) No apparent singularities.
Things we should consider

After implementing 2-decent, we may end up with \tilde{L} with 3 true singularities. If so, we can solve such \tilde{L} in terms of hypergeometric functions, further more L.

To find the $_2F_1$ Solutions, we need connect with the hypergeometric equations, which have the following properties:

(a) Three true regular singularities, located at 0, 1, ∞.
(b) No apparent singularities.
What we have for \tilde{L}?

(a) Three true regular singularities, located say at $p_1, p_2, p_3 \in \mathbb{P}^1$.

(b) Any number of apparent singularities.
What we have for \tilde{L}?

(a) Three true regular singularities, located say at $p_1, p_2, p_3 \in \mathbb{P}^1$.

(b) Any number of apparent singularities.

To solve \tilde{L} in terms of hypergeometric functions, we need to apply two types of transformations:

(a) A Möbius transformation (a change of variables) to move p_1, p_2, p_3 to $0, 1, \infty$.

(b) A projective equivalence \sim_p to eliminate all apparent singularities.
Classification of Gauss Hypergeometric Equations

Theorem

Let L_1, L_2 be two Gauss hypergeometric differential operators. Assume the exponent difference set of L_1 at $0, 1, \infty$ is $\{e_0, e_1, e_\infty\}$, and the exponent difference set of L_2 at $0, 1, \infty$ is $\{d_0, d_1, d_\infty\}$. If $1 - d_i \in \mathbb{Z}$ for all $i \in \{0, 1, \infty\}$ and $2 \sum_{i \in \{0, 1, \infty\}} (e_i - d_i)$ is an even integer, then $L_1 \sim p L_2$.

Corollary

Let L_1, L_2 be two Gauss hypergeometric differential operators. Assume the exponent difference set of L_1 at $0, 1, \infty$ is $\{e_0, e_1, e_\infty\}$, and the exponent difference set of L_2 at $0, 1, \infty$ is $\{d_0, d_1, d_\infty\}$. If $2 \in \mathbb{Z}$ appears in $\{e_0, e_1, e_\infty\}$ and $\{d_0, d_1, d_\infty\}$, then L_1 is projectively equivalent to L_2 if $e_i - d_i \in \mathbb{Z}$ for all $i \in \{0, 1, \infty\}$.
Theorem

Let L_1, L_2 be two Gauss hypergeometric differential operators. Assume the exponent difference set of L_1 at 0, 1, ∞ is \{e_0, e_1, e_\infty\}, and the exponent difference set of L_2 at 0, 1, ∞ is \{d_0, d_1, d_\infty\}. If

1. \(e_i - d_i \in \mathbb{Z}\) for all \(i \in \{0, 1, \infty\}\)

and

2. \(\sum_{i \in \{0,1,\infty\}} (e_i - d_i)\) is an even integer,

Then $L_1 \sim_p L_2$.

Tingting Fang
Solving Differential Equations
October 16th, 2012
Slide 35/42
Classification of Gauss Hypergeometric Equations

Theorem

Let L_1, L_2 be two Gauss hypergeometric differential operators. Assume the exponent difference set of L_1 at $0, 1, \infty$ is $\{e_0, e_1, e_\infty\}$, and the exponent difference set of L_2 at $0, 1, \infty$ is $\{d_0, d_1, d_\infty\}$. If

1. $e_i - d_i \in \mathbb{Z}$ for all $i \in \{0, 1, \infty\}$

and

2. $\sum_{i \in \{0, 1, \infty\}} (e_i - d_i)$ is an even integer,

Then $L_1 \sim_p L_2$.

Corollary

Let L_1, L_2 be two Gauss hypergeometric differential operators. Assume the exponent difference set of L_1 at $0, 1, \infty$ is $\{e_0, e_1, e_\infty\}$, and the exponent difference set of L_2 at $0, 1, \infty$ is $\{d_0, d_1, d_\infty\}$. If $\frac{1}{2} + \mathbb{Z}$ appears in $\{e_0, e_1, e_\infty\}$ and $\{d_0, d_1, d_\infty\}$, then L_1 is projectively equivalent to L_2 if $e_i - d_i \in \mathbb{Z}$ for all $i \in \{0, 1, \infty\}$.
Possible Hypergeometric Equations corresponding to \tilde{L}

Lemma

Suppose L is projectively equivalent to a hypergeometric equation. Suppose that the exponent-differences of L at $0, 1, \infty$ are d_0, d_1, d_∞. Let L_1 be a hypergeometric equation with exponent-differences: d_0, d_1, d_∞ and L_2 be a hypergeometric equation with exponent-differences: $d_0 + 1, d_1, d_\infty$. Then $L \sim_p L_1$ or $L \sim_p L_2$ (both are true if $\{d_0, d_1, d_\infty\} \cap \{\frac{1}{2} + \mathbb{Z}\} \neq \emptyset$).
Possible Hypergeometric Equations corresponding to \tilde{L}

Lemma

Suppose L is projectively equivalent to a hypergeometric equation. Suppose that the exponent-differences of L at $0, 1, \infty$ are d_0, d_1, d_∞. Let L_1 be a hypergeometric equation with exponent-differences: d_0, d_1, d_∞ and L_2 be a hypergeometric equation with exponent-differences: $d_0 + 1, d_1, d_\infty$. Then $L \sim_p L_1$ or $L \sim_p L_2$ (both are true if $\{d_0, d_1, d_\infty\} \cap \{\frac{1}{2} + \mathbb{Z}\} \neq \emptyset$).

With these exponent-differences d_0, d_1, d_∞ at $0, 1, \infty$, we construct the gauss hypergeometric equations by the following formula:

$$x(x-1)\partial^2 - (-2x + xd_0 + xd_1 + 1 - d_0)\partial + \frac{(d_0 - 1 + d_1 + d_\infty)(d_0 - 1 + d_1 - d_\infty)}{4}$$
Having these theorems, we have evidences to find the $2F_1$ solution of our \tilde{L}.

1. Compute the exponent-difference at the three singularities of \tilde{L} module \mathbb{Z}. Denote them as e_1, e_2, e_3.

2. Find the two Gauss hypergeometric equations L_1, L_2 by the formula and theorem.

3. Find the Möbius transformation $m(x)$ between p_1, p_2, p_3 and $0, 1, \infty$.

4. Call `equiv` to check if L_1 or L_2 (after change of variable) is projectively equivalent to \tilde{L}, if so, go to next step. Denote the equivalence as G.

5. Find the Gauss hypergeometric solutions of

 $Sol := C_1 y_1(m(x)) + C_2 y_2(m(x))$ if $e_1 \neq 0$, otherwise, compute

 $Sol := C_1 y_1(m(x)) + C_2 y_2'(m(x))$.

6. Compute the $2F_1$-type solution of \tilde{L} by computing $G(Sol)$.
Final solving by 2-descent

Input: A second order irreducible differential operator $L \in \mathbb{C}(x)[\partial]$ and the field \mathbb{C}.

Output: $2F_1$-type solution, if it exists.

1. Call **Algorithm 2-descent** in Chapter 3 to Compute the 2-descent of L, \tilde{L}, if it exists.

2. Compute the true singularities of \tilde{L}.

3. If \tilde{L} has 3 true regular singularities, then call **Algorithm finding $2F_1$-type solution with 3 singularities** and find the solution sol; Otherwise, stop and return NULL.

4. Apply the Change of variable $x \mapsto f$ to \tilde{L}, Sol, we get \tilde{L}' and its $2F_1$ solution Sol'.

5. Call **equiv** to Compute the equivalence G between \tilde{L}' and L.

6. Compute the $2F_1$-type solution of L by computing $G(Sol')$.
Example 5

Let

$$L = \partial^2 + \frac{28x - 5}{x(4x - 1)} \partial + \frac{144x^2 + 20x - 3}{x^2(4x - 1)(4x + 1)}$$

Step 1: Compute the 2-descent of L from Section 3.7, we have

$$\tilde{L} := (16x - 1)x\partial^2 + (32x - 2)\partial + 4$$

Step 2: Compute the true singularities of \tilde{L}, we found it has 3 true regular singularities: $0, \frac{1}{16}, \infty$.

Step 3: Call Algorithm finding $\, _2F_1$-type solution with 3 singularities, we found the $\, _2F_1$ solution of \tilde{L} as

$$\text{Sol} := C_1(64x-4)\, _2F_1\left(\frac{3}{2}, \frac{3}{2}; 2; 16x\right) - C_2(64x-4)\, _2F_1\left(\frac{3}{2}, \frac{3}{2}; 2; 1-16x\right)$$
Example 5, continued...

Step 4: From Section 3.7, we know that \(f = x^2 \), so the change of variable would be \(x \mapsto x^2 \). Apply transformation to \(\tilde{L} \) and \(\text{Sol} \), we have

\[
\tilde{L}' := x(4x + 1)(4x - 1)\partial^2 + (12x - 3)(4x + 1)\partial + 16x
\]

\[
\text{Sol}' := C_1(64x^2 - 4)_{2F1}(\frac{3}{2}, \frac{3}{2}; 2; 16x^2) - C_2(64x^2 - 4)_{2F1}(\frac{3}{2}, \frac{3}{2}; 2; 1 - 16x^2)
\]

Step 5: Compute the equivalence between \(\tilde{L}' \) and \(L \), we have

\[
G := \frac{1}{x(4x - 1)}
\]

Step 6: Compute \(G(\text{Sol}') \), we have the final solution as

\[
C_1 \frac{16x + 1}{x}_{2F1}(\frac{3}{2}, \frac{3}{2}; 2; 16x^2) - C_2 \frac{16x + 1}{x}_{2F1}(\frac{3}{2}, \frac{3}{2}; 2; 1 - 16x^2)
\]
We focus on finding the hypergeometric solutions of second order linear equations. Contributions of this thesis are:

1. Developed 2-descent algorithms to reduce our differential equation to one with fewer true singularities.
2. Improved the 2-descent algorithm to produce shorter output, which is helpful for finding the $2F_1$ solutions.
3. Finding the $2F_1$ solutions.

Work may be done in future:

1. Extend the 2-descent algorithm to bigger descent, for example: $C_2 \times C_2$, D_n, A_4, S_4, or A_5.
2. Extend the 2-descent to 3-descent, for which the index of the descent subfield is 3.
Thank Dr. van Hoeij for the continuous support, encouragement, the guide of research and interest.

Thank every committee member for devoting time to reading this dissertation and giving me suggestions.