Solving Linear Differential Equations in terms of Hypergeometric Functions

Tingting Fang
Florida State University

October 16th, 2012

Introduction

Differential operator and differential equation

Let

$$
L=a_{n} \partial^{n}+a_{n-1} \partial^{n-1}+\cdots+a_{1} \partial+a_{0}
$$

be a differential operator, with $a_{n}, a_{n-1}, \cdots, a_{1}, a_{0} \in \mathbb{C}(x)$ and n positive integer. The corresponding differential equation is

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

Introduction

Differential operator and differential equation

Let

$$
L=a_{n} \partial^{n}+a_{n-1} \partial^{n-1}+\cdots+a_{1} \partial+a_{0}
$$

be a differential operator, with $a_{n}, a_{n-1}, \cdots, a_{1}, a_{0} \in \mathbb{C}(x)$ and n positive integer. The corresponding differential equation is

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

We are interested in finding the Closed Form Solution order differential equations.

Closed Form Solution

Closed form solutions are solutions that are written in terms of functions from a defined set of functions, under operations from a defined set of operations.

Closed Form Solution

Closed form solutions are solutions that are written in terms of functions from a defined set of functions, under operations from a defined set of operations.

Defined Function Set

$\{\mathbb{C}(x)$, exp, log, Airy, Bessel, Kummer, Whittaker, and ${ }_{2} F_{1}$-Hypergeometric functions $\}$

Closed Form Solution

Closed form solutions are solutions that are written in terms of functions from a defined set of functions, under operations from a defined set of operations.

Defined Function Set

$\{\mathbb{C}(x)$, exp, log, Airy, Bessel, Kummer, Whittaker, and ${ }_{2} F_{1}$-Hypergeometric functions $\}$

Defined Operations Set

\{field operations, algebraic extensions, compositions, differentiation and $\left.\int d x\right\}$

Gaussian Hypergeometric Function

Solving second order differential equations in terms of Bessel Functions are finished by Debeerst, Ruben (2007) and Yuan, Quan (2012). In this thesis we focus on a class of equations that can be solved in terms of Hypergeometric Functions.

Introduction

Gaussian Hypergeometric Function

Solving second order differential equations in terms of Bessel Functions are finished by Debeerst, Ruben (2007) and Yuan, Quan (2012). In this thesis we focus on a class of equations that can be solved in terms of Hypergeometric Functions.

$$
{ }_{2} F_{1}\left(\begin{array}{c|c}
a, b & x \\
c & x
\end{array}\right)
$$

which is represented by the hypergeometric series:

$$
\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!}
$$

Introduction

Traditional Methods of Solving Differential Operator L

- Direct solving by the existing techniques.

Factor L as a product of lower order differential operators, then solve L by solving the lower order ones. - Solve I in terme of Inmar arder differantial ane ator

Introduction

Traditional Methods of Solving Differential Operator L

- Direct solving by the existing techniques.
- Factor L as a product of lower order differential operators, then solve L by solving the lower order ones.

Introduction

Traditional Methods of Solving Differential Operator L

- Direct solving by the existing techniques.
- Factor L as a product of lower order differential operators, then solve L by solving the lower order ones.
- Solve L in terms of lower order differential operator.

Introduction

Traditional Methods of Solving Differential Operator L

- Direct solving by the existing techniques.
- Factor L as a product of lower order differential operators, then solve L by solving the lower order ones.
- Solve L in terms of lower order differential operator.

Introduction

Traditional Methods of Solving Differential Operator L

- Direct solving by the existing techniques.
- Factor L as a product of lower order differential operators, then solve L by solving the lower order ones.
- Solve L in terms of lower order differential operator.

In this thesis we focus on second order linear differential equations (differential operators) which are irreducible and have no Liouvillian solutions.

Introduction

Traditional Methods of Solving Differential Operator L

- Direct solving by the existing techniques.
- Factor L as a product of lower order differential operators, then solve L by solving the lower order ones.
- Solve L in terms of lower order differential operator.

In this thesis we focus on second order linear differential equations (differential operators) which are irreducible and have no Liouvillian solutions.
Question: For the equations that we can't solve by the above techniques, what should we do?

Overview of the methods

We consider to reduce the differential operator L, if possible, to another differential operator \tilde{L} that is easier to solve (with same order, but with fewer true singularities) by using the 2-descent method or other descent methods.

Overview of the methods

We consider to reduce the differential operator L, if possible, to another differential operator \tilde{L} that is easier to solve (with same order, but with fewer true singularities) by using the 2-descent method or other descent methods.
(1) If the above 2 -descent exists, we find \tilde{L}.

Introduction

Overview of the methods

We consider to reduce the differential operator L, if possible, to another differential operator \tilde{L} that is easier to solve (with same order, but with fewer true singularities) by using the 2-descent method or other descent methods.
(1) If the above 2 -descent exists, we find \tilde{L}.
(2) If the number of true singularities of \tilde{L} drops to 3 , we find its ${ }_{2} F_{1}$-type solutions, furthermore, find the ${ }_{2} F_{1}$ solution of L in terms of \tilde{L} 's.

Overview of the methods

We consider to reduce the differential operator L, if possible, to another differential operator \tilde{L} that is easier to solve (with same order, but with fewer true singularities) by using the 2-descent method or other descent methods.
(1) If the above 2 -descent exists, we find \tilde{L}.
(2) If the number of true singularities of \tilde{L} drops to 3 , we find its ${ }_{2} F_{1}$-type solutions, furthermore, find the ${ }_{2} F_{1}$ solution of L in terms of \tilde{L} 's.
(3) If the number of true singularities of \tilde{L} drops to 4 , we can decide if \tilde{L}, furthermore $L, \exists{ }_{2} F_{1}$-type solutions by building a large table that covers the differential operators with 4 true singularities.

Transformations

When we talk about that L can be solved in terms of the solutions of \tilde{L}, we mean that \tilde{L} can be transformed to L.

Introduction

Transformations

When we talk about that L can be solved in terms of the solutions of \tilde{L}, we mean that \tilde{L} can be transformed to L.
There are three types of transformations that preserve order 2 :
(1) change of variables: $y(x) \rightarrow y(f(x))$,

$$
\begin{array}{r}
f(x) \in \mathbb{C}(x) \backslash \mathbb{C} . \\
r \in \mathbb{C}(x) . \\
r_{0}, r_{1} \in \mathbb{C}(x) .
\end{array}
$$

(2) exp-product: $y \rightarrow e^{\int r d x} \cdot y$,
(3) gauge transformation: $y \rightarrow r_{0} y+r_{1} y^{\prime}$,

Introduction

Transformations

When we talk about that L can be solved in terms of the solutions of \tilde{L}, we mean that \tilde{L} can be transformed to L.
There are three types of transformations that preserve order 2 :
(1) change of variables: $y(x) \rightarrow y(f(x))$,

$$
\begin{array}{r}
f(x) \in \mathbb{C}(x) \backslash \mathbb{C} . \\
r \in \mathbb{C}(x) . \\
r_{0}, r_{1} \in \mathbb{C}(x) .
\end{array}
$$

(2) exp-product: $y \rightarrow e^{\int r d x} \cdot y$,
(3) gauge transformation: $y \rightarrow r_{0} y+r_{1} y^{\prime}$,

Given $L_{1}, L_{2} \in \mathbb{C}(x)[\partial]$ with order 2 :

Transformations

When we talk about that L can be solved in terms of the solutions of \tilde{L}, we mean that \tilde{L} can be transformed to L.
There are three types of transformations that preserve order 2 :
(1) change of variables: $y(x) \rightarrow y(f(x))$,

$$
\begin{array}{r}
f(x) \in \mathbb{C}(x) \backslash \mathbb{C} . \\
r \in \mathbb{C}(x) . \\
r_{0}, r_{1} \in \mathbb{C}(x) .
\end{array}
$$

(2) exp-product: $y \rightarrow e^{\int r d x} \cdot y$,
(3) gauge transformation: $y \rightarrow r_{0} y+r_{1} y^{\prime}$,

Given $L_{1}, L_{2} \in \mathbb{C}(x)[\partial]$ with order 2 :
If $L_{1} \xrightarrow{2 \& 3} L_{2}$, then $L_{1} \sim_{p} L_{2}$ (projectively equivalent)
If $L_{1} \xrightarrow{3} L_{2}$, then $L_{1} \sim_{g} L_{2}$ (gauge equivalent).

Introduction

Example 1

$$
\begin{aligned}
& L=x^{2}\left(36 x^{2}-1\right)\left(4 x^{2}-1\right)\left(12 x^{2}-1\right) \partial^{2}+ \\
& 4 x(2 x-1)\left(1296 x^{5}+576 x^{4}-144 x^{3}-72 x^{2}+x+1\right) \partial+ \\
& 2\left(5184 x^{6}-864 x^{5}-1656 x^{4}+48 x^{3}+162 x^{2}+6 x-1\right)
\end{aligned}
$$

Question: How to find the ${ }_{2} F_{1}$ solution of L as follows:

$$
y_{2}=\cdots
$$

$$
\begin{aligned}
& y_{1}=r_{1} \cdot{ }_{2} F_{1}\left(\begin{array}{c|c}
1 / 4,1 / 4 & \frac{144 x^{4}+24 x^{2}+1}{64 x^{2}} \\
3 / 2 &
\end{array}\right) \\
& +r_{2} \cdot{ }_{2} F_{1}\left(\begin{array}{c|c}
5 / 4,5 / 4 & \frac{144 x^{4}+24 x^{2}+1}{64 x^{2}} \\
5 / 2 &
\end{array}\right) \\
& \text { (with } r_{1}, r_{2} \in \mathbb{C}(x) \text {) }
\end{aligned}
$$

Introduction

Informal definition for 2-descent

For a second order differential operator L over $\mathbb{C}(x)$, we say that L has 2 -descent if L can be reduced to \tilde{L} with the same order defined over a subfield $k \subset \mathbb{C}(x)$ with index 2 .

Introduction

Informal definition for 2-descent

For a second order differential operator L over $\mathbb{C}(x)$, we say that L has 2 -descent if L can be reduced to \tilde{L} with the same order defined over a subfield $k \subset \mathbb{C}(x)$ with index 2 .

Benefits for finding 2-descent of L

Introduction

Informal definition for 2-descent

For a second order differential operator L over $\mathbb{C}(x)$, we say that L has 2 -descent if L can be reduced to \tilde{L} with the same order defined over a subfield $k \subset \mathbb{C}(x)$ with index 2 .

Benefits for finding 2-descent of L

- Reduce the number of true singularities from n to $\leq \frac{n}{2}+2$.

Introduction

Informal definition for 2-descent

For a second order differential operator L over $\mathbb{C}(x)$, we say that L has 2 -descent if L can be reduced to \tilde{L} with the same order defined over a subfield $k \subset \mathbb{C}(x)$ with index 2 .

Benefits for finding 2-descent of L

- Reduce the number of true singularities from n to $\leq \frac{n}{2}+2$.
- Help to find the ${ }_{2} F_{1}$-type solutions.

Introduction

Relation to prior Work

- Compoint, van Hoeij, van der Put reduced the problem of 2-descent to another problem, which involved in trivializing a 2-cocycle.

Introduction

Relation to prior Work

- Compoint, van Hoeij, van der Put reduced the problem of 2-descent to another problem, which involved in trivializing a 2-cocycle.
- No explicit algorithms are given.

Relation to prior Work

- Compoint, van Hoeij, van der Put reduced the problem of 2-descent to another problem, which involved in trivializing a 2-cocycle.
- No explicit algorithms are given.
- van Hoeij proposed that we first compute the symmetric product of L and $\sigma(L)$, and then factor it to the product of a first order equation and third order equation and then use another method to find the equivalent second order differential equation of the third order factor.

Relation to prior Work

- Compoint, van Hoeij, van der Put reduced the problem of 2-descent to another problem, which involved in trivializing a 2-cocycle.
- No explicit algorithms are given.
- van Hoeij proposed that we first compute the symmetric product of L and $\sigma(L)$, and then factor it to the product of a first order equation and third order equation and then use another method to find the equivalent second order differential equation of the third order factor.
- The method here involves to calculate the point on a conic. Algorithms were only given when the conic is defined over \mathbb{Q} or the transcendental of \mathbb{Q}. NO algorithms are given for the general ground field.

Main Goal

Main Goal

Given a second order differential operator L, our goal is to give an explicit algorithm to decide if L has 2-descent, and if so, find this descent.

Preliminaries

Formal definition for 2-descent

Given a second order differential operator L defined over $\mathbb{C}(x)$, we say that L has 2 -descent if $\exists f \in \underset{\sim}{\mathcal{L}}(x)$ with degree $(f)=2$, and $\exists \tilde{L} \in \mathbb{C}(f)\left[\partial_{f}\right]$ such that $L \sim_{p} \tilde{L}$.

Preliminaries

Formal definition for 2-descent

Given a second order differential operator L defined over $\mathbb{C}(x)$, we say that L has 2 -descent if $\exists f \in \underset{\sim}{\mathcal{L}}(x)$ with degree $(f)=2$, and $\exists \tilde{L} \in \mathbb{C}(f)\left[\partial_{f}\right]$ such that $L \sim_{p} \tilde{L}$.
Note: $\quad \partial_{f}=\frac{d}{d f}=\frac{1}{f^{\prime}} \partial$

Preliminaries

Formal definition for 2-descent

Given a second order differential operator L defined over $\mathbb{C}(x)$, we say that L has 2 -descent if $\exists f \in \underset{\sim}{\mathcal{L}}(x)$ with degree $(f)=2$, and $\exists \tilde{L} \in \mathbb{C}(f)\left[\partial_{f}\right]$ such that $L \sim_{p} \tilde{L}$.
Note: $\partial_{f}=\frac{d}{d f}=\frac{1}{f^{\prime}} \partial$
Two steps to achieve the main goal

Preliminaries

Formal definition for 2-descent

Given a second order differential operator L defined over $\mathbb{C}(x)$, we say that L has 2 -descent if $\exists f \underset{\tilde{L}}{\in} \mathbb{C}(x)$ with degree $(f)=2$, and $\exists \tilde{L} \in \mathbb{C}(f)\left[\partial_{f}\right]$ such that $L \sim_{p} \tilde{L}$.
Note: $\partial_{f}=\frac{d}{d f}=\frac{1}{f^{\prime}} \partial$
Two steps to achieve the main goal
(1) Finding the subfield $\mathbb{C}(f)$ with $[\mathbb{C}(x): \mathbb{C}(f)]=2$, i.e. finding $f \in \mathbb{C}(x)$ of degree 2 .

Preliminaries

Formal definition for 2-descent

Given a second order differential operator L defined over $\mathbb{C}(x)$, we say that L has 2 -descent if $\exists f \underset{\sim}{\in} \mathbb{C}(x)$ with degree $(f)=2$, and $\exists \tilde{L} \in \mathbb{C}(f)\left[\partial_{f}\right]$ such that $L \sim_{p} \tilde{L}$.
Note: $\quad \partial_{f}=\frac{d}{d f}=\frac{1}{f^{\prime}} \partial$

Two steps to achieve the main goal

(1) Finding the subfield $\mathbb{C}(f)$ with $[\mathbb{C}(x): \mathbb{C}(f)]=2$, i.e. finding $f \in \mathbb{C}(x)$ of degree 2 .
(2) Finding the projectively equivalent differential operator $\tilde{L} \in \mathbb{C}(f)\left[\partial_{f}\right]$.

Möbius Transformation

Since every extension of degree 2 is Galois, so by Lüroth's theorem, we have the following relationship:

Möbius Transformation

Since every extension of degree 2 is Galois, so by Lüroth's theorem, we have the following relationship:

Remark

A subfield $\mathbb{C}(f) \subset \mathbb{C}(x)$ with $[\mathbb{C}(x): \mathbb{C}(f)]=2$
\Longleftrightarrow $\sigma \in \operatorname{Aut}(\mathbb{C}(x) / \mathbb{C})$ with degree 2

Möbius Transformation

Since every extension of degree 2 is Galois, so by Lüroth's theorem, we have the following relationship:

Remark

A subfield $\mathbb{C}(f) \subset \mathbb{C}(x)$ with $[\mathbb{C}(x): \mathbb{C}(f)]=2$

$$
\sigma \in \operatorname{Aut}(\mathbb{C}(x) / \mathbb{C}) \text { with degree } 2
$$

The automorphisms of $\mathbb{C}(x)$ over \mathbb{C} are Möbius transformations:

$$
x \mapsto \frac{a x+b}{c x+d}
$$

Finding the subfield $\mathbb{C}(f)$

Requirements for σ

Necessary Requirements for σ

- $\sigma=\frac{a x+b}{c x+d}$ with $d=-a$;

Requirements for σ

Necessary Requirements for σ

- $\sigma=\frac{a x+b}{c x+d}$ with $d=-a$;
- σ should preserve the set of true singularities of L and their exponent-difference $\bmod \mathbb{Z}$.

Requirements for σ

Necessary Requirements for σ

- $\sigma=\frac{a x+b}{c x+d}$ with $d=-a$;
- σ should preserve the set of true singularities of L and their exponent-difference $\bmod \mathbb{Z}$.
For each such σ, we compute a candidate subfield $\mathbb{C}(f) \subseteq \mathbb{C}(x)$.

Requirements for σ

Necessary Requirements for σ

- $\sigma=\frac{a x+b}{c x+d}$ with $d=-a$;
- σ should preserve the set of true singularities of L and their exponent-difference $\bmod \mathbb{Z}$.
For each such σ, we compute a candidate subfield $\mathbb{C}(f) \subseteq \mathbb{C}(x)$. To determine σ, basically, we need find 2 equations of variables a, b, c and then verify if it satifies the requirements mentioned above.

Example

Example 2

$$
\begin{aligned}
& \text { Let } C=\mathbb{Q} \text {, and } \\
& L=\partial^{2}+\frac{\left(44 x^{4}-7\right)}{x\left(2 x^{2}-1\right)\left(2 x^{2}+1\right)} \partial+\frac{8\left(24 x^{6}-14 x^{4}-3 x^{2}+1\right)}{x^{2}\left(2 x^{2}+1\right)\left(2 x^{2}-1\right)^{2}}
\end{aligned}
$$

Example 2

Let $C=\mathbb{Q}$, and
$L=\partial^{2}+\frac{\left(4 x^{4}-7\right)}{x\left(2 x^{2}-1\right)\left(2 x^{2}+1\right)} \partial+\frac{8\left(24 x^{6}-14 x^{4}-3 x^{2}+1\right)}{x^{2}\left(2 x^{2}+1\right)\left(2 x^{2}-1\right)^{2}}$

- The set of true singularities is

$$
S=\left\{\infty, 0,-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{-2}}, \frac{1}{\sqrt{-2}}\right\}
$$

Example 2

Let $C=\mathbb{Q}$, and
$L=\partial^{2}+\frac{\left(44 x^{4}-7\right)}{x\left(2 x^{2}-1\right)\left(2 x^{2}+1\right)} \partial+\frac{8\left(24 x^{6}-14 x^{4}-3 x^{2}+1\right)}{x^{2}\left(2 x^{2}+1\right)\left(2 x^{2}-1\right)^{2}}$

- The set of true singularities is

$$
S=\left\{\infty, 0,-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{-2}}, \frac{1}{\sqrt{-2}}\right\}
$$

- and

$$
S_{C}^{\mathrm{type}}=\left\{(\infty, 0),(x, 0),\left(x^{2}+\frac{1}{2}, 0\right),\left(x^{2}-\frac{1}{2}, 0\right)\right\} .
$$

Example

Example 2

Let $C=\mathbb{Q}$, and
$L=\partial^{2}+\frac{\left(44 x^{4}-7\right)}{x\left(2 x^{2}-1\right)\left(2 x^{2}+1\right)} \partial+\frac{8\left(24 x^{6}-14 x^{4}-3 x^{2}+1\right)}{x^{2}\left(2 x^{2}+1\right)\left(2 x^{2}-1\right)^{2}}$

- The set of true singularities is

$$
S=\left\{\infty, 0,-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{-2}}, \frac{1}{\sqrt{-2}}\right\}
$$

- and

$$
S_{C}^{\text {type }}=\left\{(\infty, 0),(x, 0),\left(x^{2}+\frac{1}{2}, 0\right),\left(x^{2}-\frac{1}{2}, 0\right)\right\} .
$$

Analyze example 2 , we get the set of candidates for σ is:

$$
\left\{-x,-\frac{1}{2 x}, \frac{1}{2 x}\right\}
$$

The corresponding subfields set is:

$$
\left\{\mathbb{C}\left(x^{2}\right), \mathbb{C}\left(x-\frac{1}{2 x}\right), \mathbb{C}\left(x+\frac{1}{2 x}\right)\right\}
$$

Theoretical support

The following σ and $\mathbb{C}(f)$ represent the Möbius transformation found previously and the corresponding fixed field, respectively. Suppose L descends to $\tilde{L} \in \mathbb{C}(f)\left[\partial_{f}\right]$, we have

$$
L \sim_{p} \tilde{L}=\sigma(\tilde{L}) \sim_{p} \sigma(L), \text { and so } L \sim_{p} \sigma(L)
$$

Theoretical support

The following σ and $\mathbb{C}(f)$ represent the Möbius transformation found previously and the corresponding fixed field, respectively. Suppose L descends to $\tilde{L} \in \mathbb{C}(f)\left[\partial_{f}\right]$, we have

$$
L \sim_{p} \tilde{L}=\sigma(\tilde{L}) \sim_{p} \sigma(L), \text { and so } L \sim_{p} \sigma(L)
$$

which means we can find the projective equivalence:

$$
y \rightarrow e^{\int r d x} \cdot\left(r_{0} y+r_{1} y^{\prime}\right)
$$

from the solution space of L to the solution space of $\sigma(L)$.

Theoretical support

The following σ and $\mathbb{C}(f)$ represent the Möbius transformation found previously and the corresponding fixed field, respectively. Suppose L descends to $\tilde{L} \in \mathbb{C}(f)\left[\partial_{f}\right]$, we have

$$
L \sim_{p} \tilde{L}=\sigma(\tilde{L}) \sim_{p} \sigma(L) \text {, and so } L \sim_{p} \sigma(L)
$$

which means we can find the projective equivalence:

$$
y \rightarrow e^{\int r d x} \cdot\left(r_{0} y+r_{1} y^{\prime}\right)
$$

from the solution space of L to the solution space of $\sigma(L)$. Question: How to compute \tilde{L} from it?

Finding the projectively equivalent operator \tilde{L}

Case A

Case \mathbf{A} is when $L \sim_{g} \sigma(L)$, in other words, there exists $G=r_{0}+$ $r_{1} \partial \in \mathbb{C}(x)[\partial]$ with $G(V(L))=V(\sigma(L))$. Then $\exists \tilde{L} \in \mathbb{C}(f)\left[\partial_{f}\right]$ with $\tilde{L} \sim_{g} L$.

Finding the projectively equivalent operator \tilde{L}

Case A

Case \mathbf{A} is when $L \sim_{g} \sigma(L)$, in other words, there exists $G=r_{0}+$ $r_{1} \partial \in \mathbb{C}(x)[\partial]$ with $G(V(L))=V(\sigma(L))$. Then $\exists \tilde{L} \in \mathbb{C}(f)\left[\partial_{f}\right]$ with $\tilde{L} \sim_{g} L$.
Question: Given G, how to find \tilde{L} ?

Finding the projectively equivalent operator \tilde{L}

Case A

Case \mathbf{A} is when $L \sim_{g} \sigma(L)$, in other words, there exists $G=r_{0}+$ $r_{1} \partial \in \mathbb{C}(x)[\partial]$ with $G(V(L))=V(\sigma(L))$. Then $\exists \tilde{L} \in \mathbb{C}(f)\left[\partial_{f}\right]$ with $\tilde{L} \sim_{g} L$.
Question: Given G, how to find \tilde{L} ?

Case A

Case \mathbf{A} is when $L \sim_{g} \sigma(L)$, in other words, there exists $G=r_{0}+$ $r_{1} \partial \in \mathbb{C}(x)[\partial]$ with $G(V(L))=V(\sigma(L))$. Then $\exists \tilde{L} \in \mathbb{C}(f)\left[\partial_{f}\right]$ with $\tilde{L} \sim_{g} L$.
Question: Given G, how to find \tilde{L} ?

Case A

Case \mathbf{A} is when $L \sim_{g} \sigma(L)$, in other words, there exists $G=r_{0}+$ $r_{1} \partial \in \mathbb{C}(x)[\partial]$ with $G(V(L))=V(\sigma(L))$. Then $\exists \tilde{L} \in \mathbb{C}(f)\left[\partial_{f}\right]$ with $\tilde{L} \sim_{g} L$.
Question: Given G, how to find \tilde{L} ?

Finding the projectively equivalent operator \tilde{L}

Question arising in the above diagram

Question: When does the above diagram commute?

Question arising in the above diagram

Question: When does the above diagram commute?

Theorem

Let L and σ be as before, and $G: V(L) \rightarrow V(\sigma(L))$ be a gauge transformation. Suppose $\tilde{L_{1}}, \tilde{L_{2}} \in \mathbb{C}(f)\left[\partial_{f}\right]$ and $A_{i}: V(L) \rightarrow V\left(\tilde{L}_{i}\right)$ are gauge transformations. Then:
(1) For each $i=1,2$, there is exactly one $\lambda_{i} \in \mathbb{C}^{*}$ such that

- the following diagram commutes
(2) If $\tilde{L_{1}} \sim_{g} \tilde{L_{2}}$ over $\mathbb{C}(f)$, then $\lambda_{1}=\lambda_{2}$; Otherwise, $\lambda_{1}=-\lambda_{2}$.
(3) In particular, $\left\{\lambda_{1},-\lambda_{1}\right\}$ depends only on (L, σ, G).

Diagram

Finding the projectively equivalent operator \tilde{L}

Finding \tilde{L} in Case A

Finding the projectively equivalent operator \tilde{L}

Finding \tilde{L} in Case A

$A-\sigma(A) \lambda G$ becomes a map from $V(L)$ to $V(\tilde{L})$, and has a nonzero kernel. This kernel corresponds to a right hand factor of L, since L is irreducible, the kernel is $V(L)$ itself.

Finding the projectively equivalent operator \tilde{L}

Finding \tilde{L} in Case A

$A-\sigma(A) \lambda G$ becomes a map from $V(L)$ to $V(\tilde{L})$, and has a nonzero kernel. This kernel corresponds to a right hand factor of L, since L is irreducible, the kernel is $V(L)$ itself.
$A-\sigma(A) \lambda G$ right divided by L, and this gives us 4 equations for coefficients of A.

Finding the projectively equivalent operator \tilde{L}

Example 3

$L=\partial^{2}+\frac{8(8 x+1)}{(4 x+1)(4 x-1)} \partial+\frac{4(8 x+1)}{x(4 x-1)(4 x+1)}$.
One of the candidates we found for σ is $-x$ and $G=\frac{x(4 x-1)}{4 x+1} \partial+\frac{12 x+1}{2(4 x+1)}$.
We implement the algorithm as follows:

Example 3

$L=\partial^{2}+\frac{8(8 x+1)}{(4 x+1)(4 x-1)} \partial+\frac{4(8 x+1)}{x(4 x-1)(4 x+1)}$.
One of the candidates we found for σ is $-x$ and $G=\frac{x(4 x-1)}{4 x+1} \partial+\frac{12 x+1}{2(4 x+1)}$.
We implement the algorithm as follows:

- Write $A=\left(a_{10}+a_{11} x\right) \partial+\left(a_{00}+a_{01} x\right)$, with a_{00}, a_{01}, a_{10}, a_{11} unknown and over $\mathbb{C}(f)$.

Example 3

$L=\partial^{2}+\frac{8(8 x+1)}{(4 x+1)(4 x-1)} \partial+\frac{4(8 x+1)}{x(4 x-1)(4 x+1)}$.
One of the candidates we found for σ is $-x$ and $G=\frac{x(4 x-1)}{4 x+1} \partial+\frac{12 x+1}{2(4 x+1)}$.
We implement the algorithm as follows:

- Write $A=\left(a_{10}+a_{11} x\right) \partial+\left(a_{00}+a_{01} x\right)$, with a_{00}, a_{01}, a_{10}, a_{11} unknown and over $\mathbb{C}(f)$.
- Get $\sigma(A)=-\left(a_{10}-a_{11} x\right) \partial+a_{00}-a_{01} x$. Set the remainder of $A-\sigma(A) \lambda G$ right divided by L to be 0 . We get a set of the coefficients as:

$$
\begin{aligned}
& \left\{2 a_{01}-16 \lambda a_{00}+\lambda a_{01}-64 \lambda a_{10}+32 f a_{10}+48 f \lambda a_{01}+16 a_{00},\right. \\
& 16 f a_{01}+2 a_{00}+32 f a_{00}+64 f \lambda a_{11}-\lambda a_{00}-48 f \lambda a_{00}+16 f \lambda a_{01}, \\
& 16 \lambda a_{10}+2 \lambda a_{00}+32 f a_{11}+48 f \lambda a_{11}-32 f \lambda a_{00}+16 a_{10}+ \\
& \lambda a_{11}+2 a_{11},-16 f \lambda a_{11}+2 a_{10}+32 f^{2} \lambda a_{01}+16 f a_{11}-48 f \lambda a_{10}- \\
& \left.\lambda a_{10}+32 f a_{10}-2 f \lambda a_{01}\right\} .
\end{aligned}
$$

Finding the projectively equivalent operator \tilde{L}

Example 3, continued...

- Equate the determinant of the corresponding matrix M $\operatorname{det}(M)$ to 0 gives a degree 4 equation for λ. Solve for λ.

Example 3, continued...

- Equate the determinant of the corresponding matrix M $\operatorname{det}(M)$ to 0 gives a degree 4 equation for λ. Solve for λ. $\operatorname{det}(M)=65536(\lambda-2)^{2} \cdot(\lambda+2)^{2} \cdot(f-1 / 16)^{4}$ and $\lambda= \pm 2$.

Finding the projectively equivalent operator \tilde{L}

Example 3, continued...

- Equate the determinant of the corresponding matrix M $\operatorname{det}(M)$ to 0 gives a degree 4 equation for λ. Solve for λ. $\operatorname{det}(M)=65536(\lambda-2)^{2} \cdot(\lambda+2)^{2} \cdot(f-1 / 16)^{4}$ and $\lambda= \pm 2$.
- Plug in one value for λ in M, then solve M to find values for $a_{00}, a_{01}, a_{10}, a_{11}$ in A. We take $\lambda=2$ and get

$$
A=\left(\frac{4}{3} x^{2}-\frac{1}{12}\right) \partial+\frac{4 x}{3}+1
$$

Example 3, continued...

- Equate the determinant of the corresponding matrix M $\operatorname{det}(M)$ to 0 gives a degree 4 equation for λ. Solve for λ. $\operatorname{det}(M)=65536(\lambda-2)^{2} \cdot(\lambda+2)^{2} \cdot(f-1 / 16)^{4}$ and $\lambda= \pm 2$.
- Plug in one value for λ in M, then solve M to find values for $a_{00}, a_{01}, a_{10}, a_{11}$ in A. We take $\lambda=2$ and get

$$
A=\left(\frac{4}{3} x^{2}-\frac{1}{12}\right) \partial+\frac{4 x}{3}+1
$$

- Implement the Maple Command LCLM of A and L, and then the Command rightdivision of the result gotten just now by A, we get the 2-descent \tilde{L} :

$$
\tilde{L}=\left(16 x_{1}-1\right) x_{1} \partial^{2}+\left(32 x_{1}-1\right) \partial+4
$$

Finding the projectively equivalent operator \tilde{L}

Case B

Case B is when $L \sim_{p} \sigma(L)$, in other words, there exists $G=e^{\int r}$. $\left(r_{0}+r_{1} \partial\right)$ such that $G(V(L))=V(\sigma(L))$.

Finding the projectively equivalent operator \tilde{L}

Case B

Case B is when $L \sim_{p} \sigma(L)$, in other words, there exists $G=e^{\int r}$. $\left(r_{0}+r_{1} \partial\right)$ such that $G(V(L))=V(\sigma(L))$.

Difficulty

We have an exponential part in G comparing with Case A. The algorithm mentioned above fails.

Case B

Case B is when $L \sim_{p} \sigma(L)$, in other words, there exists $G=e^{\int r}$. $\left(r_{0}+r_{1} \partial\right)$ such that $G(V(L))=V(\sigma(L))$.

Difficulty

We have an exponential part in G comparing with Case A. The algorithm mentioned above fails.

Solution

After multiplying solution of L by a suitable $e^{\int s}$, we can reduce this case to Case A.

Sketch of the Main Algorithm

Sketch of the Main Algorithm

Main Algorithm:

Input: A second order differential operator L; Output: Another second order differential operator \tilde{L}.

Sketch of the Main Algorithm

Sketch of the Main Algorithm

Main Algorithm:

Input: A second order differential operator L;
Output: Another second order differential operator \tilde{L}.
(1) Compute the set of true singularities of L, and their exponent-difference $\bmod \mathbb{Z}$.

Sketch of the Main Algorithm

Main Algorithm:

Input: A second order differential operator L;
Output: Another second order differential operator \tilde{L}.
(1) Compute the set of true singularities of L, and their exponent-difference $\bmod \mathbb{Z}$.
(2) Compute the candidates set for σ.

Sketch of the Main Algorithm

Main Algorithm:

Input: A second order differential operator L;
Output: Another second order differential operator \tilde{L}.
(1) Compute the set of true singularities of L, and their exponent-difference $\bmod \mathbb{Z}$.
(2) Compute the candidates set for σ.
(3) For each σ, check if $L \sim_{p} \sigma(L)$, and if so, to find $G: V(L) \rightarrow V(\sigma(L))$.

Sketch of the Main Algorithm

Main Algorithm:

Input: A second order differential operator L;
Output: Another second order differential operator \tilde{L}.
(1) Compute the set of true singularities of L, and their exponent-difference $\bmod \mathbb{Z}$.
(2) Compute the candidates set for σ.
(3) For each σ, check if $L \sim_{p} \sigma(L)$, and if so, to find $G: V(L) \rightarrow V(\sigma(L))$.
(9) If we find σ with $L \sim_{g} \sigma(L)$, then call algorithm Case A and stop; otherwise, if $L \sim_{p} \sigma(L)$ reduce Case B to Case A.

Andantage and Disadvantage of 2-descent, Case A

To decide \tilde{L}, we first compute λ and then a set of linear equations to determine $A=\left(a_{10}+a_{11} x\right) \partial+\left(a_{00}+a_{01} x\right)$.

Andantage and Disadvantage of 2-descent, Case A

To decide \tilde{L}, we first compute λ and then a set of linear equations to determine $A=\left(a_{10}+a_{11} x\right) \partial+\left(a_{00}+a_{01} x\right)$.

Advantage

This algorithm does give us one \tilde{L} which is equivalent to our input L.

Andantage and Disadvantage of 2-descent, Case A

To decide \tilde{L}, we first compute λ and then a set of linear equations to determine $A=\left(a_{10}+a_{11} x\right) \partial+\left(a_{00}+a_{01} x\right)$.

Advantage

This algorithm does give us one \tilde{L} which is equivalent to our input L.

Disadvantage

When we compute A, we select one ($a_{00}, a_{01}, a_{10}, a_{11}$) from a vector space of dimension 2 , that means our output \tilde{L} is just one member of a 2-dimensional set of possible outcomes. We can't expect \tilde{L} to have the optimal size.

What is improved in the new Algorithm

The improved algorithm will avoid computing a set of possible \tilde{L}_{s} and apt to give a smaller output.

Main Idea for the Improved Case A algorithm

We consider the following algorithm, here we denote $L_{4}:=\operatorname{LCLM}(L, \sigma(L)) \in C(f)\left[\partial_{f}\right]$ then $V\left(L_{4}\right)=V(L)+V(\sigma(L))$. The order of L_{4} is 4 except if $V(L)=V(\sigma(L))$.

Main Idea for the Improved Case A algorithm

We consider the following algorithm, here we denote $L_{4}:=\operatorname{LCLM}(L, \sigma(L)) \in C(f)\left[\partial_{f}\right]$ then $V\left(L_{4}\right)=V(L)+V(\sigma(L))$. The order of L_{4} is 4 except if $V(L)=V(\sigma(L))$.

Main Idea for the Improved Case A algorithm

We consider the following algorithm, here we denote $L_{4}:=\operatorname{LCLM}(L, \sigma(L)) \in C(f)\left[\partial_{f}\right]$ then $V\left(L_{4}\right)=V(L)+V(\sigma(L))$. The order of L_{4} is 4 except if $V(L)=V(\sigma(L))$.

Main Idea for the Improved Case A algorithm

We consider the following algorithm, here we denote $L_{4}:=\operatorname{LCLM}(L, \sigma(L)) \in C(f)\left[\partial_{f}\right]$ then $V\left(L_{4}\right)=V(L)+V(\sigma(L))$. The order of L_{4} is 4 except if $V(L)=V(\sigma(L))$.

Main Idea for the Improved Case A algorithm

We consider the following algorithm, here we denote $L_{4}:=\operatorname{LCLM}(L, \sigma(L)) \in C(f)\left[\partial_{f}\right]$ then $V\left(L_{4}\right)=V(L)+V(\sigma(L))$. The order of L_{4} is 4 except if $V(L)=V(\sigma(L))$.

Main Idea for the Improved Case A algorithm

We consider the following algorithm, here we denote $L_{4}:=\operatorname{LCLM}(L, \sigma(L)) \in C(f)\left[\partial_{f}\right]$ then $V\left(L_{4}\right)=V(L)+V(\sigma(L))$. The order of L_{4} is 4 except if $V(L)=V(\sigma(L))$.

Main Idea for the Improved Case A algorithm

We consider the following algorithm, here we denote $L_{4}:=\operatorname{LCLM}(L, \sigma(L)) \in C(f)\left[\partial_{f}\right]$ then $V\left(L_{4}\right)=V(L)+V(\sigma(L))$. The order of L_{4} is 4 except if $V(L)=V(\sigma(L))$.

Question: Is this a commutative diagram?

Support Theorem

Support Theorem

Lemma

Given a second order irreducible differential operator L and second order automorphism σ as in Section 3.4, and a gauge transformation $G: V(L) \rightarrow V(\sigma(L))$, then there exist a constant λ such that the following diagram commutes.

Support Theorem

Lemma

Given a second order irreducible differential operator L and second order automorphism σ as in Section 3.4, and a gauge transformation $G: V(L) \rightarrow V(\sigma(L))$, then there exist a constant λ such that the following diagram commutes.

Improved 2-descent Algorithm, Case A

Finding \tilde{L}

Questions: with the above diagram, do we have the \tilde{L} already? Is L_{4} the descent we want? If not, how do we find \tilde{L} ?

Finding \tilde{L}

Questions: with the above diagram, do we have the \tilde{L} already? Is L_{4} the descent we want? If not, how do we find \tilde{L} ?

Theorem

Given a second order differential operator L. σ, G, λ are as stated previously in the diagram. Then there exists a second order differential operator \tilde{L} such that \tilde{L} is invariant under σ and $(1+\lambda G) V(L)=V(\tilde{L})$.

Finding \tilde{L}

Questions: with the above diagram, do we have the \tilde{L} already? Is L_{4} the descent we want? If not, how do we find \tilde{L} ?

Theorem

Given a second order differential operator L. σ, G, λ are as stated previously in the diagram. Then there exists a second order differential operator \tilde{L} such that \tilde{L} is invariant under σ and $(1+\lambda G) V(L)=V(\tilde{L})$.

Computing \tilde{L}

(1) Compute $M:=\operatorname{LCLM}(L, 1+\lambda G)$.
(2) Compute the \tilde{L} such that $M=\tilde{L}(1+\lambda G)$.
(3) Verify $V(\tilde{L}) \subseteq V\left(L_{4}\right)$ and $V(\sigma(\tilde{L}))=V(\tilde{L})$

Application for the Improved 2-descent algorithm, Case A

Application for Fourth Order Differential Equation

$$
\begin{aligned}
L:= & \partial^{4}+\frac{\left(7 x^{4}-68 x^{3}-114 x^{2}+52 x-5\right)}{(x+1)\left(x^{2}-10 x+1\right)(x-1) x} \partial^{3}+ \\
& \frac{2\left(5 x^{5}-55 x^{4}-169 x^{3}+149 x^{2}-28 x+2\right)}{(x+1) x^{2}\left(x^{2}-10 x+1\right)(x-1)^{2}} \partial^{2}+ \\
& \frac{2\left(x^{4}-13 x^{3}-129 x^{2}+49 x-4\right)}{(x+1) x^{2}\left(x^{2}-10 x+1\right)(x-1)^{2}} \partial- \\
& \frac{3(x+1)^{2}}{(x-1)^{2} x^{3}\left(x^{2}-10 x+1\right)}
\end{aligned}
$$

L has 4 regular true singularities:

Result after 2-descent Algorithm, Case A

$$
\begin{aligned}
\tilde{L_{1}}:= & 16 x_{1}^{4}\left(x_{1}+3\right)\left(5 x_{1}^{2}+10 x_{1}+1\right)\left(9 x_{1}^{8}+1008 x_{1}^{7}-31820 x_{1}^{6}+264480 x_{1}^{5}\right. \\
& \left.-14194 x_{1}^{4}+162992 x_{1}^{3}-8156 x_{1}^{2}+18368 x_{1}+529\right)\left(x_{1}-1\right)^{4} \partial^{4} \\
& +32 x_{1}^{3}\left(-7935-358000 x_{1}-3502550 x_{1}^{2}-24264785 x_{1}^{4}-1520720 x_{1}^{3}\right. \\
& -12737440 x_{1}^{5}-13562976 x_{1}^{7}-20800372 x_{1}^{6}-905046 x_{1}^{10}+20706063 x_{1}^{8} \\
& \left.+28080 x_{1}^{11}+6593808 x_{1}^{9}+225 x_{1}^{12}\right)\left(x_{1}-1\right)^{3} \partial^{3} \\
& +8 x_{1}^{2}\left(2250 x_{1}^{13}+312135 x_{1}^{12}-12439492 x_{1}^{11}+134614866 x_{1}^{10}\right. \\
& -42449802 x_{1}^{9}-470021643 x_{1}^{8}+267358792 x_{1}^{7}-102361428 x_{1}^{6}+163767350 x_{1}^{5} \\
& \left.+221768417 x_{1}^{4}-11134724 x_{1}^{3}+48114210 x_{1}^{2}+3717898 x_{1}+77763\right)\left(x_{1}-1\right)^{2} \partial^{2} \\
& +8 x_{1}\left(x_{1}-1\right)\left(1350 x_{1}^{14}+230355 x_{1}^{13}-10741153 x_{1}^{12}+169118578 x_{1}^{11}\right. \\
& -503407892 x_{1}^{10}+340703465 x_{1}^{9}+768939585 x_{1}^{8}-411403540 x_{1}^{7} \\
& +839007558 x_{1}^{6}-333028107 x_{1}^{5}-52500447 x_{1}^{4}+44391810 x_{1}^{3}-43359960 x_{1}^{2} \\
& \left.-2602385 x_{1}-42849\right) \partial+\cdots
\end{aligned}
$$

Result after Improved 2-descent Algorithm, Case A

$$
\begin{aligned}
\tilde{L}_{2}:= & \partial^{4}+\frac{77 x_{1}^{6}-1709 x_{1}^{5}-11250 x_{1}^{4}-11530 x_{1}^{3}+10377 x_{1}^{2}-2457 x_{1}+108}{\left(x_{1}-1\right) x_{1}\left(11 x_{1}^{5}-215 x_{1}^{4}-1250 x_{1}^{3}-1278 x_{1}^{2}+711 x_{1}-27\right)} \partial^{3}+ \\
& \frac{220 x_{1}^{7}-6063 x_{1}^{6}-46066 x_{1}^{5}-40985 x_{1}^{4}+71024 x_{1}^{3}-30225 x_{1}^{2}+3078 x_{1}-135}{2\left(x_{1}^{2}-2 x_{1}+1\right) x_{1}^{2}\left(11 x_{1}^{5}-215 x_{1}^{4}-1250 x_{1}^{3}-1278 x_{1}^{2}+711 x_{1}-27\right)} \partial^{2}+ \\
& \frac{22 x_{1}^{6}-931 x_{1}^{5}-10011 x_{1}^{4}-12590 x_{1}^{3}+15680 x_{1}^{2}-3039 x_{1}+117}{\left(x_{1}^{2}-2 x_{1}+1\right) x_{1}^{2}\left(11 x_{1}^{5}-215 x_{1}^{4}-1250 x_{1}^{3}-1278 x_{1}^{2}+711 x_{1}-27\right)} \partial- \\
& \frac{3\left(121 x_{1}^{5}+175 x_{1}^{4}-166 x_{1}^{3}+1118 x_{1}^{2}-227 x_{1}+3\right)}{16\left(x_{1}^{2}-2 x_{1}+1\right) x_{1}^{4}\left(11 x_{1}^{4}-248 x_{1}^{3}-506 x_{1}^{2}+240 x_{1}-9\right)}
\end{aligned}
$$

Where x_{1} represents $x^{2} . \tilde{L_{2}}$ has length 635.

Things we should consider

After implementing 2-decent, we may end up with \tilde{L} with 3 true singularities. If so, we can solve such \tilde{L} in terms of hypergeometric functions, further more L.
To find the ${ }_{2} F_{1}$ Solutions, we need connect with the hypergeometric equations, which have the following properties

Things we should consider

After implementing 2-decent, we may end up with \tilde{L} with 3 true singularities. If so, we can solve such \tilde{L} in terms of hypergeometric functions, further more L.
To find the ${ }_{2} F_{1}$ Solutions, we need connect with the hypergeometric equations, which have the following properties
(a) Three true regular singularities, located at $0,1, \infty$.
(b) No apparent singularities.

What we have for \tilde{L} ?

(a) Three true regular singularities, located say at $p_{1}, p_{2}, p_{3} \in \mathbb{P}^{1}$.
(b) Any number of apparent singularities.

What we have for \tilde{L} ?

(a) Three true regular singularities, located say at $p_{1}, p_{2}, p_{3} \in \mathbb{P}^{1}$.
(b) Any number of apparent singularities.

To solve \tilde{L} in terms of hypergometric functions, we need to apply two types of transformations:
(a) A Möbius transformation (a change of variables) to move $p 1, p 2, p 3$ to $0,1, \infty$.
(b) A projective equivalence \sim_{p} to eliminate all apparent singularities.

Classification of Gauss Hypergeometric Equations

Classification of Gauss Hypergeometric Equations

Theorem

Let L_{1}, L_{2} be two Gauss hypergeometric differential operators. Assume the exponent difference set of L_{1} at $0,1, \infty$ is $\left\{e_{0}, e_{1}, e_{\infty}\right\}$, and the exponent difference set of L_{2} at $0,1, \infty$ is $\left\{d_{0}, d_{1}, d_{\infty}\right\}$. If
(1) $e_{i}-d_{i} \in \mathbb{Z}$ for all $i \in\{0,1, \infty\}$
and
(2) $\sum_{i \in\{0,1, \infty\}}\left(e_{i}-d_{i}\right)$ is an even integer,

Then $L_{1} \sim_{p} L_{2}$.

Classification of Gauss Hypergeometric Equations

Theorem

Let L_{1}, L_{2} be two Gauss hypergeometric differential operators. Assume the exponent difference set of L_{1} at $0,1, \infty$ is $\left\{e_{0}, e_{1}, e_{\infty}\right\}$, and the exponent difference set of L_{2} at $0,1, \infty$ is $\left\{d_{0}, d_{1}, d_{\infty}\right\}$. If
(1) $e_{i}-d_{i} \in \mathbb{Z}$ for all $i \in\{0,1, \infty\}$
and
(2) $\sum_{i \in\{0,1, \infty\}}\left(e_{i}-d_{i}\right)$ is an even integer,

Then $L_{1} \sim_{p} L_{2}$.

Corollary

Let L_{1}, L_{2} be two Gauss hypergeometric differential operator. Assume the exponent difference set of L_{1} at $0,1, \infty$ is $\left\{e_{0}, e_{1}, e_{\infty}\right\}$, and the exponent difference set of L_{2} at $0,1, \infty$ is $\left\{d_{0}, d_{1}, d_{\infty}\right\}$. If $\frac{1}{2}+\mathbb{Z}$ appears in $\left\{e_{0}, e_{1}, e_{\infty}\right\}$ and $\left\{d_{0}, d_{1}, d_{\infty}\right\}$, then L_{1} is projectively equivalent to L_{2} if $e_{i}-d_{i} \in \mathbb{Z}$ for all $i \in\{0,1, \infty\}$.

Possible Hypergeometric Equations corresponding to \tilde{L}

Lemma

Suppose L is projectively equivalent to a hypergeometric equation. suppose that the exponent-differences of L at $0,1, \infty$ are d_{0}, d_{1}, d_{∞}. Let L_{1} be a hypergeometric equation with exponent-differences: d_{0}, d_{1}, d_{∞} and L_{2} be a hypergeometric equation with exponent-differences: $d_{0}+1, d_{1}, d_{\infty}$. Then $L \sim_{p} L_{1}$ or $L \sim_{p} L_{2}$ (both are true if $\left\{d_{0}, d_{1}, d_{\infty}\right\} \bigcap\left\{\frac{1}{2}+\mathbb{Z}\right\} \neq \emptyset$).

Possible Hypergeometric Equations corresponding to \tilde{L}

Lemma

Suppose L is projectively equivalent to a hypergeometric equation. suppose that the exponent-differences of L at $0,1, \infty$ are d_{0}, d_{1}, d_{∞}. Let L_{1} be a hypergeometric equation with exponent-differences: d_{0}, d_{1}, d_{∞} and L_{2} be a hypergeometric equation with exponent-differences: $d_{0}+1, d_{1}, d_{\infty}$. Then $L \sim_{p} L_{1}$ or $L \sim_{p} L_{2}$ (both are true if $\left\{d_{0}, d_{1}, d_{\infty}\right\} \bigcap\left\{\frac{1}{2}+\mathbb{Z}\right\} \neq \emptyset$).

With these exponent-differences d_{0}, d_{1}, d_{∞} at $0,1, \infty$, we construct the gauss hypergeometric equations by the following fomular:

$$
x(x-1) \partial^{2}-\left(-2 x+x d_{0}+x d_{1}+1-d_{0}\right) \partial+\frac{\left(d_{0}-1+d_{1}+d_{\infty}\right)\left(d_{0}-1+d_{1}-d_{\infty}\right)}{4}
$$

Algorithm for finding ${ }_{2} F_{1}$ Solutions

Having these theorems, we have evidences to find the ${ }_{2} F_{1}$ solution of our \tilde{L}.
(1) Compute the exponent-difference at the three singularities of \tilde{L} module \mathbb{Z}. Denote them as e_{1}, e_{2}, e_{3}.
(2) Find the two Gauss hypergeometric equations L_{1}, L_{2} by the formula and theorem.
(3) Find the Möbius transformation $m(x)$ between p_{1}, p_{2}, p_{3} and $0,1, \infty$.
(1) Call equiv to check if L_{1} or L_{2} (after change of variable) is projectively equivalent to \tilde{L}, if so, go to next step. Denote the equivalence as G
(5) Find the Gauss hypergeometric solutions of

Sol : $=C_{1} y_{1}(m(x))+C_{2} y_{2}(m(x))$ if $e_{1} \neq 0$, otherwise, compute Sol $:=C_{1} y_{1}(m(x))+C_{2} y_{2}^{\prime}(m(x))$.
(0) Compute the ${ }_{2} F_{1}$-type solution of \tilde{L} by computing $G\left(\mathrm{Sol}^{\prime}\right)$.

Final solving by 2-descent

Input: A second order irreducible differential operator $L \in C(x)[\partial]$ and the field C.
Output: ${ }_{2} F_{1}$-type solution, if it exists..
(1) Call Algorithm 2-descent in Chapter 3 to Compute the 2-descent of L, \tilde{L}, if it exists.
(2) Compute the true singularities of \tilde{L}.
(3) If \tilde{L} has 3 true regular singularities, then call Algorithm finding ${ }_{2} F_{1}$-type solution with 3 singularities and find the solution sol; Otherwise, stop and return NULL.
(9) Apply the Change of variable $x \mapsto f$ to \tilde{L}, Sol, we get $\tilde{L^{\prime}}$ and its ${ }_{2} F_{1}$ solution Sol'.
(6) Call equiv to Compute the equivalence G between \tilde{L}^{\prime} and L.
(0) Compute the ${ }_{2} F_{1}$-type solution of L by computing $G\left(\mathrm{Sol}^{\prime}\right)$.

Example 5

Let

$$
L=\partial^{2}+\frac{28 x-5}{x(4 x-1)} \partial+\frac{144 x^{2}+20 x-3}{x^{2}(4 x-1)(4 x+1)}
$$

Step 1: Compute the 2-descent of L from Section 3.7, we have

$$
\tilde{L}:=(16 x-1) x \partial^{2}+(32 x-2) \partial+4
$$

step 2: Compute the true singularities of \tilde{L}, we found it has 3 true regular singularities: $0, \frac{1}{16}, \infty$.
step 3: Call Algorithm finding ${ }_{2} F_{1}$-type solution with 3 singularities, we found the ${ }_{2} F_{1}$ solution of \tilde{L} as

$$
\text { Sol }:=C_{1}(64 x-4)_{2} F_{1}\left(\frac{3}{2}, \frac{3}{2} ; 2 ; 16 x\right)-C_{2}(64 x-4)_{2} F_{1}\left(\frac{3}{2}, \frac{3}{2} ; 2 ; 1-16 x\right)
$$

Example 5, continued...

Step 4: From Section 3.7, we know that $f=x^{2}$, so the change of variable would be $x \mapsto x^{2}$. Apply transformation to \tilde{L} and Sol, we have

$$
\begin{gathered}
\tilde{L}^{\prime}:=x(4 x+1)(4 x-1) \partial^{2}+(12 x-3)(4 x+1) \partial+16 x \\
\text { Sol }:=C_{1}\left(64 x^{2}-4\right)_{2} F_{1}\left(\frac{3}{2}, \frac{3}{2} ; 2 ; 16 x^{2}\right)-C_{2}\left(64 x^{2}-4\right)_{2} F_{1}\left(\frac{3}{2}, \frac{3}{2} ; 2 ; 1-16 x^{2}\right)
\end{gathered}
$$

Step 5: Compute the equivalence between \tilde{L}^{\prime} and L, we have

$$
G:=\frac{1}{x(4 x-1)}
$$

Step 6: Compute $G\left(\mathrm{Sol}^{\prime}\right)$, we have the final solution as

$$
C_{1} \frac{16 x+1}{x}{ }_{2} F_{1}\left(\frac{3}{2}, \frac{3}{2} ; 2 ; 16 x^{2}\right)-C_{2} \frac{16 x+1}{x}{ }_{2} F_{1}\left(\frac{3}{2}, \frac{3}{2} ; 2 ; 1-16 x^{2}\right)
$$

Conclusion

We focus on finding the hypergeometric solutions of second order linear equations. Contributions of this theis are:
(1) Developed 2-descent algorithms to reduce our differential equation to one with fewer true singularities.
(2) Improved the 2-descent algorithm to produce shorter output, which is helpful for finding the ${ }_{2} F_{1}$ solutions.
(3) Finding the ${ }_{2} F_{1}$ solutions.

Work may be done in future:
(1) Extend the 2-descent algorithm to bigger descent, for example: $C_{2} \times C_{2}, D_{n}, A_{4}, S_{4}$, or A_{5}.
(2) Extend the 2-descent to 3 -descent, for which the index of the descent subfield is 3 .

Thank Dr. van Hoeij for the continuous support, encouragement, the guide of research and interest.

Thank every committee member for devoting time to reading this dissertation and giving me suggestions.

