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A complete classification of Belyi functions for transforming certain hypergeometric equations to Heun equa-
tions is given. The considered hypergeometric equations have the local exponent differences 1/k, 1/`, 1/m
that satisfy k, `,m ∈ N and the hyperbolic condition 1/k + 1/` + 1/m < 1. There are 366 Galois orbits
of Belyi functions giving the considered (non-parametric) hypergeometric-to-Heun pull-back transformations.
Their maximal degree is 60, which is well beyond reach of standard computational methods. To obtain these
Belyi functions, we developed two efficient algorithms that exploit the implied pull-back transformations.

1 Introduction

Belyi functions and dessins d’enfants [30] is a captivating field of research in algebraic geometry, complex
analysis, Galois theory and related fields. However, computation of Belyi functions of degree over 20 is still
considered hard [14, Example 2.4.10] even for genus 0 Belyi coverings P1 → P1. This computational difficulty
promises a long lasting appeal, both for constructionists and theoreticians. Grothendieck [10, pg. 248] doubted
that “there is a uniform method for solving the problem by computer”. The subject of this paper is effective
computation of certain Belyi functions P1 → P1, of degree up to 60, utilizing the fact that those functions
transform Fuchsian differential equations with a small number of singularities.

This paper considers genus 0 Belyi functions, that is, rational functions ϕ : P1
x → P1

z that branches only in
the 3 fibers z = ϕ(x) ∈ {0, 1,∞}. We distinguish the two projective lines by the indices x, z just as in [27]. To
describe the Belyi functions we classify, we introduce the following definitions.

Definition 1.1 Given positive integers k, `,m, a Belyi function ϕ : P1
x → P1

z is called (k, `,m)-regular if all
points above z = 1 have branching order k, all points above z = 0 have branching order `, and all points above
z =∞ have branching order m.

Examples of (2, 3,m)-regular Belyi functions with m ∈ {3, 4, 5} are the well-known Galois coverings P1 →
P1 of degree 12, 24, 60 with the tetrahedralA4, octahedral S4 or icosahedralA5 monodromy groups, respectively.
The Platonic solids give their dessins d’enfants [17].

Definition 1.2 Given yet another positive integer n, a Belyi function ϕ : P1
x → P1

z is called (k, `,m)-minus-
n-regular if, with exactly n exceptions, all points above z = 1 have branching order k, all points above z = 0
have branching order `, and all points above z = ∞ have branching order m. We will also use the shorter term
(k, `,m)-minus-n.

Examples of (k, `,m)-minus-2 functions are quotients of the just mentioned Galois coverings by a cyclic
monodromy group. If 1/k + 1/`+ 1/m > 1 and n ≥ 3, there are (k, `,m)-minus-n Belyi functions of arbitrary
high degree. They give Kleinian pull-back transformations [12,25] to second order Fuchsian equations with finite
monodromy (i.e., a basis of algebraic solutions) from a few standard hypergeometric equations. An example of a
(2, 3, 5)-minus-3 Belyi function of degree 1001 is given online at [23] (click on the file: NamingConvention).
As Remark 4.1 here shows, (k, `,m)-minus-1 Belyi functions exist only if 1 ∈ {k, `,m}.
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Definition 1.3 A Belyi function ϕ is called minus-n-hyperbolic if:

(i) there are positive integers k, `,m satisfying 1/k + 1/`+ 1/m < 1 (the hyperbolic condition) such that ϕ is
(k, `,m)-minus-n-regular;

(ii) there is at least one point of branching order k above z = 1, a point of order ` above z = 0, and a point of
order m above z =∞.

Minus-3-hyperbolic Belyi functions are listed in [26, §9]. Table 3 in [26] lists nine1 Galois orbits of such Belyi
functions, of degree up to 24.

Cases where (i) holds but not (ii) are called parametric, referring to the fact that at least one of k, `,m
can be replaced by infinitely many other values without affecting (i). Parametric hypergeometric-to-Heun
transformations were classified in [28] and have degrees up to 12.

This paper gives all minus-4-hyperbolic Belyi functions P1 → P1. The motivation is that they give
transformations of Gauss hypergeometric differential equations without Liouvillian [30] solutions to Heun
equations (i.e., Fuchsian equations with 4 singularities). This allows to express those non-Liouvillian Heun
functions in terms of better understood Gauss hypergeometric functions. The application to these transformations
of Fuchsian equations is discussed in §4. This paper, combined with the list of parametric hypergeometric-to-
Heun transformations in [28], covers all non-Liouvillian cases of hypergeometric-to-Heun transformations.

We used two algorithms to compute the minus-4-hyperbolic Belyi functions. They both utilize the fact that
these Belyi functions give hypergeometric-to-Heun transformations. One algorithm is probabilistic and uses
modular lifting. It exploits the fact that Heun’s equation is represented by few parameters. The other algorithm
is deterministic, and uses existence of a hypergeometric-to-Heun transformation to get more algebraic equations
for the (a priori) undetermined coefficients of a Belyi function.

The branching patterns are enumerated in §3, following the approach from [27]. Some of our Belyi functions
are related to notable Shimura curves [7], [29]. The application to hypergeometric-to-Heun transformations is
explained in §4. Our algorithms are presented in §5. Section 6 discusses special obstructed cases of encountered
Belyi functions. The Appendix sections give ordered lists A–J of computed Belyi functions, discusses composite
Belyi functions, and compares our results with Felixon’s list [8] of Coxeter decompositions in the hyperbolic
plane. All dessins d’enfants of computed Belyi coverings are depicted in this paper, most of them next to the A–J
tables of §B. Our list of dessins is long (compare with [1, 4, 15]), so all key steps had to be automated.

2 Organizing definitions, examples

To help organize the list of Belyi functions we start with a few definitions and informally discuss (with a few
examples, including those of degree 60) dessins d’enfants in a geometric way.

Definition 2.1 Let ϕ be a (k, `,m)-minus-n-regular Belyi function for some n. The regular branchings of
ϕ are the points above z = 1 of order k, the points above z = 0 of order `, and the points above z = ∞ of
order m. The other n points in the three fibers are called exceptional points of ϕ. A branching fraction of ϕ
is a rational number A/B, where A is a branching order at an exceptional point Q, and B ∈ {k, `,m} is the
prescribed branching order for the fiber of Q.

Definition 2.2 Let ϕ : P1
x → P1

z be a (k, `,m)-minus-4 Belyi function. Let q1, q2, q3, q4 ∈ P1
x denote its

exceptional points. The j-invariant of ϕ is the j-invariant of the elliptic curve Y 2 =
∏
qi 6=∞(X − qi), given by

formula (2.2) below. It is invariant under Möbius transformations of P1
x.

A canonical form of ϕ is a composition of ϕ with a Möbius transformation that has three exceptional points
at x = 0, 1,∞. The fourth exceptional point then becomes x = t, where t is a cross-ratio of q1, q2, q3, q4. The
cross-ratio depends on the order of q1, q2, q3, q4, and there is an S3-orbit (S3

∼= S4/V4){
t, 1− t, t

t− 1
,

1

t
,

1

1− t
, 1− 1

t

}
(2.1)

1 Minus-3-hyperbolic Belyi functions give rise to the hypergeometric transformations described in [26, §9]. There are 10 different such
Belyi functions up to Möbius transformations, in 9 Galois orbits. The degree 18 Belyi function there is defined over Q(

√
−7).
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of related cross-ratios. Any of these values is a t-value of ϕ. The j-invariant is

j(t) =
256 (t2 − t+ 1)3

t2(t− 1)2
. (2.2)

As an example, t ∈ {−1, 2, 12} gives j = 1728. If j 6∈ {0, 1728} then the six t-values in the above S3-orbit
are distinct.

Definition 2.3 The t-field resp. j-field of ϕ is the number field generated by a t-value resp. the j-invariant.
The r-field (canonical realization field) of ϕ is the smallest field over which a canonical form of ϕ is defined.

These fields do not depend on the ordering of the 4 exceptional points; any reordering will send t to an element
of the set (2.1), all of which generate the same t-field. The r-field contains t and is well defined because two
canonical forms of ϕ can only differ by a Möbius transformation defined over the t-field.

Example 2.4 The degree 12 rational function

ϕ(x) =
27(x− 1)(8x3 − 72x2 − 27x+ 27)3

64x2(x− 3)9(x− 9)

is a (2, 3, 9)-minus-4 Belyi map. Indeed, with precisely 4 exceptions in P1
x, the roots 1−ϕ(x) have multiplicity 2,

the roots of ϕ(x) have multiplicity 3, and the poles have multiplicity 9. It is already in a canonical form, as x = 0,
x = 1 and x = ∞ are among the 4 exceptional points. The fourth exceptional point x = 9 is a t-value. The
j-invariant is equal to 22733/34 by formula (2.2).

The branching pattern of ϕ is given by three partitions of the degree d = 12 into branching orders above
1, 0,∞. Using the notation in [27], we express the branching pattern of ϕ shortly as follows:

6 [2] = 3 [3] + 2 + 1 = [9] + 2 + 1.

The prescribed branching orders are indicated with square brackets, with their multiplicity in front. The 4
branching orders that are not enclosed in square brackets represent the 4 exceptional points. Dividing them
by their prescribed branching order(s) produces the 4 branching fractions: 1/3, 2/3, 1/9, 2/9.

In the application setting of hypergeometric-to-Heun transformations in §4, the regular branchings will become
regular points (after a proper projective normalization) of the pulled-back Heun equation H; the exceptional
points will be the singularities of H; and the branching fractions will be the exponent differences of H . The
exponent differences of the hypergeometric equation under transformation will be 1/k, 1/`, 1/m. Example 2.4
will be continued in §4.

Definitions 2.2, 2.3 will be used to group the obtained Belyi functions into manageable classes. The Belyi
functions will be listed twice in this paper. The first list is Tables 2.3.7–3.4.4 of §3. Its ordering by the (k, `,m)-
triples and branching patterns reflects the classification scheme. In Appendix §B, the list of Galois orbits is
grouped and ordered by the j-fields, t-fields, branching fractions. This order allows quick recognition whether a
given Heun function is reducible to a hypergeometric function with a rational argument ϕ.

Belyi functions nicely correspond to certain graphs called dessins d’enfants2. Mimicking [4, Section 2],
we spell out standard correspondences for genus 0 Belyi functions as follows. There are 1-1 correspondences
between these objects:

(I) Belyi functions P1
x → P1

z up to Aut(P1
x), i.e. up to Möbius transformations x 7→ (ax+ b)/(cx+ d).

(II) Plane dessins d’enfants, up to a homeomorphism of the Riemann sphere.

(III) The triples (g0, g1, g∞) of elements in a symmetric group Sd, such that:

2 A dessin d’enfant [30] is an oriented bi-colored graph (possibly with multiple edges), with a cyclic order of edges around each vertex
given. This defines a unique (up to a homeomorphism) embedding of the bi-colored graph into a Riemann surface. Customarily, the vertex
colors are black and white. The dessins d’enfants in this paper can be drawn on a plane because we only consider genus 0 Belyi coverings.
Given a Belyi covering ϕ, its dessin d’enfant is realized as the pre-image of the interval segment [0, 1] ⊂ R ⊂ C onto its Riemann surface,
with the vertices above z = 0 colored black and the vertices z = 1 colored white. The branching pattern of ϕ determines the degrees (i.e.,
valencies) of vertices of both colors of its dessin d’enfant, and the degrees of cells on the Riemann surface. The cell degree is determined by
counting vertices of one color while tracing its boundary. The degree of a dessin d’enfant is the degree of the corresponding Belyi function.
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• g0g1g∞ = 1;
• the total number of cycles in g0, g1, g∞ is equal to d+ 2 (see the proof of Lemma 3.1);
• g0, g1, g∞ generate a transitive action on a set of d elements;

up to simultaneous conjugacy of g0, g1, g∞ in Sd.

(IV) Field extensions of Q(z) of genus 0, unramified outside z = 0, 1,∞ (Q = algebraic closure of Q).

Part (III) gives the monodromy presentation of a Belyi covering, and d is the degree. The dessin d’enfant is
basically a graphical representation of the combinatorial data in (III). This paper presents all obtained dessins
pictorially, while the accompanying website [23] gives the Belyi maps (I), the permutations in (III) and other data
(such as j, t, r-fields). For each fiber z ∈ {0, 1,∞}, the conjugacy class of gz in Sd is determined by the partition
of d that reflects the branching pattern in the fiber. Part (IV) is convenient for considering the composition
structure of Belyi maps; see Appendix C.

The considered Belyi functions have rather regular dessins d’enfants. Definitions 1.1–1.3 are easy to
reformulate for dessins d’enfants:

Definition 2.5 A dessin d’enfant is called (k, `,m)-minus-n-regular if, with exactly n exceptions, all white
vertices have degree k, all black vertices have degree `, and all cells have degree m.

Definition 2.6 A dessin d’enfant Γ is called minus-n-hyperbolic if:

(i) there are positive integers k, `,m satisfying 1/k+ 1/`+ 1/m < 1 such that Γ is (k, `,m)-minus-n-regular;

(ii) there is at least one white vertex of degree k, a black vertex of degree `, and a cell of degree m.

All minus-4-hyperbolic dessins d’enfants could be found by a combinatorial search on a computer. But
with our Maple implementations it was faster to compute first the minus-4-hyperbolic Belyi functions, and
then compute their monodromy permutations in (III). This paper presents all minus-4-hyperbolic dessins (up to
complex conjugation), most of them next to the tables of Appendix §B.

In total, there are 872 Belyi functions of the minus-4-hyperbolic type, up to Möbius transformations in both
x and z. They come in 366 Galois orbits3. In leap years we could decorate a calendar, one Galois orbit per day.
We categorize and label the Galois orbits of the objects in (I)–(IV) as A1–J28; see §3.1 and Appendix §B. The
largest Galois orbit J28 has 15 dessins, for a (2, 3, 7)-minus-4 branching pattern of degree 37. Completeness is
checked with two independent algorithms and other checks, see §5 and Appendix §D.

The highest degree of a minus-4-hyperbolic Belyi function is 60. Its branching pattern is 30 [2] = 20 [3] =
8 [7] + 1 + 1 + 1 + 1. There are two Galois orbits for this branching pattern, with three dessins each. We identify
the two Galois orbits as H14 and H46. The dessins d’enfants for these Belyi functions are depicted4 in Figure 1.
The 4 exceptional points in each dessin are represented by circular loops; they could be assumed to lie in the
center of each cell of degree 1. The other cells (including the outer ones) have degree 7. The left-most dessins of
H14 and H46 clearly have a reflection symmetry, hence they are defined over R. The other two dessins of H46
are mirror images of each other, and are related by the complex conjugation.

The Belyi functions of degree 60 are composite. Their components are labeled H10 for H14, and H46, J19
for H45. The Belyi functions H10, H14 are examples that have an obstruction, as described in §6. This has
interesting geometric consequences for the dessins d’enfants. Although both have a totally real moduli field
Q(cos 2π

7 ), not all dessins of H10 and H14 have a reflection symmetry. Rather, the complex conjugation may
give a homeomorphic dessin, identifiable with the original only after an automorphism of the Riemann sphere.
For example, consider the middle and the right-most dessins of H14 in Figure 1. The dessins d’enfants for H10
are depicted in Figure 2, together with most of other examples with an obstruction.

3 Belyi functions are explicitly defined over algebraic number fields, and the absolute Galois group Gal(Q/Q) permutes Belyi coverings
with the same branching pattern. The size of a Galois orbit of dessins d’enfants is the degree of the moduli field; see §6. Given a branching
pattern, the set of Belyi coverings with that branching pattern is finite (up to Möbius transformations), possibly empty. The Galois action
does not need to be transitive on this set, and several Galois orbits with the same branching pattern may appear.

4 The dessins in Figure 1 have all white vertices of order 2, hence they are examples of clean dessins d’enfants. It is customary to depict
clean dessins without white vertices, so that edges connect black vertices directly, and loops are possible. A white vertex is then implied in
the middle of each edge.
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H14

H46

Fig. 1 The degree 60 dessins d’enfants

3 The branching patterns

We enumerate the possible branching patterns in the same way as was done for parametric hypergeometric-to-
Heun transformations in [27]. To end up with a finite number of cases, we use Hurwitz formula and the hyperbolic
condition 1/k+ 1/`+ 1/m < 1. Without loss of generality, we assume the non-decreasing order k ≤ ` ≤ m for
the regular branching orders from now on.

Lemma 3.1 Let ϕ be a minus-4-hyperbolic Belyi covering of degree d, with the regular branching orders
k ≤ ` ≤ m ∈ Z>0. Then

(i) There are exactly d− 2 regular branchings and 4 exceptional points.

(ii) d−
⌊
d

k

⌋
−
⌊
d

`

⌋
−
⌊
d

m

⌋
≤ 2.

(iii) Let S denote the sum of 4 branching fractions. Then d =
2− S

1− 1
k −

1
` −

1
m

.

(iv)
(

1− 1

k
− 1

`

)
m2 − 3m+ 4 ≤ 0.

(v)
1

2
≤ 1

k
+

1

`
< 1.

P r o o f. By Hurwitz formula (or [26, Lemma 2.5]), there are 3d − (2d − 2) = d + 2 distinct points above
{0, 1,∞} when ϕ is a Belyi map P1 → P1. The first claim follows. The number of regular branchings is at most
bd/kc+ bd/`c+ bd/mc. This gives the inequality in (ii). The number d− 2 of regular branchings is also equal
to d/k + d/`+ d/m− S, giving the degree formula in (iii).

We have d ≥ m, otherwise condition (ii) of Definition 1.3 is not satisfied. Combining this with the degree
formula gives the inequality in (iv). Together with m ≥ 4, the inequality in (iv) gives 1− 1/k − 1/` ≤ 1/2. Part
(v) follows.
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The inequalities in (iv), (v) give a finite list of triples (k, `,m). Setting S = 4/m in part (iii) gives an upper
bound for d, leaving the following candidates for (k, `,m, d):

(2, 3, 7,≤ 60), (2, 3, 8,≤ 36), (2, 3, 9,≤ 28), (2, 3, 10,≤ 24),
(2, 3, 11,≤ 21), (2, 3, 12,≤ 20), (2, 3, 13,≤ 18), (2, 3, 14,≤ 18),
(2, 3, 15,≤ 17), (2, 3, 16,≤ 16), (2, 4, 5,≤ 24), (2, 4, 6,≤ 16),
(2, 4, 7,≤ 13), (2, 4, 8,≤ 12), (2, 4, 9,≤ 11), (2, 4, 10,≤ 10),
(2, 5, 5,≤ 12), (2, 5, 6,≤ 10), (2, 5, 7,≤ 9), (2, 5, 8,≤ 8),
(2, 6, 6,≤ 8), (2, 6, 7,≤ 7), (3, 3, 4,≤ 12), (3, 3, 5,≤ 9),
(3, 3, 6,≤ 8), (3, 3, 7,≤ 7), (3, 4, 4,≤ 6), (3, 4, 5,≤ 5),
(4, 4, 4,≤ 4).

The last two candidates give less than 4 exceptional points.
Given a candidate tuple (k, `,m, d), it is straightforward to find the list of corresponding branching patterns.

For some tuples the list is empty, e.g. for (2, 3, 15 or 16, d). Nevertheless, this step needs to be automated
due to the large number of tuples. Our implementation that numerates the branching patterns is available at
[23] (file: ComputeAll), we briefly describe its approach. Let h1, h0, h∞ denote the eventual number of
regular branchings in the fibers z = 1, 0,∞, respectively. Then h1 + h0 + h∞ = d− 2 by Lemma 3.1(i), and
0 < h1 ≤ bd/kc, etc. With a possible integer solution (h1, h0, h∞) at hand, we have to partition the numbers
d − kh1, d − `h0, d − mh∞ into total 4 positive parts, not equal to the respective regular orders k, `,m. For
example, if (k, `,m, d) = (2, 3, 7, 28) then we either partition 7 into 3 parts (in the m = 7 fiber) or 4 into 4 parts
(in the ` = 3 fiber). There are four such partitions of 7 and one of 4, hence five branching patterns.

Finding all branching patterns takes little CPU time, computing all Belyi coverings for each possible branching
pattern is the most demanding step. The algorithms used to generate and verify the list of Belyi functions are
presented in Section §5.

In total, there are 378 branching patterns5 for minus-4-hyperbolic Belyi functions. We list them in the first
two columns of Tables 2.3.7–3.4.4, by giving their branching fractions and the degree. The table numbering
refers to the tuple (k, `,m). The branching fractions are left unsimplified (e.g. 4/8 instead of 1/2) to keep the
fibers and branching orders of exceptional points visible. The branching patterns are uniquely determined by the
unsimplified branching fractions. The third column of Tables 2.3.7–3.4.4 gives a label for every Galois orbit with
the branching pattern defined by the sequence of 4 branching fractions in the first column. The last column gives
basic information about the size of Galois orbits, j-fields, t-fields of the computed Belyi functions.

3.1 Summary of computed results

With the application to Heun equations in mind, we group the Belyi functions by the Q-extension of the j-
invariant. The cases with j ∈ Q are further grouped by the t-field. We group the computed minus-4-hyperbolic
Belyi functions into 10 classes, labeled A to J:

A1–A24: the Belyi functions with j = 1728, that is t ∈ {−1, 2, 1/2};
B1–B34: the other Belyi functions with t ∈ Q;
C1–C42: the Belyi functions with j ∈ Q and a real quadratic t-field;
D1–D50: the Belyi functions with j ∈ Q and an imaginary quadratic t-field;
E1–E25: the Belyi functions with j ∈ Q and the t-field has degree 6 over Q;
F1–F25: the Belyi functions with a real quadratic j-field;

G1–G52: the Belyi functions with an imaginary quadratic j-field;
H1–H53: the Belyi functions with a cubic j-field;

I1–I33: the Belyi functions with a j-field of degree 4 or 5;
J1–J28: the Belyi functions with a j-field of degree at least 6 (and ≤ 15).

In each class, the Galois orbits of Belyi functions are ordered by the criteria described in Appendix §A. A
numbered label refers to a whole Galois orbit of Belyi functions (or dessins d’enfants), as mentioned in § 2. If

5 One branching pattern 6 [3] = 9 [2] = 8 + 7 + 1 + 1 + 1 is counted twice. It appears in Tables 2.3.7 and 2.3.8 because it is
(2, 3,m)-minus-4-regular for two values of m (=7 or 8). It turns out, however, there are no Belyi functions with this branching pattern.
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there is more than one Galois orbit with the same branching pattern, a line is devoted to each Galois orbit in
Tables 2.3.7–3.4.4. The j-field is indicated as follows:

• by the field degree n, in the power notation jn;

• if the degree is 3, 4, 5 or 6, a minimal field polynomial Xn + an−2X
n−2 + . . .+ a1X + a0 is indicated by

jn(an−2, . . . , a1, a0);

• if the field is quadratic, j2(
√
a) means the field Q(

√
a);

• if j = 0, it is stated so;

• for j ∈ Q \ {0}, no j-notation is given, but the t-field and (possibly) the moduli field are indicated.

The t-field is specified as follows:

• if the j-field is indicated, the t-field degree n is given (in the power notation tn) only if j 6= 0 and the t-field
is a proper extension of the j-field;

• if j ∈ Q \ {0} and t ∈ Q, a value of t is given in the factorized form (as motivated by §E);

• if j ∈ Q \ {0} and the t-field is quadratic, t(
√
a) means the field Q(

√
a);

• if j ∈ Q \ {0} and the t-field degree is greater than 2, tspl(a, b) means the splitting field of a polynomial
X3 + aX + b with Galois group S3 (so [Q(t) : Q] = 6; there are no cubic t-fields in our tables).

The size of the Galois orbit6 equals the degree of the moduli field. In most entries, the moduli field equals the
j-field7 and in the remaining entries, it is a quadratic extension of the j-field. The moduli field is indicated only
if it differs from the j-field, either with m2(

√
a) if it has degree is 2, or with mn for degree n > 2.

Example 3.2 The first example in Table 2.3.7 where the j-field is not the moduli field is entry A22 of
degree 36. Table 2.3.7 lists m2(

√
−7), t = −1. This t-value, as well as the name A22, indicate that j = 1728,

while m2(
√
−7) indicates that the moduli field is Q(

√
−7). The exponent in m2 indicates the degree of the

moduli field, i.e., the number of dessins d’enfants.
The first entry in Table 2.3.7 contains: H14 j3(−7, 7), t6. The fact that the moduli field mn(. . .) is not

mentioned indicates that the moduli field equals Q(j). The notation j3(. . .) indicates the degree over Q, so the
exponent 3 indicates the number of dessins d’enfants (see Figure 1). The notation j3(−7, 7) indicates Q(j) ∼=
Q[X]/(X3 − 7X + 7) while t6 indicates that Q(t) has degree 6 over Q.

Similarly, in the second entry, H46 j3(−7, 14), t18 the exponent in j3 indicates 3 dessins d’enfants (also in
Figure 1), the numbers (-7,14) indicate that Q(j) ∼= Q[X]/(X3− 7X + 14) while t18 indicates [Q(t) : Q] = 18.

In Table 2.3.10 the entry 5/10, 1/10, 1/10, 1/10 of degree 18 indicates the branching pattern 9 [2] = 6 [3] =
2 [10] + 5 + 1 + 1 + 1. The reason 5/10 is not reduced to 1/2 is to indicate that this exceptional point belongs to
the prescribed branching order m = 10 instead of k = 2 (see Definition 2.1). According to Table 2.3.10 there is,
up to Möbius transformations, only one Belyi covering with this branching pattern; the Belyi covering named E7
in the file BelyiMaps at [23]. By the above naming convention, j should be in Q and [Q(t) : Q] should be 6.
The notation tspl(5, 10) in Table 2.3.10 indicates that Q(t) is the splitting field of X3 + 5X + 10.

More information about each computed Galois orbit can be found in the tables of Appendix §B and our
website [23] (it gives an explicit size-reducedϕ ∈ K(x) over a number fieldK of minimal degree, the j, t, r-fields
and moduli field, the dessins in permutation form, the decomposition lattice or the monodromy group). In order
to compute and simplify the whole set of minus-4-hyperbolic Belyi functions, and to obtain interesting additional
information about them, we used the computer algebra package Maple 15, the polredabs command of
GP/PARI, and had to implement several algorithms. The main work of computing the Belyi functions is
described in §5. Here is a list of additional handled problems, sorted roughly by the amount of work involved:

• Given a minus-4-hyperbolic Belyi function, compute its branching type, its t-value, j-invariant, the
canonical realization field, and moduli field.

6 Our notation allows to count the total number of dessins d’enfants in selected Galois orbits rather quickly in Tables 2.3.7–3.4.4. Each
fourth column starts either with the mn or jn notation (where n is the size of the Galois orbit), or a statement of no covering, or starts with
an indented data about t or j = 0. In the latter cases, n = 1.

7 The moduli field always contains the j-field, as the j-value is an invariant of Möbius transformations.
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Table 2.3.7: (k, `,m) = (2, 3, 7).

1/7,1/7,1/7,1/7 60 H14 j3(−7, 7), t6

H46 j3(−7, 14), t18
1/7,1/7,1/7,2/7 54 D28 t(

√
−3)

1/3,1/7,1/7,1/7 52 D35 t(
√
−5)

1/7,1/7,1/7,3/7 48 — no covering
1/7,1/7,2/7,2/7 A21 t = −1

I5 j4(−7, 0, 14), t8
1/3,1/7,1/7,2/7 46 J7 j6(2, 4, 8, 4, 4), t12
1/2,1/7,1/7,1/7 45 G44 j2(

√
−7), t12

1/3,1/3,1/7,1/7 44 H11 j3(−7, 7), t6

J26 j13, t26
1/7,1/7,1/7,4/7 42 G33 j2(

√
−7), t4

1/7,1/7,2/7,3/7 — no covering
1/7,2/7,2/7,2/7 — no covering
1/3,1/7,1/7,3/7 40 J16 j7, t14
1/3,1/7,2/7,2/7 G34 j2(

√
−7), t4

1/2,1/7,1/7,2/7 39 G43 j2(
√
−7), t4

1/3,1/3,1/7,2/7 38 J13 j7, t14
2/3,1/7,1/7,1/7 I6 j4(−7, 0, 14), t24
1/2,1/3,1/7,1/7 37 J28 j15, t30
1/3,1/3,1/3,1/7 36 I14 j4(0, 14, 21), t24
1/7,1/7,1/7,5/7 — no covering
1/7,1/7,2/7,4/7 A22 m2(

√
−7), t=−1

D40 t(
√
−7)

1/7,1/7,3/7,3/7 B12 t = 32

I28 j5(7, 14, 0,−49), t10

1/7,2/7,2/7,3/7 — no covering
2/7,2/7,2/7,2/7 A23 t = −1

E22 tspl(9, 2)
1/3,1/7,1/7,4/7 34 D17 t(

√
−2)

1/3,1/7,2/7,3/7 J10 j6(1, 3, 6, 4, 2)
1/3,2/7,2/7,2/7 — no covering
1/2,1/7,1/7,3/7 33 I32 j5(6, 18, 18,−54), t10

1/2,1/7,2/7,2/7 G41 j2(
√
−7), t4

1/3,1/3,1/7,3/7 32 A10 t = −1

F21 j2(
√

7), t4
1/3,1/3,2/7,2/7 C6 t(

√
3)

I23 j5(−2, 4,−5, 4), t10
2/3,1/7,1/7,2/7 G32 j2(

√
−7)

1/2,1/3,1/7,2/7 31 J24 j13

1/2,1/2,1/7,1/7 30 H10 j3(−7, 7), t6

J19 j9, t18
1/3,1/3,1/3,2/7 — no covering
1/3,2/3,1/7,1/7 J6 j6(17, 0, 3, 0, 15), t12

1/7,1/7,1/7,6/7 D22 j = 0
1/7,1/7,2/7,5/7 D5 t(

√
−1)

1/7,1/7,3/7,4/7 — no covering
1/7,2/7,2/7,4/7 B13 t = 32

1/7,2/7,3/7,3/7 C18 t(
√

5)
2/7,2/7,2/7,3/7 D23 j = 0
1/2,1/3,1/3,1/7 29 J27 j14, t28

1/3,1/3,1/3,1/3 28 G36 j2(
√
−7), t4

H13 j3(−7, 7), t6
1/3,1/7,1/7,5/7 I8 j4(0, 3, 3), t8
1/3,1/7,2/7,4/7 B16 t = 33/2
1/3,1/7,3/7,3/7 — no covering
1/3,2/7,2/7,3/7 — no covering
1/2,1/7,1/7,4/7 27 D46 t(

√
−15)

1/2,1/7,2/7,3/7 B2 m2(
√
−7), t=22

I25 j5(4, 4, 0,−8)
1/2,2/7,2/7,2/7 — no covering
1/3,1/3,1/7,4/7 26 J12 j6(5, 1, 9, 1, 3), t12
1/3,1/3,2/7,3/7 H51 j3(4, 2), t6
2/3,1/7,1/7,3/7 C12 t(

√
3)

2/3,1/7,2/7,2/7 D47 t(
√
−15)

1/2,1/3,1/7,3/7 25 J23 j11

1/2,1/3,2/7,2/7 H43 j3(2, 2), t6
1/2,1/2,1/7,2/7 24 I4 j4(−7, 0, 14), t8
1/3,1/3,1/3,3/7 D20 m2(

√
−3), j=0

1/3,2/3,1/7,2/7 B6 m2(
√
−3), t=32

I2 j4(0, 0, 7)
1/7,1/7,2/7,6/7 — no covering
1/7,1/7,3/7,5/7 F24 j2(

√
21), t4

1/7,1/7,4/7,4/7 G40 j2(
√
−7), t4

1/7,2/7,2/7,5/7 — no covering
1/7,2/7,3/7,4/7 — no covering
1/7,3/7,3/7,3/7 — no covering
2/7,2/7,2/7,4/7 — no covering
2/7,2/7,3/7,3/7 F20 j2(

√
7), t4

1/2,1/3,1/3,2/7 23 J14 j7, t14
1/2,2/3,1/7,1/7 J17 j7, t14
1/2,1/2,1/3,1/7 22 J25 j13, t26
1/3,1/3,2/3,1/7 J15 j7, t14
1/3,1/7,1/7,6/7 H36 j3(9, 2), t6
1/3,1/7,2/7,5/7 B34 t = 24192/74

1/3,1/7,3/7,4/7 H52 j3(−3, 9)
1/3,2/7,2/7,4/7 G42 j2(

√
−7), t4

1/3,2/7,3/7,3/7 — no covering
1/2,1/3,1/3,1/3 21 I9 j4(0, 3, 3), t24
1/2,1/7,1/7,5/7 H44 j3(2, 2), t6
1/2,1/7,2/7,4/7 G30 j2(

√
−7)

1/2,1/7,3/7,3/7 C36 t(
√

21)
1/2,2/7,2/7,3/7 C39 t(

√
105)

1/3,1/3,1/7,5/7 20 H42 j3(2, 2), t6
1/3,1/3,2/7,4/7 A11 t = −1
1/3,1/3,3/7,3/7 H33 j3(−5, 5), t6
2/3,1/7,1/7,4/7 A14 t = −1

B32 t = 28/112

2/3,1/7,2/7,3/7 F23 j2(
√

21)
2/3,2/7,2/7,2/7 A15 t = −1
1/2,1/3,1/7,4/7 19 J11 j6(−18, 72, 144,−480, 288)
1/2,1/3,2/7,3/7 I20 j4(3, 7, 4)
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1/2,1/2,1/7,3/7 18 I27 j5(7, 14, 0,−49), t10

1/2,1/2,2/7,2/7 A3 t = −1
H37 j3(9, 2), t6

1/3,1/3,1/3,4/7 E6 tspl(−3, 10)
1/3,2/3,1/7,3/7 I26 j5(−2, 3, 9, 3)
1/3,2/3,2/7,2/7 — no covering
1/7,1/7,1/7,8/7 — no covering
1/7,1/7,3/7,6/7 C4 t(

√
2)

1/7,1/7,4/7,5/7 — no covering
1/7,2/7,2/7,6/7 — no covering
1/7,2/7,3/7,5/7 B31 t = 74

1/7,2/7,4/7,4/7 — no covering
1/7,3/7,3/7,4/7 D29 t(

√
−3)

2/7,2/7,2/7,5/7 — no covering
2/7,2/7,3/7,4/7 — no covering
2/7,3/7,3/7,3/7 — no covering
1/2,1/3,1/3,3/7 17 H49 j3(−17, 51), t6
1/2,2/3,1/7,2/7 I33 j5(9, 36, 40, 26)
1/2,1/2,1/3,2/7 16 I22 j5(−2, 4,−5, 4), t10

1/3,1/3,2/3,2/7 A7 m2(
√
−3), t=−1

H38 j3(21, 14), t6
1/3,1/7,2/7,6/7 G19 j2(

√
−3)

1/3,1/7,3/7,5/7 B17 t = 33/2
1/3,1/7,4/7,4/7 — no covering
1/3,2/7,2/7,5/7 D33 t(

√
−5)

1/3,2/7,3/7,4/7 F3 j2(
√

2)
1/3,3/7,3/7,3/7 — no covering
2/3,2/3,1/7,1/7 A12 t = −1

H48 j3(7, 42), t6
1/2,1/2,1/2,1/7 15 H45 j3(−7, 14), t18

1/2,1/3,2/3,1/7 J22 j10

1/2,1/7,1/7,6/7 G25 j2(
√
−3), t4

1/2,1/7,2/7,5/7 H40 j3(2, 2)
1/2,1/7,3/7,4/7 B33 t = 375/113

1/2,2/7,2/7,4/7 — no covering
1/2,2/7,3/7,3/7 C35 t(

√
21)

1/2,1/2,1/3,1/3 14 G39 j2(
√
−7), t4

H12 j3(−7, 7), t6

I3 j4(0, 0, 7), t8
1/3,1/3,1/3,2/3 E19 tspl(0, 28)
1/3,1/3,1/7,6/7 D26 t(

√
−3)

1/3,1/3,2/7,5/7 — no covering
1/3,1/3,3/7,4/7 — no covering
2/3,1/7,1/7,5/7 C27 t(

√
7)

2/3,1/7,2/7,4/7 G31 j2(
√
−7)

2/3,1/7,3/7,3/7 C34 t(
√

21)
2/3,2/7,2/7,3/7 C26 t(

√
7)

1/2,1/3,1/7,5/7 13 I21 j4(0, 4, 48)
1/2,1/3,2/7,4/7 H50 j3(4, 2)
1/2,1/3,3/7,3/7 C33 t(

√
13)

1/2,1/2,1/7,4/7 12 G38 j2(
√
−7), t4

1/2,1/2,2/7,3/7 F22 j2(
√

7), t4

1/3,1/3,1/3,5/7 12 E14 tspl(3, 1)
1/3,2/3,1/7,4/7 B25 t = 35

1/3,2/3,2/7,3/7 B20 t = 27/3
1/2,1/3,1/3,4/7 11 H27 j3(−4, 4), t6
1/2,2/3,1/7,3/7 H53 j3(−42, 140)
1/2,2/3,2/7,2/7 C42 t(

√
385)

1/2,1/2,1/3,3/7 10 H34 j3(−5, 5), t6
1/3,1/3,2/3,3/7 D30 t(

√
−5)

2/3,2/3,1/7,2/7 C40 t(
√

105)
4/3,1/7,1/7,1/7 E20 tspl(21, 14)
1/2,1/2,1/2,2/7 9 E21 tspl(9, 2)
1/2,1/3,2/3,2/7 I15 j4(−24, 62,−48)
1/2,1/2,2/3,1/7 8 H47 j3(7, 42), t6
1/3,2/3,2/3,1/7 C29 t(

√
7)

1/2,1/2,1/2,1/3 7 G35 j2(
√
−7), t4

1/2,1/3,1/3,2/3 H35 j3(0, 28), t6

Table 2.3.8: (k, `,m) = (2, 3, 8).

1/8,1/8,1/8,1/8 36 F6 j2(
√

2), t4

G18 j2(
√
−2), t12

2/8,2/8,1/8,1/8 30 B10 t = 32

G5 j2(
√
−1), t4

1/8,1/8,1/8,3/8 D24 m2(
√
−2), j=0

1/3,2/8,1/8,1/8 28 G8 j2(
√
−1), t4

1/2,1/8,1/8,1/8 27 G6 j2(
√
−1), t4

1/3,1/3,1/8,1/8 26 C22 t(
√

6)
I19 j4(−3, 2, 6), t8

4/8,2/8,1/8,1/8 24 A5 t = −1
2/8,2/8,2/8,2/8 A18 t = −1
2/8,2/8,1/8,3/8 — no covering
1/8,1/8,1/8,5/8 — no covering
1/8,1/8,3/8,3/8 B14 t = 32

G15 j2(
√
−2), t4

4/8,1/3,1/8,1/8 22 — no covering
1/3,2/8,2/8,2/8 — no covering
1/3,2/8,1/8,3/8 I16 j4(2, 8, 8)
1/2,2/8,2/8,1/8 21 — no covering
1/2,1/8,1/8,3/8 G16 j2(

√
−2), t4

1/3,1/3,2/8,2/8 20 A9 t = −1
H22 j3(5, 10), t6

1/3,1/3,1/8,3/8 D16 t(
√
−2)

2/3,2/8,1/8,1/8 A13 m2(
√
−2), t=−1

G3 j2(
√
−1), t4

1/2,1/3,2/8,1/8 19 J21 j10

1/2,1/2,1/8,1/8 18 F4 j2(
√

2), t4

J1 j6(−4, 0, 12, 32, 32), t12

4/8,4/8,1/8,1/8 — no covering
4/8,2/8,2/8,2/8 — no covering
4/8,2/8,1/8,3/8 B1 t = 22

1/3,1/3,1/3,2/8 E5 tspl(−3, 10)
1/3,2/3,1/8,1/8 G12 j2(

√
−2), t4

2/8,2/8,1/8,5/8 D1 t(
√
−1)
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2/8,2/8,3/8,3/8 18 C5 t(
√

3)
2/8,6/8,1/8,1/8 — no covering
1/8,1/8,1/8,7/8 — no covering
1/8,1/8,3/8,5/8 — no covering
1/8,3/8,3/8,3/8 — no covering
1/2,1/3,1/3,1/8 17 J20 j9, t18
4/8,1/3,2/8,2/8 16 — no covering
4/8,1/3,1/8,3/8 — no covering
1/3,1/3,1/3,1/3 D8 t(

√
−2)

F2 j2(
√

2)
1/3,2/8,1/8,5/8 B30 t = 22132

1/3,2/8,3/8,3/8 — no covering
1/3,6/8,1/8,1/8 G22 j2(

√
−3), t4

1/2,4/8,2/8,1/8 15 G1 j2(
√
−1)

1/2,2/8,2/8,3/8 B15 t = 34

1/2,1/8,1/8,5/8 G9 j2(
√
−1), t4

1/2,1/8,3/8,3/8 C8 t(
√

3)
4/8,1/3,1/3,2/8 14 F8 j2(

√
2), t4

4/8,2/3,1/8,1/8 — no covering
1/3,1/3,1/8,5/8 H23 j3(5, 10), t6
1/3,1/3,3/8,3/8 C28 t(

√
7)

2/3,2/8,2/8,2/8 — no covering
2/3,2/8,1/8,3/8 B29 t = 53/22

1/2,4/8,1/3,1/8 13 I18 j4(−3, 2, 6)
1/2,1/3,2/8,3/8 H29 j3(−1, 2)
1/2,1/2,2/8,2/8 12 C1 t(

√
2)

1/2,1/2,1/8,3/8 D9 t(
√
−2)

G14 j2(
√
−2), t4

4/8,1/3,1/3,1/3 E2 tspl(3, 2)
1/3,2/3,2/8,2/8 C21 t(

√
6)

1/3,2/3,1/8,3/8 G10 j2(
√
−2)

1/2,1/3,1/3,3/8 11 F25 j2(
√

22), t4
1/2,2/3,2/8,1/8 I10 j4(−2, 4,−1)
1/2,1/2,1/3,2/8 10 H20 j3(5, 10), t6
1/3,1/3,2/3,2/8 F19 j2(

√
6), t4

2/3,2/3,1/8,1/8 C32 t(
√

10)
1/2,1/2,1/2,1/8 9 G17 j2(

√
−2), t12

1/2,1/3,2/3,1/8 J2 j6(0, 8, 9, 0, 18)
1/2,1/2,1/3,1/3 8 F5 j2(

√
2), t4

G13 j2(
√
−2), t4

1/3,1/3,1/3,2/3 D13 t(
√
−2)

Table 2.3.9: (k, `,m) = (2, 3, 9).

3/9,1/9,1/9,1/9 24 — no covering
1/9,1/9,2/9,2/9 A24 t = −1

H8 j3(−3, 4), t6
1/3,1/9,1/9,2/9 22 H9 j3(−3, 4), t6
1/2,1/9,1/9,1/9 21 G52 j2(

√
−15), t12

1/3,1/3,1/9,1/9 20 H1 j3(−3, 1)
J3 j6(3, 3, 0, 0, 5), t12

3/9,3/9,1/9,2/9 18 — no covering
3/9,1/9,1/9,4/9 — no covering

3/9,2/9,2/9,2/9 18 — no covering
6/9,1/9,1/9,1/9 E3 tspl(3, 2)
1/9,1/9,2/9,5/9 C23 t(

√
6)

1/9,2/9,2/9,4/9 — no covering
1/3,3/9,3/9,1/9 16 A6 t = −1
1/3,3/9,2/9,2/9 C7 t(

√
3)

1/3,1/9,1/9,5/9 H25 j3(3, 1), t6
1/3,1/9,2/9,4/9 H6 j3(3, 2)
1/2,3/9,1/9,2/9 15 H4 j3(0, 2)
1/2,1/9,1/9,4/9 D49 t(

√
−39)

1/2,2/9,2/9,2/9 — no covering
1/3,1/3,3/9,2/9 14 D39 t(

√
−7)

1/3,1/3,1/9,4/9 G21 j2(
√
−3), t4

3/9,2/3,1/9,1/9 D2 t(
√
−1)

2/3,1/9,2/9,2/9 C9 t(
√

3)
1/2,1/3,3/9,1/9 13 I17 j4(0, 6, 9)
1/2,1/3,2/9,2/9 C41 t(

√
273)

1/2,1/2,1/9,2/9 12 H7 j3(−3, 4), t6
1/3,1/3,1/3,3/9 D19 j = 0
1/3,2/3,1/9,2/9 B7 t = 32

H2 j3(0, 3)
1/2,1/3,1/3,2/9 11 H32 j3(6, 1), t6
1/2,2/3,1/9,1/9 H31 j3(−3, 8), t6
1/2,1/2,1/3,1/9 10 J4 j6(3, 3, 0, 0, 5), t12

1/3,1/3,2/3,1/9 H3 j3(0, 3), t6

1/2,1/3,1/3,1/3 9 G26 j2(
√
−3), t12

Table 2.3.10: (k, `,m) = (2, 3, 10).

1/10,1/10,1/10,1/10 24 D6 t(
√
−1)

F17 j2(
√

5), t4
5/10,1/10,1/10,1/10 18 E7 tspl(5, 10)
2/10,2/10,2/10,2/10 — no covering
2/10,2/10,1/10,3/10 B24 t = 27/3
2/10,4/10,1/10,1/10 D4 t(

√
−1)

1/10,1/10,3/10,3/10 C25 t(
√

6)
1/3,2/10,2/10,2/10 16 — no covering
1/3,2/10,1/10,3/10 G2 j2(

√
−1)

1/3,4/10,1/10,1/10 D42 t(
√
−14)

1/2,2/10,2/10,1/10 15 C15 t(
√

5)
1/2,1/10,1/10,3/10 D44 t(

√
−15)

D50 t(
√
−39)

1/3,1/3,2/10,2/10 14 C38 t(
√

21)
1/3,1/3,1/10,3/10 D48 t(

√
−35)

2/3,2/10,1/10,1/10 F14 j2(
√

5), t4
1/2,1/3,2/10,1/10 13 J5 j6(0, 5, 0, 6, 15)
1/2,1/2,1/10,1/10 12 F10 j2(

√
5)

G7 j2(
√
−1), t4

1/3,1/3,1/3,2/10 E13 tspl(3, 1)
1/3,2/3,1/10,1/10 H30 j3(0, 10), t6
1/2,1/3,1/3,1/10 11 J8 j6(5, 5, 10,−2, 5), t12

1/3,1/3,1/3,1/3 10 B19 t = 25/5
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Table 2.3.11: (k, `,m) = (2, 3, 11).

1/11,1/11,1/11,4/11 18 — no covering
1/11,1/11,2/11,3/11 D15 t(

√
−2)

1/11,2/11,2/11,2/11 — no covering
1/3,1/11,1/11,3/11 16 D41 t(

√
−7)

1/3,1/11,2/11,2/11 C13 t(
√

3)
1/2,1/11,1/11,2/11 15 H26 j3(−4, 4), t6
1/3,1/3,1/11,2/11 14 H28 j3(−4, 4), t6
2/3,1/11,1/11,1/11 E15 tspl(−11, 22)
1/2,1/3,1/11,1/11 13 J9 j6(30,20,216,372,172), t12

1/3,1/3,1/3,1/11 12 G45 j2(
√
−11), t12

Table 2.3.12: (k, `,m) = (2, 3, 12).

3/12,1/12,1/12,1/12 18 D21 j = 0
2/12,2/12,1/12,1/12 B11 t = 32

1/3,2/12,1/12,1/12 16 D14 t(
√
−2)

G24 j2(
√
−3), t4

1/2,1/12,1/12,1/12 15 G27 j2(
√
−3), t12

1/3,1/3,1/12,1/12 14 F9 j2(
√

3)
G23 j2(

√
−3), t4

Table 2.3.13: (k, `,m) = (2, 3, 13).

1/13,1/13,1/13,2/13 18 E16 tspl(−1, 2)
1/3,1/13,1/13,1/13 16 G28 j2(

√
−3), t12

Table 2.3.14: (k, `,m) = (2, 3, 14).

1/14,1/14,1/14,1/14 18 C2 t(
√

2)

Table 2.4.5: (k, `,m) = (2, 4, 5).

1/5,1/5,1/5,1/5 24 A20 t = −1

F12 j2(
√

5)
G48 j2(

√
−15), t4

1/4,1/4,1/5,1/5 22 I30 j5(10, 30, 30, 8), t10

1/4,1/4,1/4,1/4 20 C17 t(
√

5)
D45 t(

√
−15)

E11 tspl(5, 10)
1/5,1/5,1/5,2/5 E9 tspl(5, 10)
2/4,1/5,1/5,1/5 18 — no covering
1/4,1/4,1/5,2/5 G51 j2(

√
−15), t4

1/2,1/4,1/5,1/5 17 J18 j8, t16
2/4,1/4,1/4,1/5 16 H18 j3(5, 10), t6
1/5,1/5,1/5,3/5 E18 tspl(0, 10)
1/5,1/5,2/5,2/5 H16 j3(5, 10)
1/2,1/4,1/4,1/4 15 E25 tspl(25, 50)
2/4,1/5,1/5,2/5 14 D38 t(

√
−7)

1/4,1/4,1/5,3/5 C10 t(
√

3)
1/4,1/4,2/5,2/5 H41 j3(2, 2), t6
1/2,1/4,1/5,2/5 13 I31 j5(0, 10, 5, 18)
1/2,1/2,1/5,1/5 12 F16 j2(

√
5), t4

I11 j4(−3, 0, 6), t8

2/4,2/4,1/5,1/5 A2 t = −1
G50 j2(

√
−15), t4

2/4,1/4,1/4,2/5 A4 m2(
√
−1), t=−1

1/4,3/4,1/5,1/5 12 F15 j2(
√

5), t4
1/5,1/5,1/5,4/5 D3 t(

√
−1)

1/5,1/5,2/5,3/5 B23 t = 27/3
1/5,2/5,2/5,2/5 — no covering
1/2,2/4,1/4,1/5 11 I29 j5(10, 30, 30, 8)
1/2,1/2,1/4,1/4 10 C14 t(

√
5)

C30 t(
√

10)
H17 j3(5, 10), t6

2/4,2/4,1/4,1/4 F13 j2(
√

5), t4
2/4,1/5,1/5,3/5 D43 t(

√
−15)

2/4,1/5,2/5,2/5 C16 t(
√

5)
1/4,1/4,1/4,3/4 — no covering
1/4,1/4,1/5,4/5 B8 t = 32

1/4,1/4,2/5,3/5 — no covering
1/2,1/4,1/5,3/5 9 I24 j5(−2, 4,−6, 4)
1/2,1/4,2/5,2/5 D27 t(

√
−3)

1/2,1/2,1/5,2/5 8 H19 j3(5, 10), t6
2/4,2/4,1/5,2/5 — no covering
2/4,1/4,1/4,3/5 C19 t(

√
6)

1/4,3/4,1/5,2/5 B26 t = 34/25

1/2,2/4,1/4,2/5 7 H39 j3(2, 2)
1/2,3/4,1/5,1/5 G29 j2(

√
−5), t4

1/2,1/2,2/4,1/5 6 G46 j2(
√
−15), t4

1/2,1/2,1/2,1/4 5 E10 tspl(5, 10)

Table 2.4.6: (k, `,m) = (2, 4, 6).

1/6,1/6,1/6,1/6 16 B28 t = 34/25

D11 t(
√
−2)

1/4,1/4,1/6,1/6 14 C11 t(
√

3)
I13 j4(0, 4, 12), t8

3/6,1/6,1/6,1/6 12 D18 j = 0
2/6,2/6,1/6,1/6 B5 t = 32

1/4,1/4,1/4,1/4 B4 t = 22

B22 t = 27/3
2/4,2/6,1/6,1/6 10 — no covering
3/6,1/4,1/4,1/6 H5 j3(0, 2), t6
2/6,2/6,1/4,1/4 D32 t(

√
−5)

1/2,2/6,1/4,1/6 9 I1 j4(0, 8, 12)
1/2,1/2,1/6,1/6 8 C3 t(

√
2)

G11 j2(
√
−2), t4

2/4,2/4,1/6,1/6 — no covering
2/4,2/6,1/4,1/4 D12 t(

√
−2)

1/4,3/4,1/6,1/6 G20 j2(
√
−3), t4

1/2,2/4,1/4,1/6 7 I12 j4(0, 4, 12)
1/2,1/2,1/4,1/4 6 C24 t(

√
6)

D25 t(
√
−3)

Table 2.4.7: (k, `,m) = (2, 4, 7).

1/7,1/7,1/7,2/7 12 — no covering
2/4,1/7,1/7,1/7 10 — no covering
1/4,1/4,1/7,2/7 D34 t(

√
−5)

1/2,1/4,1/7,1/7 9 I7 j4(2, 8, 9), t8
2/4,1/4,1/4,1/7 8 G37 j2(

√
−7), t4

1/2,1/4,1/4,1/4 7 E24 tspl(−7, 14)



12 M. van Hoeij and R. Vidūnas

Table 2.4.8: (k, `,m) = (2, 4, 8).

1/8,1/8,1/8,1/8 12 — no covering
1/4,1/4,1/8,1/8 10 B9 t = 32

G4 j2(
√
−1), t4

1/4,1/4,1/4,1/4 8 A16 t = −1

Table 2.5.5: (k, `,m) = (2, 5, 5).

1/5,1/5,1/5,1/5 12 A19 t = −1

F11 j2(
√

5)
G47 j2(

√
−15), t4

1/5,1/5,1/5,2/5 10 E8 tspl(5, 10)
1/5,1/5,1/5,3/5 8 E17 tspl(0, 10)
1/5,1/5,2/5,2/5 H15 j3(5, 10)
1/2,1/5,1/5,2/5 7 D37 t(

√
−7)

1/2,1/2,1/5,1/5 6 A1 t = −1
G49 j2(

√
−15), t4

Table 2.5.6: (k, `,m) = (2, 5, 6).

1/6,1/6,1/6,1/6 10 C31 t(
√

10)
2/6,1/5,1/5,1/5 8 — no covering
1/5,2/5,1/6,1/6 D36 t(

√
−6)

1/2,1/5,1/5,1/6 7 H24 j3(3, 1), t6

Table 2.5.7: (k, `,m) = (2, 5, 7).

1/5,1/5,1/5,1/7 8 E23 tspl(2, 2)

Table 2.6.6: (k, `,m) = (2, 6, 6).

1/6,1/6,1/6,1/6 8 B27 t = 34/25

D10 t(
√
−2)

Table 3.3.4: (k, `,m) = (3, 3, 4).

1/4,1/4,1/4,1/4 12 A17 t = −1
1/3,1/3,1/4,1/4 10 A8 t = −1

H21 j3(5, 10), t6
2/4,1/4,1/4,1/4 9 — no covering
1/3,1/3,1/3,1/4 E4 tspl(−3, 10)
1/3,1/3,1/3,1/3 8 D7 t(

√
−2)

F1 j2(
√

2)
2/4,1/3,1/3,1/4 7 F7 m4, j(

√
2), t4

2/4,1/3,1/3,1/3 6 E1 tspl(3, 2)
1/3,2/3,1/4,1/4 C20 t(

√
6)

1/3,1/3,2/3,1/4 5 F18 j2(
√

6), t4

Table 3.3.5: (k, `,m) = (3, 3, 5).

1/5,1/5,1/5,1/5 9 — no covering
1/3,1/3,1/5,1/5 7 C37 t(

√
21)

1/3,1/3,1/3,1/5 6 E12 tspl(3, 1)
1/3,1/3,1/3,1/3 5 B18 t = 25/5

Table 3.4.4: (k, `,m) = (3, 4, 4).

1/4,1/4,1/4,1/4 6 B3 t = 22

B21 t = 27/3
1/3,1/3,1/4,1/4 5 D31 t(

√
−5)

k, `,m Max. Br. patterns Coverings Moduli field degree
degree Total No cov. Orb. Total 1 2 3 4 5 6 ≥ 7

2, 3, 7 60 152 30 140 427 51 27 25 11 8 5 13
2, 3, 8 36 65 16 58 130 23 24 4 4 2 2
2, 3, 9 24 32 6 29 67 12 3 11 1 2
2, 3, 10 24 20 2 21 38 13 5 1 2
2, 3, 11..14 18 18 2 18 33 9 6 2 1
2, 4, 5 24 40 5 42 91 21 10 6 1 4 1
2, 4, 6/7/8 16 24 5 25 43 16 4 1 4
2, 5/6/7 12 12 1 15 22 10 3 2
3, 3/4/5 12 15 2 16 21 12 3 1
Total — 378 69 366 872 167 85 53 21 12 12 16

Table 1 Statistics of Belyi maps

• Given two triples (g1, g0, g∞) of elements in Sd as in (III) of §2, decide whether they represent the same
dessin d’enfant (decide simultaneous conjugacy).

• In the obstructed cases as described in §6, compute the obstruction conic and a conic-model (if possible).

• Find possible decompositions of a Belyi function ϕ(x) into smaller degree rational functions.

• Given a Belyi function ϕ ∈ K(x) and an embedding K → C, compute the dessin d’enfant of ϕ under this
embedding.

• Find a Möbius-equivalent Belyi function ϕ̃(x) of substantially smaller bit-size, if possible.
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Our algorithms for obstruction conics, size reduction, dessins d’enfants, and decomposition, are given in [24, §3,
§4]. The implementations and computed data are available at [23].

A portion of computed Belyi functions has been known, inevitably. Most notably, the Belyi covering G45
defined over Q(

√
−11) has the monodromy group isomorphic to the sporadic Mathieu group M12. Its humanoid

dessin d’enfant is called Monsieur Mathieu; see the appendix dessins. The Galois orbits A19, G47, F11 are
considered in [9] and [31, Example 5.7]. The C30 dessin (turned 90o in Figure 2 here) appears in [5] as a rabbit
with a lopped off left ear and a sidelong smirk on the right hand side. The degree 24 coverings with (k, `) = (2, 3)
were computed in [4].

An important area where Belyi functions appear is Shimura curves [7], [29], [22]. Checking the list of low
genus Shimura curves X0(n) in [29], we recognize our H10, H11, H12 as Belyi coverings for the congruence
groups Γ0(29),Γ0(43),Γ0(13) ⊂ PSL(2,O), where O is the quaternion order over Q(Re ζ7) considered in [7].
H1 is a Belyi covering for Γ0(19) of similar quaternions over Q(Re ζ9). The coverings A2, A6, A7, A8, A16,
A19, A20, C1 appear in diagrams III, VI, XI in [22]. Minus-4-hyperbolic Belyi functions appear in coverings of
classical modular curves as well. Checking the Cummins-Pauli online list [6] of genus 0 congruence subgroups of
PSL(2,Z), we recognize A5, A18, B19, C1, D8, D19, G13, G35, G39 as coverings for the congruence subgroups
8I0 = Γ1(8), 8G0, 10A0, 8D0, 8E0, 9C0, 8A0, 7A0, 7C0, respectively. Any Belyi covering gives a modular curve
with respect to some (not necessarily congruence) subgroup of PSL(2,Z), since Γ(2) ⊂ PSL(2,Z) is a free
group on two generators [29]. The minus-4-hyperbolic functions tend to give Shimura curves corresponding to
manageable non-congruence subgroups. Our computational routine [23, ComputeBelyi.mpl] can be used to
investigate genus 0 Shimura curves more thoroughly.

4 Application to Heun functions

The minus-4-hyperbolic Belyi functions have application to transformations between hypergeometric and Heun
functions (or their differential equations). This allows to express some Heun functions in terms of better
understood hypergeometric functions. In fact, we utilize this application in our algorithms to compute the Belyi
functions.

The Gauss hypergeometric equation

d2y(z)

dz2
+

(
C

z
+
A+B − C + 1

z − 1

)
dy(z)

dz
+

AB

z (z − 1)
y(z) = 0 (4.1)

and the Heun differential equation

d2Y (x)

dx2
+

(
c

x
+

d

x− 1
+
a+ b− c− d+ 1

x− t

)
dY (x)

dx
+

abx− q
x(x− 1)(x− t)

Y (x) = 0 (4.2)

are second order Fuchsian equations [30] with 3 or 4 singularities, respectively. The singular points are z =
0, 1,∞ and x = 0, 1, t,∞. If C 6∈ Z, a basis of local solutions of (4.1) at x = 0 is given by the famous Gauss
hypergeometric series:

z0 · 2F1

(
A, B

C

∣∣∣∣ z) , z1−C · 2F1

(
1 +A− C, 1 +B − C

2− C

∣∣∣∣ z) . (4.3)

The starting powers 0, 1 − C of the local parameter z are the local exponents at z = 0. The local exponents at
z = 1 are 0, C −A−B, while the exponents at z =∞ are A,B. The local exponents for Heun’s equation (4.2)
are

at x = 0 : 0, 1− c; at x =∞ : a, b;

at x = 1 : 0, 1− d; at x = t : 0, c+ d− a− b.

The local solution at x = 0 with the exponent 0 is denoted by

Hn
(
t

q

∣∣∣∣ a, bc; d

∣∣∣∣ x) . (4.4)
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The parameter q is an accessory parameter; it does not influence the local exponents. If c 6∈ Z, then an
independent local solution at x = 0 is

x1−c Hn
(
t

q1

∣∣∣∣a− c+ 1, b− c+ 1

2− c; d

∣∣∣∣ x) (4.5)

with q1 = q − (c− 1)(a+ b− c− d+ d t+ 1).
A pull-back transformation has the form

z 7−→ ϕ(x), y(z) 7−→ Y (x) = θ(x) y(ϕ(x)), (4.6)

where ϕ(x) is a rational function, and θ(x) is a radical function (an algebraic root of a rational function).
Geometrically, the transformation pulls-back a differential equation on P1

z to a differential equation on P1
x, with

respect to the covering ϕ : P1
x → P1

z determined by the rational function ϕ(x).
Pull-back transformations between hypergeometric and Heun equations give identities between the classical

Gauss hypergeometric and Heun functions. For example, we have

Hn
(

9

7/9

∣∣∣∣ 1/3, 1

7/9; 2/3

∣∣∣∣ x) = θ(x) 2F1

(
1/36, 13/36

8/9

∣∣∣∣ ϕ0(x)

)
, (4.7)

where ϕ0(x) is the reciprocal of ϕ(x) from Example 2.4, and θ(x) = (1−x)−1/36
(
1− x− 8

3x
2 − 8

27x
3
)−1/12

.
The transformation of singularities and local exponents for Fuchsian equations is explained in [27, Lemma 2.1].
The pre-factor θ(x) shifts the local exponents at some points, but does not change the exponent difference
anywhere. The rational function ϕ0(x) multiplies local exponents and their differences by the branching order at
each point. IfQ is a singularity of the starting Fuchsian equation in d/dz, a point P aboveQ will be non-singular
for the pulled-back equation only if the branching order at P is n and the exponent difference atQ is equal to 1/n
(and Q is not a logarithmic point when n = 1). For example, the 2F1 function in (4.7) solves a hypergeometric
equation with exponent differences 1/2, 1/3, 1/9 at z = 1,∞, 0, respectively, while the exponent differences for
the pulled-back Heun equation are the branching fractions 2/9, 1/3, 1/9, 2/3 at x = 0, 1, t,∞, respectively. The
roots of 8x3− 72x2− 27x+ 27 became non-singular after the proper choice of θ(x). The rational function ϕ(x)
of Example 2.4 is identified by the label B7 in Table 2.3.9 of §3.1 and in Appendix §B.

Recently, parametric transformations between Heun and hypergeometric equations without Liouvillian
solutions8 were classified in [27], [28]. They apply to hypergeometric equations where at least one exponent
difference is parametric, i.e., not restricted to a fixed value 1/n with n ∈ N. In total, there are 61 parametric
transformations up to the well known symmetries of hypergeometric and Heun equations [28]. But the number
of Galois orbits of utilized Belyi coverings (up to Möbius transformations) is 48. These Belyi functions are
listed in [27, Table 4]. They satisfy condition (i) but not (ii) of Definition 1.3, because the parameter(s) could
be specialized to satisfy the hyperbolic condition. The parametric transformations are labeled P1–P61 in [28],
following similar criteria as in Appendix §A here. The Belyi functions of this article complete the list of
hypergeometric-to-Heun transformations when no Liouvillian solutions are involved.

Remark 4.1 Non-existence of Belyi functions with some branching patterns can be proved by non-existence
of implied transformations of Fuchsian equations [27, §5]. For example, there is no (2, 3, 10)-minus-4 Belyi
function with the branching pattern 9 [2] = 6 [3] = [10] + 2 + 2 + 2 + 2, because it would also be a (2, 3, 2)-
minus-1 function. It would pull-back a hypergeometric equation with the exponent differences 1/2, 1/3, 1/2
to a non-existent Fuchsian equation with a single singularity where the exponent difference is not 1 (but 5).
This example illustrates that there are no (k, `,m)-minus-1 functions, unless 1 ∈ {k, `,m}. In the exceptions,
the implied hypergeometric equation must have a logarithmic singularity with the exponent difference 1. In
particular, the polynomial (xn + 1)k is a (k, 1, nk)-minus-1 Belyi function, and (x3 − 3x)2k/(x2 − 2)3k is a
(2k, 1, 3k)-minus-1 Belyi function.

8 Liouvillian solutions [30] of second order linear differential equations are the “elementary” solutions: power, algebraic, exponential,
trigonometric functions, their integrals (in particular, logarithmic and inverse trigonometric functions). They can be written in the form y =
exp(

∫
r) 2F1(ϕ), where r, ϕ are rational functions, 2F1 is Gauss’ hypergeometric function with a reducible, dihedral or finite monodromy.

There are algorithms to find Liouvillian solutions in this form [25], hence a table of pull-back transformations is not needed. The hyperbolic
restriction 1/k + 1/`+ 1/m < 1 gives a finite list of (k, `,m)-minus-4-regular Belyi functions, while 1/k + 1/`+ 1/m ≥ 1 would lead
to infinitely many Belyi functions.
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An interesting observation is that the pull-back covering ϕ0(x) can be recovered from local solutions of the
related hypergeometric and Heun equations, if only an oracle would tell us one constant. Particularly, suppose that
the point x = 0 of Heun’s equation lies above the singularity z = 0 of hypergeometric equation. Let y1, y2 denote
the hypergeometric local solutions in (4.3), respectively, and let Y1, Y2 denote the Heun local solutions in (4.4),
(4.5), respectively. We have the formula Y1(x) = θ(x) y1(ϕ0(x)) like (4.7), and a similar formula [28, Lemma
3.1] relating y2, Y2 but normalized by a constant K that depends on the first power series term of ϕ0(x). The
quotient ψ1(x) = Y2/Y1 does not depend on the pre-factor θ(x), and can be identified with the respective quotient
ψ0(z) = y2/y1 up to the constant multipleK. We have ψ1(x) = x1−c (1 +O(x)) and ψ0(z) = z1−C(1+O(z)).
The identification ψ0(z) = Kψ1(x) gives z = ψ−10 (Kψ1(x)). So ϕ0(x) is the composition of ψ−10 withKψ1(x)
for some constant K. For instance, the Belyi function of Example 2.4 can be computed by inverting the function

z1/9 2F1

(
5/36, 17/36

10/9

∣∣∣∣ z)/2F1

(
1/36, 13/36

8/9

∣∣∣∣ z)
and composing with

(Kx2)1/9 Hn
(

9

187/81

∣∣∣∣5/9, 11/9

11/9; 2/3

∣∣∣∣ x)/Hn
(

9

7/9

∣∣∣∣ 1/3, 1

7/9; 2/3

∣∣∣∣ x)
where K = −64/3. The ratio of two independent solutions of the same differential equation of order 2 is called
a Schwarz map of the differential equation. We consider the Schwarz maps9 again in Appendix §D.

This observation is significant in a few ways. Firstly, a data base of our Belyi functions could be given by the
data of Heun equations to which they apply (the exponent differences, the parameters q, t), the hyperbolic type
(k, `,m), and the constant K. The Belyi coverings would be then recovered by reconstructing a rational function
from a power series. If d is the degree of a Belyi covering, 2d+ 8 power series terms would suffice (and exclude
most of false rational reconstructions). Secondly, given a branching pattern (and thus the exponent differences
of presumably related Heun and hypergeometric equations), the Belyi coverings ϕ(x) could be computed by
assuming undetermined constants t, q,K and finding algebraic restrictions between them for reconstruction of
ϕ(x) from the power series of ψ−10 (Kψ1(x)). This approach does not appear practical, but §5.2 presents a
deterministic algorithm that uses an implied Heun-to-hypergeometric transformation in a similarly general way,
and eliminates all undetermined variables except 3 before calling Gröbner basis routines. And thirdly, our
probabilistic algorithm §5.1 searches through all possible t, q,K in finite fields, reconstructs possible minus-
4-hyperbolic Belyi functions over considered finite fields, and uses a version of Hensel lifting to produce Belyi
functions in Q(x).

5 Computation of Belyi coverings

The list of minus-4-hyperbolic Belyi functions was originally generated by a probabilistic algorithm by a
thorough examination of Heun functions and their Schwarz maps over some finite fields, and lifting, identifying
the obtained Belyi functions in Q(x). This is explained in §5.1. The complete list was generated by considering
at most 7 finite fields Fp = Z/(p) for p < 960, though eventually we kept the algorithm running for total 100
primes. In principle, this does not ensure completeness of the list however.

The deterministic algorithm in §5.2 takes a branching pattern as an input, and produces the Belyi coverings
with that branching pattern. By using the implied Heun-to-hypergeometric transformations, smaller degree
algebraic systems for undetermined coefficients are obtained than with straightforward methods, and with
far less parasitic solutions [13]. The deterministic algorithm produced the same Belyi maps (up to Möbius
transformations) as the probabilistic one. Completeness of our results is proved assuming correct implementation
of the deterministic algorithm.

9 In the general context of Fuchsian equations related by a pull-back transformation, the pull-back covering can be similarly recovered
by a proper identification (up to a constant multiple) of Schwarz maps as well. In fact, our implemented algorithms often assume a pull-back
of a hypergeometric equation to a Fuchsian equation with 4 singularities (rather than canonically normalized Heun’s equation), so to avoid
unnecessary extensions. This is done when two or more branching fractions are equal and represent points in the same fiber, as demonstrated
by the polynomial W in Example 5.2. Instead of the constants t, q,K in §5.1, the constants j, q,K were generally used.
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As a practical matter of confidence, the completeness of results is foremost verified by the same output of the
two independent algorithms. In addition, we did a combinatorial search to find all minus-4-hyperbolic dessins
d’enfants, up to degree 36. This gives a verification of a large part (≈ 95%) of relevant branching patterns,
covering ≈ 91% of obtained dessins. We also compared the list of Belyi functions with the r-field in R with
Felikson’s list [8] of Coxeter decompositions in the hyperbolic plane; see Appendix §D. This provides enough
confidence in completeness of our results.

5.1 A probabilistic modular method

The used probabilistic algorithm is based on the expectation that a Belyi function will be properly defined over
a p-adic field Qp for some prime p among a sequence of considered subsequent or random primes. Concretely,
suppose that a Belyi function ϕ(x) pulls-back a hypergeometric equationH0 to Heun’s equationH1 with specific
parameters t, q, and that respective Schwarz maps of both equations are identified by a constant K as described
after Remark 4.1. If t, q,K are elements of a number field Q(α), then ϕ(x) ∈ Q(α)(x). By Chebotarev’s
theorem [30], the minimal polynomial for α has a root in Fp for a positive density of primes p. The density is at
least 1/D, where D is the degree of the number field Q(α). For all but finitely many of those primes, we will
have α ∈ Qp and t, q,K ∈ Zp (the p-adic integers). The Belyi function ϕ(x) can be found as follows:

(i) Consider all possible values t, q,K ∈ Fp of t, q,K reduced modulo an (eventually) suitable prime p;

(ii) Reconstruct ϕ(x) in Fp(x) by identifying the Schwarz maps as described after Remark 4.1. We need the
first 2d + 8 terms in the Schwarz maps ψ0(x) and ψ1(x) to be in Fp, so p has to be sufficiently large. For
example, if a local exponent difference is 1/3, then we need p > 3(2d + 8) to ensure this. For degree 60
coverings, the starting prime was 907 > 7(2 · 60 + 8).

(iii) Use Hensel lifting to obtain an expression of ϕ(x) in Qp(x);

(iv) Use LLL techniques to compute minimal polynomials of its coefficients, thus reconstructing ϕ(x) as an
element of Q(α)(x).

Our strategy is as follows. For each branching pattern of Tables 2.3.7–3.4.4, we run through a sequence of
primes p and the possible reduced values t, q,K ∈ Fp. For each of the O(p2) pairs of t, q we have to compute
series expansions for the solutions of H0 and H1. This is done rapidly using linear recurrences for coefficients
of these solutions; Maple has the command gfun[diffeqtorec] for getting the recurrences. We expect
ϕ to be in Fp[[x]] for suitable primes p. If ψ0 ◦ ϕ matches Kψ1 in Qp[[x]], then this poses certain necessary
conditions10 on the p-adic valuations of the coefficients of ψ0 and ψ1. We compute the series solutions of H0

and H1 to enough precision so that we can test these necessary conditions. This way, many pairs t, q can be
discarded, and we typically end up with O(p1) pairs. Thus, the rational reconstruction step (ii) “only” needs to
be called for O(p2) combinations of t, q,K.

If we find a ϕ mod p, we store it in a file. Another program will Hensel lift it, apply LLL reconstruction
to Q(α)(x), and compare with the already computed data base. Each Belyi map ϕ has a density δϕ of suitable
primes. The expected number of times that the same ϕwill be found is then 100·δϕ. Unless the density is tiny, the
likelihood that ϕ will be found is very high. The smallest δϕ encountered was 1/6, for the H10–H14 coverings11

with the realization field Q(ζ7). Most of the table was found after just two primes. The first 10 primes took about
a week on Maple, running on 8 Intel X3210 CPU cores. Among the 100 primes, each Belyi function was found
at least 16 times.

The modular method is quite slow, becauseO(p2) combinations of t, q,K have to be inspected for each p. But
its advantage is low requirement of computer memory. This means that the computation can continue for weeks
on end, without a risk that the computation will halt due to memory problems, and without human intervention
(this is important, because if human intervention is needed in any of the steps, then, in a table with hundreds of
cases, a gap would become likely).

10 If ϕ = λxm + · · · ∈ Zp[[x]] is substituted into ψ0 = xv(1+ a1x+ a2x2 + . . .), with ai ∈ Qp, and if the first ai 6∈ Zp is an, and
if ψ1 = λvxvm(1 + b1x+ b2x2 + . . .) is the result of the substitution, then the first bi 6∈ Zp must be bmn.

11 The estimate δϕ ≥ 1/deg Q(α) is sharp when Q(α) ⊃ Q is a Galois extension. This is the case for Q(ζ7). Higher degree
encountered number fields (such as for J28) had significantly higher δϕ > 1/6.
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5.2 A deterministic algorithm

A (k, `,m)-minus-4 Belyi function is determined by a polynomial identity

P ` U = Qm V +RkW, (5.1)

where P,Q,R are monic polynomials in C[x] whose roots are the regular branchings, and U, V,W are
polynomials whose roots are exceptional points with correct multiplicities. The Belyi function is then expressed
as

ϕ(x) =
P ` U

QmV
, 1− ϕ(x) =

RkW

QmV
. (5.2)

The polynomials P,Q,R should not have multiple roots; V may be monic. The degrees of the polynomials
in (5.1) are determined by the branching pattern and the assignment of x = ∞. The most straightforward
computational method is to assume undetermined coefficients of the polynomials in (5.1), and solve the resulting
system of algebraic equations between the coefficients. This is not practical for Belyi functions of degree ≥ 12,
mainly because of numerous parasitic [13] solutions where some polynomials in (5.1) have common roots.

A more restrictive set of equations for undetermined coefficients can be obtained by differentiating ϕ(x), as
comprehensively described in [24, §2.1]. In particular, the roots of ϕ′(x) include the branching points above
ϕ = 1 with the multiplicities reduced by 1. A factorized shape of the logarithmic derivative of ϕ(x) and ϕ(x)−1
must be the following:

ϕ′(x)

ϕ(x)
= h1

Rk−1W

P QF
,

ϕ′(x)

ϕ(x)− 1
= h2

P `−1W

QRF
. (5.3)

Here h1, h2 are constants, and F is the product of irreducible factors of U V W , each to the power 1. On the
other hand,

ϕ′(x)

ϕ(x)
= `

P ′

P
+
U ′

U
−m Q′

Q
− V ′

V
,

ϕ′(x)

ϕ(x)− 1
= k

R′

R
+
W ′

W
−m Q′

Q
− V ′

V
. (5.4)

We have thus two expressions for both logarithmic derivatives, of ϕ(x) and ϕ(x)−1. As shown in [24, §2.1], this
gives a generally stronger over-determined set of algebraic equations, of smaller degree and with less parasitic
solutions. If k = 2, the polynomial R can be even eliminated symbolically.

To get an even more restrictive system of algebraic equations, we utilize the fact that our Belyi functions
transform hypergeometric equations to Heun equations. The method bluntly uses the following lemma.

Lemma 5.1 Let ϕ(x) be a Belyi map as in (5.2). Hypergeometric equation (4.1) with

A =
1

2

(
1− 1

k
− 1

`
− 1

m

)
, B =

1

2

(
1− 1

k
− 1

`
+

1

m

)
, C = 1− 1

`
.

is transformed to the following differential equation under the pull-back transformation z 7→ ϕ(x), y(z) 7→
(QmV )

A
Y (ϕ(x)):

d2Y (x)

dx2
+

(
F ′

F
− U ′

` U
− V ′

mV
− W ′

kW

)
Y (x)

dx
+

+A

[
B

(
h1h2 P

`−2Rk−2 U W

Q2F 2
− m2Q′2

Q2
− V ′2

V 2

)
+
mQ′′

Q
+
V ′′

V
+

+

(
1

k
+

1

`

)
mQ′V ′

QV
+

(
mQ′

Q
+
V ′

V

)(
F ′

F
− U ′

` U
− V ′

V
− W ′

kW

)]
Y (x) = 0.

P r o o f. A lengthy symbolic computation, using (5.2) and (5.4).

The transformed equation is to be identified with the target Heun equation, or (if the roots of U, V,W are not
normalized to x = 0, 1, t,∞) with a Fuchsian equation with 4 singularities at the roots of UVW . The accessory
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parameter q is a new undetermined variable. The terms to dY (x)/dx are always identical, but comparison of the
terms to Y (x) gives new algebraic equations between the undetermined variables. If k = 2, ` = 3, not only R
but also P can be eliminated symbolically. The two expressions in (5.4) and Lemma 5.1 then give a non-linear
differential equation for Q, with q and the coefficients of U, V,W as parametric variables. After substitution of
general polynomial expression for Q, we collect to the powers of x and get a system of algebraic equation for
undetermined coefficients. This is explained more thoroughly in [24, §2.2]. The logarithmic derivative ansatz
and Lemma 5.1 do not use the location ϕ = 1 of the third fiber, hence the polynomials U, V,W can be assumed
to be monic as well. Then the Belyi function ϕ(x) has to be adjusted by a constant multiple at the latest stage.
In most cases, all but 3 variables12 are eliminated linearly, leaving only so many variables for hard Gröbner basis
computations. Our implementation [23, ComputeBelyi.mpl] for Maple 15 computes the degree 60 Belyi
maps in 110s, the Galois orbit J28 in 274s, and the orbit pair H11, J26 in 830s.

Example 5.2 Consider computation of degree 54 Belyi functions with the branching fractions 1/7, 1/7, 1/7, 2/7.
We assign the branching fraction 2/7 to x = ∞, so that U = W = 1. The polynomials P,Q,R, V are assumed
to be monic, without multiple roots, of degree 18, 7, 27, 3 respectively. If we would assume V = x(x−1)(x− t),
the Heun equation would have a = 9/14, b = 13/14 and c = d = 6/7. To avoid increase of the moduli field, we
rather assume V = x3 + v2x+ v3. Here the x2 term is zero-ed by a translation x→ x+ β, so that only scaling
Möbius transformations x → αx are left to act. The transformed Fuchsian equation must have the following
term to Y (x): ab(x− q)/V . The logarithmic derivative ansatz gives

2R = 3P ′QV − 7PQ′V − PQV ′, 2P 2 = 2QR′V − 7Q′RV −QRV ′,

while Lemma 5.1 gives

13

84

(
4P

Q2V 2
− 49Q′2

Q2
− V ′2

V 2

)
+

7Q′′

Q
+
V ′′

V
+

35Q′V ′

6QV
=

351 (x− q)
7V

.

Symbolic elimination of R,P on Maple gives the following differential expression:

7Q′′′′

15Q
+

7Q′′′

3Q

(
V ′

V
− Q′

Q

)
+

(7Q′′)2

26Q2
+
Q′′V ′

QV

(
13V ′

7V
− 35Q′

13Q

)
+

3Q′′

7QV

(
115q − 1033

13
x

)
+

Q′2

7Q2V

(
3

2
(163x− 247q) +

16V ′2

13V

)
− 13V ′

2V 2

+
3Q′

2QV

((
183

7
q − 241

13
x

)
V ′

V
+

67

21

)
+

18

V 2

(
2x− 13

5
q

)(
46

13
x− 27

7
q

)
= 0.

Here the values V ′′ = 6x, V ′′′ = 6, V ′′′′ = 0 are simplified. Substituting the explicit V , Q = x7 + c1x
6 +

. . .+ c6x+ c7 and clearing the denominator, we obtain a polynomial expression of degree 15 in x. The leading
term gives q = −5c1/52. The next term gives nothing new (as follows from [24, Lemma 2.1]). But the next 5
equations allow subsequent elimination of c3, c4, c5, c6, c7 in terms of c1, c2, v2, v3. The 4 remaining variables
are weighted-homogeneous, with the weights 1, 2, 2, 3. Elimination of v2, v3 using the other 10 equations is done
with the Gröbner basis routine of Maple 15 in about 35s (on a PC with 2.66GHz Intel Core Duo). The algebraic
system has 4 Galois orbits of solutions, 3 of them parasitic13. The proper solution has the label D28. We can take

V = x3 − 4899x− 370078, Q = x7 + 28x6 +
29063265

512
x5 + . . . .

The expression for ϕ(x) is long. We looked for an optimizing Möbius transformation. The bit size of ϕ(x) is
reduced by the factor ≈ 2.26 after the Möbius substitution x 7→ (241x− 212)/(x+ 4). Then

ϕ(x) =
P 3

864(x− 4)(3x2 + 1)(x+ 4)2Q7
,

12 Or all except 4 weighted homogeneous variables, if the scaling transformations x→ αx are left to act. The Schwarz maps of §5.1 are
determined by 3 values as well: the location parameter, the accessory parameter, and the constant multiple.

13 The parasitic solutions are: the degree 18 coverings mentioned in footnote 3; a degree 10 covering with the branching pattern 5 [2] =
3 [2] + 4 [1] = 7 + 2 + 1; and the non-cyclic cubic Belyi covering. In all cases, the simplification of the numerator and the denominator of
ϕ(x) is by a linear polynomial to the maximal power (36, 44 or 51).
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Id branching d [k`m] Moduli Obstruction Bad
fractions field conic primes

B12 1/7, 1/7, 3/7, 3/7 36 [237] Q u2 + v2 + 7 7,∞
C6 1/3, 1/3, 2/7, 2/7 32 [237] Q u2 + v2 + 1 2,∞
C30 1/2, 1/2, 1/4, 1/4 10 [245] Q u2 + 2v2 + 5 5,∞
D45 1/4, 1/4, 1/4, 1/4 20 [245] Q u2 + 2v2 + 5 5,∞
F1 1/3, 1/3, 1/3, 1/3 8 [334] Q(

√
2) u2 + 3v2 +

√
2− 1 3,∞

F4 1/2, 1/2, 1/8, 1/8 18 [238] Q(
√

2) u2 + v2 + 1 ∞,∞
F6 1/8, 1/8, 1/8, 1/8 36 [238] Q(

√
2) u2 + v2 + 1 ∞,∞

F11 1/5, 1/5, 1/5, 1/5 12 [255] Q(
√

5) u2 + 2v2 +
√

5 5,∞
H1 1/3, 1/3, 1/9, 1/9 20 [239] Q(Re ζ9) u2 + v2 + Re ζ9 ∞,∞
H10 1/2, 1/2, 1/7, 1/7 30 [237] Q(Re ζ7) u2 + v2 − Re ζ7 ∞,∞
H11 1/3, 1/3, 1/7, 1/7 44 [237] Q(Re ζ7) u2 + v2 − Re ζ7 ∞,∞
H12 1/2, 1/2, 1/3, 1/3 14 [237] Q(Re ζ7) u2 + v2 − Re ζ7 ∞,∞
H13 1/3, 1/3, 1/3, 1/3 28 [237] Q(Re ζ7) u2 + v2 − Re ζ7 ∞,∞
H14 1/7, 1/7, 1/7, 1/7 60 [237] Q(Re ζ7) u2 + v2 − Re ζ7 ∞,∞

Table 2 Belyi functions with an obstruction.

where Q = 3x7 − 7x6 − 14x5 − 98x4 + 147x3 − 7x2 + 56x+ 16 and

P =47x18 − 2028x17 + 5502x16 + 54540x15 − 263535x14 − 32592x13 + 2249268x12

− 3436872x11 + 14145x10 − 1425900x9 − 8774370x8 − 1715652x7 − 10594017x6

+ 2223144x5 − 5284080x4 + 1638144x3 − 1306368x2 + 239616x− 135168.

6 Moduli fields and obstruction conics

Particularly interesting are Belyi functions with moduli field issues. Here we present these instances among
the minus-4-hyperbolic functions. At the same time, we briefly recall cohomological and conic obstructions on
realization fields of Belyi functions, give a straightforward characterization of the obstruction conic (in Lemma
6.2) that applies to our cases, and express a few Belyi coverings as functions on the obstruction conics. Further
computational and geometrical details are considered in [24, §4].

Let O denote the group of Möbius transformations:

O =

{
ax+ b

cx+ d
| a, b, c, d ∈ Q with ad− bc 6= 0

}
∼= Aut(Q(x)/Q).

Two rational functions ϕ1, ϕ2 ∈ Q(x) are called Möbius-equivalent, denoted ϕ1 ∼ ϕ2, if there exists µ ∈ O with
ϕ1 ◦ µ = ϕ2. A realization field of a Belyi covering ϕ is any number field over which some Möbius equivalent
function ϕ ◦ µ is defined. The r-field from Definition 2.3 is such a field, but often not of minimal degree.

Definition 6.1 Let ϕ ∈ Q(x) be a Belyi function. The moduli field Mϕ is the fixed field of {σ ∈
Gal(Q/Q) |ϕ ∼ σ(ϕ)}.

The moduli field is known to be equal to the intersection of the realization fields of ϕ. Two Belyi functions are
Möbius-equivalent if and only if they have the same dessin d’enfant (up to a homeomorphism). Thus, the moduli
field of a dessin d’enfant is well defined. The number of different dessins (up to homeomorphism) in a Galois
orbit is equal to the degree of the moduli field.

For each Belyi function ϕ in our list, we determined its moduli field and realization fields. Among the minus-
4-hyperbolic Belyi functions, there are 14 Galois orbits for which the moduli field is not a realization field. They
are given in Table 2. The realization fields are then determined by an obstruction conic, as explained in §6.1. The
last two columns characterize the conics.

The moduli fields are computed directly from Definition 6.1 by checking which Galois conjugates of ϕ are
Möbius-equivalent to ϕ. The computed Belyi functions ϕ always had [Kϕ : Q(j)] ≤ 2, where Q(j) is the j-field
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Fig. 2 The coverings (except F1, F11, H14) with an obstruction

and Kϕ denotes the smallest number field with ϕ ∈ Kϕ(x). But Q(j) ⊆Mϕ ⊆ Kϕ. Therefore, the moduli field
can only be Q(j) or Kϕ. If Q(j) = Kϕ then Mϕ = Q(j). If Q(j) 6= Kϕ, then let σ be the non-trivial element
of Gal(Kϕ/Q(j)). The moduli field is then determined simply by checking whether ϕ ∼ σ(ϕ) or not.

The dessins d’enfants of most of the Belyi maps of Table 2 are depicted in Figure 2. The other Galois orbits
with obstructed dessins are found in Figures 1 and 3. The interesting questions whether a dessin has a moduli
field ⊂ R, and if so, does it have a realization over R, are considered in [5]. Although all moduli fields in the
obstructed cases are real, not all their dessins have a reflection symmetry (i.e., have a realization over R). Rather,
their complex conjugates are equivalent to the original up to a homeomorphism that permutes the cells, reflecting
a non-trivial Möbius equivalence. The number of these skew-symmetric dessins depends on the number of bad
∞-primes shown in the last column of Table 2. The moduli fields for H1, H10–H14 have three infinite primes,
but only two of them are bad. Therefore one dessin in those orbits has a reflection symmetry, and the other two
are skew symmetric. Likewise, F1 and F11 each have one dessin with R-realization and one dessin without.
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6.1 Obstructions on realization fields

If the moduli field Mϕ is not a realization field, the realization fields are determined by a conic obstruction. For
each of the cases of Table 2, the realization fields are those extensions of Mϕ that have a rational point on the
conic curves given in the sixth column.

For ϕ ∈ Q(x), let us denote Γϕ = Gal(Q/Mϕ). Let

Oϕ = {µ ∈ O|ϕ ◦ µ = ϕ} ∼= Aut(Q(x)/Q(ϕ)),

be the group of Möbius automorphisms of ϕ. For any σ ∈ Γϕ we have |Oϕ| choices for µ ∈ O in σ(ϕ) = ϕ ◦ µ.
If for each σ ∈ Γϕ we can choose such µσ ∈ O so that µσ ◦ σ(µρ) = µσρ for any σ, ρ ∈ Γϕ, then we have a
cocycle of Galois cohomology [20] representing an element of H1(Γϕ,O). This choice is certainly possible if
|Oϕ| = 1. The realization fields L are then those which are mapped to the identity in H1(Gal(Q/L),O). As
recalled in [9], the elements of H1(Γϕ,O) are in one-to-one correspondence with isomorphism classes of conic
curves over Mϕ. This is a special case of the construction in [20, Ch. XIV].

In turn, a conic is determined up to birational equivalence over Mϕ by the primes p of bad reduction. The
number of bad primes is always even. The bad primes are precisely those for which ϕ has no realization over the
completion of Mϕ at p. The completion at a real prime is isomorphic to R. Notice that the conics for C6 and F4
look the same u2 + v2 + 1 = 0 but over different moduli fields. In particular, their sets of bad primes differ.

In [9, §7] it is proved that if ϕ(x) ∈ Q(x) has a Galois cocycle, then there is a realization over a quadratic
extension of the moduli fieldMϕ. These realizations are straightforward to obtain for Belyi functions with exactly
two points of some branching order in the same fiber f ∈ {0, 1,∞}. Designating those two points as x = ∞,
x = 0 extends the moduli field at most quadratically. This applies to all our examples except D45, F6, H13, H14.

Suppose now ϕ(x) ∈ Mϕ(
√
A) for A ∈ Mϕ, and let µ(x) ∈ O be the cocycle representative of those Galois

elements that conjugate
√
A→ −

√
A. With x =∞, x = 0 set as just above, the possible Möbius transformations

are x 7→ −x or x 7→ B/x. In the former case, the quadratic extension disappears after the scaling x 7→
√
Ax.

Lemma 6.2 Suppose that we have a Belyi function ϕ(x) ∈Mϕ(
√
A) where Mϕ is the moduli field. Suppose

that there is a Galois cocycle that sends the Galois elements that conjugate
√
A→ −

√
A to x 7→ B/x for

B ∈Mϕ. Then the obstruction conic is isomorphic to u2 = Av2 +B.

P r o o f. The functions

u =
1

2

(
x+

B

x

)
, v =

1

2
√
A

(
x− B

x

)
. (6.1)

are invariant under the Galois action, hence they are Mϕ-rational functions on the obstruction conic. They are
related by u2 = Av2 +B.

Example 6.3 The branching pattern for C30 is 2 [5] = 2 [4] + 1 + 1 = 4 [2] + 1 + 1. The moduli field is Q.
Here is a realization over Q(

√
−3), with the points of branching order 5 assigned as x =∞, x = 0:

ϕ(x) =
2(x2 + 5x− 5)4

(
(x2 + 5)

√
−3− 3x2 − 60x+ 15

)
(12x)5

. (6.2)

We have |Oϕ| = 1, since the numerator of ϕ(y)−ϕ(x) has only one linear factor y−x. Let σ :
√
−3 7→ −

√
−3

denote the non-trivial element of Gal(Q(
√
−3)/Q). The numerator of ϕ(y)−σ(ϕ(x)) has a linear factor xy+5,

giving the Möbius transformation µ(x) = −5/x for σ(ϕ) = ϕ ◦ µ. By Lemma 6.2, the obstruction conic is
isomorphic to C : u2 + 3v2 + 5 = 0. We can express ϕ as a function on this conic by writing ϕ(x) as a product
of Laurent polynomials and substituting

x = u+ v
√
−3,

1

x
=
−u+ v

√
−3

5
.

The expression is

ϕ =

(
u

6
+

5

12

)4
(v − u− 10) ∈ Q(u, v)/(u2 + 3v2 + 5). (6.3)
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Fig. 3 Ambiguous cases of moduli fields

A point (u0, v0) ∈ C defined over some number field L ⊃ Q gives a parametrization λ : P1 → C by the lines
passing through (u0, v0). The composition ϕ ◦ λ gives then a realization of ϕ over L. Formula (6.1) gives one
such parametrization. The conic C is isomorphic to the conic given by u2 + 2v2 + 5 = 0 as they have the same
set of bad primes. A projective isomorphism is (u : v : 1) 7→

(
1
2 (u − 5) : v : 1

2 (u + 1)
)
. Its computation is

explained in [24, §3.5].
The obstructed cases without a cocycle are the following: D45, F6, H13, H14. These are exactly the cases

of Table 2 with |Oϕ| > 1. In fact, |Oϕ| = 2 for these Galois orbits14. To get explicit realizations for these
Belyi functions, we suggest to take their quotients by Oϕ. The quotients are C30, F4, H12, H10, respectively.
The smaller coverings do have a cocycle and parametrizations by obstruction conics. As shown in [24, §3.2],
the realization fields of C30, D45 (and of F4, F6; or H12, H13; or H10, H14) are the same. In particular, each
realization ϕ◦λ of C30 is composed with a quadratic covering (to D45) defined over the same field. The quadratic
covering composes with the conic paramaterization λ, not with the conic15 realization ϕ.

In the obstructed cases with a cocycle, realization of a Belyi covering as a function on the obstruction conic
is a specially compact expression of the Belyi covering, as demonstrated in (6.3). Here are two more examples.
For C6, we have

ϕ =
(u− 5)(u− 1)3(v4 + 18v2 + 8v(v − 58)(u− 4)− 3403)3

3456(v(u− 4)− 13)7
(6.4)

on the conic u2 + v2 + 2 = 0. The conic is isomorphic to u2 + v2 + 1 = 0 by (u, v) 7→ (u+ v, u− v). For F11,
we use the expression in [9] and obtain

ϕ = −
(u+

√
5 + 2)5

(
u− 2(3−

√
5)v − 5

√
5
)

(u−
√

5− 2)5
(
u− 2(3−

√
5)v + 5

√
5
) . (6.5)

on the conic u2 + 2v2 +
√

5 = 0. After the substitution

(u, v) 7→

(
(
√

5 + 2)
u+ 1

u− 1
,

(3
√

5 + 1)u+ 5
√

5v − 2
√

5 + 1

(3−
√

5)(u− 1)

)

the expression for F11 becomes u5(1− u− v)/v, though the conic equation then becomes complicated.

6.2 Ambiguous moduli fields

The moduli field for the Galois orbit F7 is M = Q(
√

3 + 6
√

2) by standard definitions. However, the branching
pattern [4] + 2 + 1 = 2 [3] + 1 = 2 [3] + 1 has two symmetric fibers 2 [3] + 1. The conjugation of M ⊃ Q(

√
2)

14 Non-existence of a cocycle defined over R can be shown geometrically by using the criterion in [5, Theorem 2]. Each of the dessins
for D45, F6, H13, H14 without a reflection symmetry has a tetrahedral carcass (obtained by taking out some cells around 4 exceptional points
or cells). A pair of opposite tetrahedron edges e, f relate to the exceptional cells differently than the other tetrahedron edges. If we assume
the tetrahedron to have equal straight edges, the dessin symmetry is rotation by π around the axis connecting the midpoints of e, f . The
complex conjugation is realized by permutations w,w−1 of half-edges (connecting black vertices and white midpoints) that swap e, f and
cyclically permute the other 4 tetrahedron edges. The order of w is thus 4, but we must have w2 =id for a cocycle.

15 In fact [16], a conic defined over a field K without a K-rational point cannot have quadratic coverings defined over K.
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permutes the two fibers, so the derivative of a Belyi function for F7 has a compact expression:

ϕ′(x) =

(
2x2 + x+ 3− 2

√
2(x+ 1)

)2(
8x2 − 12x+ 4 +

√
2(2x− 3)

)2√
3 + 6

√
2 (753− 531

√
2)x3(x− 1)2

. (6.6)

The function
√

3 + 6
√

2
(
2ϕ(x) − 1

)
is defined over Q(

√
2) and branches only above z = ∞ and z =

±
√

3 + 6
√

2. Defining a Belyi function by requiring branching in any (at most) 3 fibers, not specifically
{0, 1,∞}, would make no geometrical difference because of Möbius transformations on P1

z . But evidently, there
are arithmetic consequences for moduli and realization fields. The number of dessins for F7 is 2 or 4 depending
of whether the dessins are counted up to Möbius equivalence on P1

z or not. Figure 3 depicts two of the dessins
for F7. The other two are obtained by swapping the color labeling of black and white vertices. If the symmetric
fibers are put at z = 0, z = 1, the transformation z 7→ 1 − z swaps the two symmetric fibers and changes the
sign of

√
3 + 6

√
2. One conjugation of

√
2 gives

√
3 + 6

√
2 ∈ R, hence one of the dessins is real.

Most remarkably, the Galois orbits F1 and F11 demonstrate a mix of a conic obstruction and ambiguous
moduli field. Their realization fields are obstructed by the conics in Table 2 if we insist in having the branching
fibers at {0, 1,∞}. But Möbius transformations on P1

z of their Belyi functions can be expressed over the moduli
fields. Reflecting this, the first dessin of F1 in Figure 3 is symmetric if vertex coloring is ignored, but the black
and white vertices are interchanged by the complex conjugation. A Belyi function for F1 is∫

8(5 + 3
√

2)
(
x4 + 4x2 + 6 +

√
2(14x2 + 4)

)2
3
√
−6
√

2
(
x2 − 2

√
2x− 2−

√
2
)5 dx, (6.7)

with a proper integration constant setting the branching fibers z = 0, z = 1. But an expression in Q(
√

2)(x) is
obtained after multiplication by

√
−6
√

2 and loosening the integration constant. The dessins for F11 are drawn
in Figure 3 in two variations: first compactly, by hiding white vertices of order 2; then assigning the black and
white vertices to represent points of order 5 to show the fiber interchanging symmetry. A Belyi function for F11
is ∫ √

−2
√

5 (10 + 8
√

5)
(
x4 + (72

√
5− 156)x2 + 4

)4
25
(
x6 − 22x5 + 306x4 − 840x3 − 612x2 − 88x− 8 + 2

√
5xP

)3 dx, (6.8)

where P = 5x4− 68x3 + 188x2 + 136x+ 20. The Galois orbits F11, G47, A19 with the same branching pattern
are considered in [9], [31, Example 5.7], though the consequence of auto-duality for F11 is not noticed.

Examples of coverings with this dual interpretation of the moduli field are given in [19]. One example of
Pharamond is the branching pattern 4 + 2 + 1 = 4 + 2 + 1 = 4 + 2 + 1 with two Galois orbits. One moduli field
is Q(

√
−1− 2

√
2), though rational functions can be expressed over Q(

√
2) if the fiber location is not fixed. A

function for the other orbit can be similarly written over Q(
√
−6), while the moduli field is of degree 12, obtained

by adjoining the roots of the polynomial z3 − z2 + (3 +
√
−6)z − 3.

A Appendix: Sorting criteria

In §3.1, the minus-4-hyperbolic Belyi functions were grouped into 10 classes A–J. We order the Belyi functions
inside those classes by the following criteria:

(a) the first criterion is the j-invariant;

(b) the second criterion is the branching fractions16;

(c) the last criterion is the degree of the covering.

The sort of j-invariants lexicographically adheres to the following criteria:

16 The first two criteria establish that our list is basically sorted by Heun equations. To identify the Heun equations, invariants describing
accessory parameters should be added [28, §D].
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(a1) the j-field;

(a2) the t-field;

(a3) the leading coefficient of the minimal polynomial in Z[x] for the j-invariant.

The order of j-fields and t-fields is settled by the following criteria:

(f1) the field degree;

(f2) if the field is a quadratic extension of Q then:

(f1a) real quadratic fields have precedence over Q(
√
a) with a < 0;

(f1b) the fields Q(
√
a) with the same sign of a are ordered by the increasing order of |a|.

(f3) if the field is of higher degree, then the criterion is the field discriminant.

The integers in (a3) and (f3) are ordered as follows:

(i1) the product of the primes dividing the integer;

(i2) the absolute value.

The numbers in (i1), (i2), (f1b) and (c) are ordered in increasing order. The tuples of branching fractions are
ordered as follows

(b1) in each tuple, the four branching fractions are ordered in increasing order of their denominators, then
secondarily the numerators.

(b2) the tuples are compared lexicographically, from their first elements, and the elements are matched first by
their denominators then numerators.

These criteria break all ties in our list of Belyi functions. Due to (i1), the fields or t-values that ramify or
degenerate modulo the same set of primes are placed next to each other. The leading coefficient in (a3) gives
information about the primes where the covering is ramified. In particular, for j ∈ Q the leading coefficient is
the denominator of j.

B Appendix: The A-J tables

The following pages display tables of Galois orbits of minus-4-hyperbolic Belyi functions, grouped as specified
in §3.1 and ordered by the criteria in §A. All tables contain the following columns:

• Id: the label from A1 to J28;

• Branching frac.: the branching fractions of a minus-4-hyperbolic function;

• d: the degree of a Belyi function;

• [k`m]: the values of k, `,m. For k = 2, ` = 3,m ≥ 10, only the value of m ∈ [10, 14] is given.

• Monodromy/comp. or Mndr/cmp.: The monodromy group G = . . . is given for indecomposable coverings,
and compositions are indicated otherwise. The composition notation is explained in §C.

Other occasional columns:

• j-invariant: given if it is in Q \ {1728}, in a factorized form;

• dj : the degree of the j-field (in tables I, J);

• disc Q(j), disc Q(t): the field discriminants. If the extension Q(t) ⊃ Q(j) is of degree 6, the degree of the
the t-field is indicated in the disc Q(t) column in a small underlined font.

• √ : indicates the quadratic extension of either the t-field (in Tables C, D) or of the j-field (in Tables F, G);
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Id Branching frac. d [k`m] Monodromy/comp. m-√ r-√

A1 1/2, 1/2, 1/5, 1/5 6 [255] G = A5 — −1
A2 12 [245] 2 [445] ◦ 6, A1 ◦ 2 — −1
A3 1/2, 1/2, 2/7, 2/7 18 [237] 2 [277] ◦ 9 — −7
A4 1/2, 1/4, 1/4, 2/5 12 [245] 2 [445] ◦ 6 −1 −1
A5 1/2, 1/4, 1/8, 1/8 24 [238] 2 [488] ◦ 2 [288] ◦ 2 [248] ◦ 3 — —
A6 1/3, 1/3, 1/3, 1/9 16 [239] 4 [339] ◦ 4 — —
A7 1/3, 1/3, 2/3, 2/7 16 [237] 2 [337] ◦ 8 −3 −3
A8 1/3, 1/3, 1/4, 1/4 10 [334] G = A6 — −2
A9 20 [238] 2 [388]◦ 10, A8 ◦ 2 — −2
A10 1/3, 1/3, 1/7, 3/7 32 [237] 4 [337] ◦ 8 — −3
A11 1/3, 1/3, 2/7, 4/7 20 [237] 2 [377′′] ◦ 10 — —
A12 2/3, 2/3, 1/7, 1/7 16 [237] 2 [337] ◦ 8 — −3
A13 2/3, 1/4, 1/8, 1/8 20 [238] 2 [388] ◦ 10 −2 −2
A14 2/3, 1/7, 1/7, 4/7 20 [237] 2 [377′′] ◦ 10 — —
A15 2/3, 2/7, 2/7, 2/7 20 [237] 2 [377′′] ◦ 10 — —
A16 1/4, 1/4, 1/4, 1/4 8 [248] 2H ◦ 2 [444] ◦ 2 — −1
A17 12 [334] 2H ◦ 2 [444] ◦ 3 — 3
A18 24 [238] see diagram (C.1) — —
A19 1/5, 1/5, 1/5, 1/5 12 [255] 2H ◦ A1 — —
A20 24 [245] 2H ◦ A2 {A19, [445]} — —
A21 1/7, 1/7, 2/7, 2/7 48 [237] 2 [777] ◦ 3 [337] ◦ 8 — —
A22 1/7, 1/7, 2/7, 4/7 36 [237] 2 [777′′] ◦ 2 [277] ◦ 9 −7 −7
A23 2/7, 2/7, 2/7, 2/7 36 [237] 4 {A3, [277′′]×}[277] ◦ 9 — −7
A24 1/9, 1/9, 2/9, 2/9 24 [239] 2 [999] ◦ 3 [339] ◦ 4 — −3
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Id j-invariant Branching frac. d [k`m] Monodromy/comp.
B1 24133/32 1/2, 1/4, 1/8, 3/8 18 [238] 3 [288] ◦ 2 [248] ◦ 3
B2 1/2, 1/7, 2/7, 3/7 27 [237] 3 [277] ◦ 9
B3 1/4, 1/4, 1/4, 1/4 6 [344] 2H ◦ 3
B4 12 [246] 4H{D25, P22{B3}, P39}◦3
B5 22733/34 1/3, 1/3, 1/6, 1/6 12 [246] 6 {P16, [366]}[266] ◦ 2
B6 1/3, 2/3, 1/7, 2/7 24 [237] 3 [337] ◦ 8
B7 1/3, 2/3, 1/9, 2/9 12 [239] 3 [339] ◦ 4
B8 1/4, 1/4, 1/5, 4/5 10 [245] G = S10

B9 1/4, 1/4, 1/8, 1/8 10 [248] G = A6 :C2

B10 30 [238] 3 [388] ◦ 10, B9 ◦ 3
B11 1/6, 1/6,1/12,1/12 18 [12] 6 {P17, [3 12 12]}[2 6 12]◦3
B12 1/7, 1/7, 3/7, 3/7 36 [237] 4 [277] ◦ 9
B13 1/7, 2/7, 2/7, 4/7 30 [237] 3 [377′′] ◦ 10
B14 1/8, 1/8, 3/8, 3/8 24 [238] 8 {D9, [288]}[248] ◦ 3
B15 64813/3852 1/2, 1/4, 1/4, 3/8 15 [238] 5 [248] ◦ 3
B16 2673973/3654 1/3, 1/7, 2/7, 4/7 28 [237] G = A28

B17 1/3, 1/7, 3/7, 5/7 16 [237] G = A16

B18 731273/223652 1/3, 1/3, 1/3, 1/3 5 [335] G = A5

B19 10 [10] 2H ◦ 5, B18 ◦ 2
B20 7322873/263256 1/3, 2/3, 2/7, 3/7 12 [237] G = S12

B21 1/4, 1/4, 1/4, 1/4 6 [344] G = S5

B22 12 [246] 2H ◦ C24, B21 ◦ 2
B23 1/5, 1/5, 2/5, 3/5 12 [245] 6 [255] ◦ 2
B24 1/5, 1/5,1/10,3/10 18 [10] 6 [2 5 10] ◦ 3

B25 26733132713/310114 1/3, 2/3, 1/7, 4/7 12 [237] G = S12

B26 49933/223874 1/4, 3/4, 1/5, 2/5 8 [245] G = S8

B27 1/6, 1/6, 1/6, 1/6 8 [266] G = PSL(3, 2) :C2

B28 16 [246] 2H ◦ C3, B27 ◦ 2
B29 2433761033/56114 2/3, 1/4, 1/8, 3/8 14 [238] G = S14

B30 24181325213/3654134 1/3, 1/4, 1/8, 5/8 16 [238] G = A16

B31 73319334093/22325478 1/7, 2/7, 3/7, 5/7 18 [237] G = S18

B32 492013/283652114 2/3, 1/7, 1/7, 4/7 20 [237] G = S20

B33 241067913013/3145278116 1/2, 1/7, 3/7, 4/7 15 [237] G = S15

B34 8293304693/365678194 1/3, 1/7, 2/7, 5/7 22 [237] G = S22
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Id √
j-invariant Branching frac. d [k`m] Monodromy/comp.

C1 2 2333113 1/2, 1/2, 1/4, 1/4 12 [238] 2H ◦ 2 [248] ◦ 3
C2 53113313/2376 1/14,1/14,1/14,1/14 18 [14] 2H ◦ 9
C3 7336013/2·3478 1/2, 1/2, 1/6, 1/6 8 [246] G =PSL(3, 2) :C2

C4 1/7, 1/7, 3/7, 6/7 18 [237] G = S18

C5 3 221933/3 1/4, 1/4, 3/8, 3/8 18 [238] 2H ◦ 3 [248] ◦ 3
C6 27533/33 1/3, 1/3, 2/7, 2/7 32 [237] 4 [337] ◦ 8
C7 1/3, 1/3, 2/9, 2/9 16 [239] 4 [339] ◦ 4
C8 33531573/22116 1/2, 1/8, 3/8, 3/8 15 [238] G = S15

C9 1335413/33114 2/3, 1/9, 2/9, 2/9 14 [239] G = S14

C10 109391333/2435134 1/4, 1/4, 1/5, 3/5 14 [245] G = S14

C11 1/4, 1/4, 1/6, 1/6 14 [246] G =PSL(2, 13) :C2

C12 333731926373/116174 2/3, 1/7, 1/7, 3/7 26 [237] G = S26

C13 275313013438893/3171110134 1/3,1/11,2/11,2/11 16 [11] G = A16

C14 5 211 1/2, 1/2, 1/4, 1/4 10 [245] 2H ◦ 5
C15 24173 1/2, 1/5, 1/5,1/10 15 [10] 5 [2 5 10] ◦ 3
C16 1/2, 1/5, 2/5, 2/5 10 [245] 5 [255] ◦ 2
C17 1/4, 1/4, 1/4, 1/4 20 [245] 4H{F13×,C14}◦5
C18 1036813/345 1/7, 2/7, 3/7, 3/7 30 [237] G = S30

C19 6 269713/35 1/2, 1/4, 1/4, 3/5 8 [245] G = A8

C20 261934673/3756 1/3, 2/3, 1/4, 1/4 6 [334] G = S6

C21 12 [238] C20 ◦ 2
C22 11312593/2·3354 1/3, 1/3, 1/8, 1/8 26 [238] G =PSL(2, 25) :C2

C23 1/9, 1/9, 2/9, 5/9 18 [239] G = S18

C24 11319793/233·512 1/2, 1/2, 1/4, 1/4 6 [246] G = S5

C25 1/10,1/10,3/10,3/10 18 [10] 2H ◦ 9
C26 7 3353173 2/3, 2/7, 2/7, 3/7 14 [237] G = S14

C27 243732713/3654 2/3, 1/7, 1/7, 5/7 14 [237] G = S14

C28 221131073/3127 1/3, 1/3, 3/8, 3/8 14 [238] 2H ◦ 7
C29 275616073/31675 1/3, 2/3, 2/3, 1/7 8 [237] G = A8

C30 10 79493/25310 1/2, 1/2, 1/4, 1/4 10 [245] G = A6

C31 1/6, 1/6, 1/6, 1/6 10 [256] 2H ◦ 5
C32 113133233/2·3125 2/3, 2/3, 1/8, 1/8 10 [238] 2H ◦ 5
C33 13 1122973/2432013 1/2, 1/3, 3/7, 3/7 13 [237] G = A13

C34 21 331273/56 2/3, 1/7, 3/7, 3/7 14 [237] G = S14

C35 3313673/2452 1/2, 2/7, 3/7, 3/7 15 [237] G = S15

C36 7573118273/2437176 1/2, 1/7, 3/7, 3/7 21 [237] G = A21

C37 37356533/22335127 1/3, 1/3, 1/5, 1/5 7 [335] G = A7

C38 14 [10] 2H ◦ 7, C37 ◦ 2
C39 105 243686813/57 1/2, 2/7, 2/7, 3/7 21 [237] G = A21

C40 33273293/2145·75 2/3, 2/3, 1/7, 2/7 10 [237] G = S10

C41 273 53349385168733/230337911613 1/2, 1/3, 2/9, 2/9 13 [239] G = A13

C42 385 332891893/2185711 1/2, 2/3, 2/7, 2/7 11 [237] G = S11
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Id √
j-invariant Branching frac. d [k`m] Monodromy/comp.

D1 −1 2233133/54 1/4, 1/4, 1/8, 5/8 18 [238] 6 [248] ◦ 3
D2 −241093/56 1/3, 2/3, 1/9, 1/9 14 [239] G = S14

D3 1/5, 1/5, 1/5, 4/5 12 [245] 6 [255] ◦ 2
D4 1/5, 2/5,1/10,1/10 18 [10] 6 [2 5 10] ◦ 3
D5 1/7, 1/7, 2/7, 5/7 30 [237] G = S30

D6 1/10,1/10,1/10,1/10 24 [10] 4H{G5×,P43} ◦ 6
D7 −2 −25193/36 1/3, 1/3, 1/3, 1/3 8 [334] 2H ◦ 4
D8 16 [238] 4H{G13×, P41{D7}}◦4
D9 2·473/38 1/2, 1/2, 1/8, 3/8 12 [238] 4 [248] ◦ 3
D10 1/6, 1/6, 1/6, 1/6 8 [266] 2H ◦ 4
D11 16 [246] 4H{G11×, P23{D10}}◦4
D12 −262393/310 1/2, 1/3, 1/4, 1/4 8 [246] 4 [344] ◦ 2
D13 1/3, 1/3, 1/3, 2/3 8 [238] 4 [334] ◦ 2
D14 1/3, 1/6,1/12,1/12 16 [12] 4 [3 4 12] ◦ 4
D15 −4826413/2·321110 1/11,1/11,2/11,3/11 18 [11] G = S18

D16 −2549773/25312194 1/3, 1/3, 1/8, 3/8 20 [238] G = A20

D17 7607317533/2732054114 1/3, 1/7, 1/7, 4/7 34 [237] G = S34

D18 −3 0 1/2, 1/6, 1/6, 1/6 12 [246] 3 [366] ◦ 2 [266] ◦ 2
D19 1/3, 1/3, 1/3, 1/3 12 [239] 3 [339] ◦ 4
D20 1/3, 1/3, 1/3, 3/7 24 [237] 3 [337] ◦ 8
D21 1/4,1/12,1/12,1/12 18 [12] 3 [3 12 12] ◦ 2 [2 6 12] ◦ 3
D22 1/7, 1/7, 1/7, 6/7 30 [237] 3 [377′′] ◦ 10
D23 2/7, 2/7, 2/7, 3/7 30 [237] 3 [377′′] ◦ 10
D24 1/8, 1/8, 1/8, 3/8 30 [238] 3 [388] ◦ 10
D25 211/3 1/2, 1/2, 1/4, 1/4 6 [246] 2H ◦ 3
D26 −2173373/134 1/3, 1/3, 1/7, 6/7 14 [237] G = S14

D27 −233713/3 · 78 1/2, 1/4, 2/5, 2/5 9 [245] G = A9

D28 1/7, 1/7, 1/7, 2/7 54 [237] G = S54

D29 1/7, 3/7, 3/7, 4/7 18 [237] G = S18

D30 −5 −52813/3165 1/3, 1/3, 2/3, 3/7 10 [237] G = S10

D31 1/3, 1/3, 1/4, 1/4 5 [344] G = S5

D32 10 [246] 2H ◦ 5, D31 ◦ 2
D33 27914233/365778 1/3, 2/7, 2/7, 5/7 16 [237] G = A16

D34 −113888113/26345·712 1/4, 1/4, 1/7, 2/7 10 [247] G = S10

D35 −113238306210913/283205378434 1/3, 1/7, 1/7, 1/7 52 [237] G = A52

D36 −6 −236359329993/3751674 1/5, 2/5, 1/6, 1/6 8 [256] G = S8

D37 −7 −5316373/2187 1/2, 1/5, 1/5, 2/5 7 [255] G = S7

D38 14 [245] D37 ◦ 2
D39 1/3, 1/3, 1/3, 2/9 14 [239] G = S14

D40 −533731673/2834114 1/7, 1/7, 2/7, 4/7 36 [237] G = A36

D41 −2653144113/36731110 1/3,1/11,1/11,3/11 16 [11] G = A16

D42 −14 −251992876313/3265673 1/3, 2/5,1/10,1/10 16 [10] G = A16

D43 −15 −2693/21035 1/2, 1/5, 1/5, 3/5 10 [245] 5 [255] ◦ 2
D44 1/2,1/10,1/10,3/10 15 [10] 5 [2 5 10] ◦ 3
D45 1/4, 1/4, 1/4, 1/4 20 [245] 2H ◦ C30
D46 −113593/2123·53 1/2, 1/7, 1/7, 4/7 27 [237] G = S27

D47 −333350893/21457234 2/3, 1/7, 2/7, 2/7 26 [237] G = S26

D48 −35 16851041513/26332577·134 1/3, 1/3,1/10,3/10 14 [10] G = S14

D49 −39 −17329351973/2303352133 1/2, 1/9, 1/9, 4/9 15 [239] G = S15

D50 1/2,1/10,1/10,3/10 15 [10] G = S15
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Id discQ(t) j-invariant Branching frac. d [k`m] Monodromy/comp.
E1 −2937 −2633233 1/2, 1/3, 1/3, 1/3 6 [334] G = A6

E2 12 [238] E1 ◦ 2
E3 −33173/2 2/3, 1/9, 1/9, 1/9 18 [239] G = S18

E4 −2938 −33533833/27 1/3, 1/3, 1/3, 1/4 9 [334] G =((C3×C3) :Q8) :C3

E5 18 [238] E4 ◦ 2
E6 1/3, 1/3, 1/3, 4/7 18 [237] G = S18

E7 −2954 −522413/23 1/2,1/10,1/10,1/10 18 [10] G = S18

E8 1/5, 1/5, 1/5, 2/5 10 [255] G = S10

E9 20 [245] E8 ◦ 2
E10 5·2113/215 1/2, 1/2, 1/2, 1/4 5 [245] G = S5

E11 1/4, 1/4, 1/4, 1/4 20 [245] 4H{H17××} ◦ E10
E12 −3753 −2833613/57 1/3, 1/3, 1/3, 1/5 6 [335] G = A6

E13 12 [10] E12 ◦ 2
E14 1/3, 1/3, 1/3, 5/7 12 [237] G = A12

E15 −26114 −24112133/36 2/3,1/11,1/11,1/11 14 [11] G = S14

E16 −29133 −33413833/2·137 1/13,1/13,1/13,2/13 18 [13] G = S18

E17 −243354 −2954113/35 1/5, 1/5, 1/5, 3/5 8 [255] G = A8

E18 16 [245] E17 ◦ 2
E19 −243374 −21271173233/313 1/3, 1/3, 1/3, 2/3 14 [237] G = S14

E20 −293374 −2·3372 4/3, 1/7, 1/7, 1/7 10 [237] G = S10

E21 −263773 −3·2233/28 1/2, 1/2, 1/2, 2/7 9 [237] G = S9

E22 2/7, 2/7, 2/7, 2/7 36 [237] 4H{H37××} ◦ E21
E23 −245373 293337393/51175 1/5, 1/5, 1/5, 1/7 8 [257] G = A8

E24 −265374 337·20993/21457 1/2, 1/4, 1/4, 1/4 7 [247] G = S7

E25 −2654133 −5·34109093/220310135 1/2, 1/4, 1/4, 1/4 15 [245] G = S15
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Id √ discQ(t) Branching frac. d [k`m] Monodromy/comp.
F1 2 as j 1/3, 1/3, 1/3, 1/3 8 [334] G =PSL(3,2)
F2 16 [238] 2H ◦ F5, F1 ◦ 2
F3 1/3, 2/7, 3/7, 4/7 16 [237] G = A16

F4 211 1/2, 1/2, 1/8, 1/8 18 [238] G =PSL(2,17)
F5 21132 1/2, 1/2, 1/3, 1/3 8 [238] G =PSL(3,2):C2

F6 2617 1/8, 1/8, 1/8, 1/8 36 [238] 2H ◦ F4
F7 −26327 1/2, 1/3, 1/3, 1/4 7 [334] G =PSL(3,2)
F8 14 [238] F7 ◦ 2
F9 3 as j 1/3, 1/3,1/12,1/12 14 [12] G =PSL(2,13):C2

F10 5 as j 1/2, 1/2,1/10,1/10 12 [10] G =PSL(2,11):C2

F11 1/5, 1/5, 1/5, 1/5 12 [255] G =PSL(2,11)
F12 24 [245] 2H ◦ F16, F11 ◦ 2
F13 −2452 1/2, 1/2, 1/4, 1/4 10 [245] 2H ◦ 5
F14 −2453 2/3, 1/5,1/10,1/10 14 [10] G = S14

F15 1/4, 3/4, 1/5, 1/5 12 [245] G = A12

F16 2653 1/2, 1/2, 1/5, 1/5 12 [245] G =PSL(2,11):C2

F17 245211 1/10,1/10,1/10,1/10 24 [10] 2H ◦ F10
F18 6 −26335 1/3, 1/3, 2/3, 1/4 5 [334] G = S5

F19 10 [238] F18 ◦ 2
F20 7 243272 2/7, 2/7, 3/7, 3/7 24 [237] 2H ◦ F22
F21 −263·72 1/3, 1/3, 1/7, 3/7 32 [237] G = A32

F22 −283·72 1/2, 1/2, 2/7, 3/7 12 [237] G = S12

F23 21 as j 2/3, 1/7, 2/7, 3/7 20 [237] G = S20

F24 −3372 1/7, 1/7, 3/7, 5/7 24 [237] G = A24

F25 22 263·113 1/2, 1/3, 1/3, 3/8 11 [238] G = S11
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Id √ discQ(t) Branching frac. d [k`m] Monodromy/comp.
G1 −1 as j 1/2, 1/2, 1/4, 1/8 15 [238] 5 [248] ◦ 3
G2 1/3, 1/5,1/10,3/10 16 [10] G = A16

G3 28 2/3, 1/4, 1/8, 1/8 20 [238] G = S20

G4 265 1/4, 1/4, 1/8, 1/8 10 [248] 2H ◦ 5
G5 30 [238] 2H ◦ G1: 5 :G4 ◦ 3
G6 1/2, 1/8, 1/8, 1/8 27 [238] G = S27

G7 285 1/2, 1/2,1/10,1/10 12 [10] 2H ◦ 6
G8 2613 1/3, 1/4, 1/8, 1/8 28 [238] G = A28

G9 245·13 1/2, 1/8, 1/8, 5/8 15 [238] G = S15

G10 −2 as j 1/3, 2/3, 1/8, 3/8 12 [238] G = S12

G11 211 1/2, 1/2, 1/6, 1/6 8 [246] 2H ◦ 4
G12 2103 1/3, 2/3, 1/8, 1/8 18 [238] G = S18

G13 2113 1/2, 1/2, 1/3, 1/3 8 [238] 2H ◦ 4
G14 1/2, 1/2, 1/8, 3/8 12 [238] G = S12

G15 263·11 1/8, 1/8, 3/8, 3/8 24 [238] 2H ◦ G14
G16 263·19 1/2, 1/8, 1/8, 3/8 21 [238] G = A21

G17 12: 23337 1/2, 1/2, 1/2, 1/8 9 [238] G = (((C3)
2 :Q8) :C3) :C2

G18 1/8, 1/8, 1/8, 1/8 36 [238] 4H{J1××} ◦ G17
G19 −3 as j 1/3, 1/7, 2/7, 6/7 16 [237] G = A16

G20 2433 1/4, 3/4, 1/6, 1/6 8 [246] G = S8

G21 337 1/3, 1/3, 1/9, 4/9 14 [239] G = S14

G22 24327 1/3, 3/4, 1/8, 1/8 16 [238] G = A16

G23 1/3, 1/3,1/12,1/12 14 [12] 2H ◦ 7
G24 1/3, 1/6,1/12,1/12 16 [12] G = A16

G25 337·13 1/2, 1/7, 1/7, 6/7 15 [237] G = S15

G26 12: 32173 1/2, 1/3, 1/3, 1/3 9 [239] G =PSL(2,8):C3

G27 12: 212313133 1/2,1/12,1/12,1/12 15 [12] G = S15

G28 12: 3973137 1/3,1/13,1/13,1/13 16 [13] G = A16

G29 −5 243·537 1/2, 3/4, 1/5, 1/5 7 [245] G = S7

G30 −7 as j 1/2, 1/7, 2/7, 4/7 21 [237] G = A21

G31 2/3, 1/7, 2/7, 4/7 14 [237] G = S14

G32 2/3, 1/7, 1/7, 2/7 32 [237] G = S32

G33 2372 1/7, 1/7, 1/7, 4/7 42 [237] G = S42

G34 2472 1/3, 1/7, 2/7, 2/7 40 [237] G = A40

G35 2273 1/2, 1/2, 1/2, 1/3 7 [237] G =PSL(3,2)
G36 1/3, 1/3, 1/3, 1/3 28 [237] 4H{I3×,G39} ◦ G35
G37 2572 1/2, 1/4, 1/4, 1/7 8 [247] G = (C2)

3 :PSL(3,2)
G38 1/2, 1/2, 1/7, 4/7 12 [237] G = S12

G39 223273 1/2, 1/2, 1/3, 1/3 14 [237] 2H ◦ G35
G40 227211 1/7, 1/7, 4/7, 4/7 24 [237] 2H ◦ G38
G41 1/2, 1/7, 2/7, 2/7 33 [237] G = A33

G42 1/3, 2/7, 2/7, 4/7 22 [237] G = S22

G43 7237 1/2, 1/7, 1/7, 2/7 39 [237] G = S39

G44 12: 26710433 1/2, 1/7, 1/7, 1/7 45 [237] G = A45

G45 −11 12: 37119 1/3, 1/3, 1/3,1/11 12 [11] G = M12

G46 −15 233352 1/2, 1/2, 1/2, 1/5 6 [245] G = A6

G47 1/5, 1/5, 1/5, 1/5 12 [255] 2H ◦ G49
G48 24 [245] 4H{I11×,G50{G47}}◦G46

G49 223353 1/2, 1/2, 1/5, 1/5 6 [255] G = A6

G50 12 [245] 2H ◦ G46, G49 ◦ 2
G51 253352 1/4, 1/4, 1/5, 2/5 18 [245] G = S18

G52 12: 2931859193 1/2, 1/9, 1/9, 1/9 21 [239] G = A21
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Id discQ(j) discQ(t) Branching frac. d [k`m] Monodromy/comp.
H1 34 as j 1/3, 1/3, 1/9, 1/9 20 [239] G =PSL(2,19)
H2 −35 as j 1/3, 2/3, 1/9, 2/9 12 [239] G = S12

H3 −223105 1/3, 1/3, 2/3, 1/9 10 [239] G = S10

H4 −2233 as j 1/2, 1/3, 1/9, 2/9 15 [239] G = S15

H5 −28365 1/2, 1/4, 1/4, 1/6 10 [246] G = (A6 :C2) :C2

H6 −2333 as j 1/3, 1/9, 2/9, 4/9 16 [239] G = A16

H7 −2234 −2839 1/2, 1/2, 1/9, 2/9 12 [239] G = S12

H8 273811 1/9, 1/9, 2/9, 2/9 24 [239] 2H ◦ H7
H9 −283811 1/3, 1/9, 1/9, 2/9 22 [239] G = S22

H10 72 2675 1/2, 1/2, 1/7, 1/7 30 [237] G =PSL(2,29)
H11 3375 1/3, 1/3, 1/7, 1/7 44 [237] G =PSL(2,43)
H12 263374 1/2, 1/2, 1/3, 1/3 14 [237] G =PSL(2,13)
H13 7413 1/3, 1/3, 1/3, 1/3 28 [237] 2H ◦ H12
H14 7429 1/7, 1/7, 1/7, 1/7 60 [237] 2H ◦ H10
H15 −2352 as j 1/5, 1/5, 2/5, 2/5 8 [255] G = S8

H16 16 [245] 2H ◦ H19, H15 ◦ 2
H17 21154 1/2, 1/2, 1/4, 1/4 10 [245] 2H ◦ E10
H18 21254 1/2, 1/4, 1/4, 1/5 16 [245] G = ((C2)

4 :A5) :C2

H19 −21454 1/2, 1/2, 1/5, 2/5 8 [245] G = S8

H20 −21455 1/2, 1/2, 1/3, 1/4 10 [238] G = A10

H21 293355 1/3, 1/3, 1/4, 1/4 10 [334] G = A10

H22 20 [238] 2H ◦ H20, H21 ◦ 2
H23 −2833547 1/3, 1/3, 1/8, 5/8 14 [238] G = S14

H24 −335 −36537 1/2, 1/5, 1/5, 1/6 7 [256] G = S7

H25 1/3, 1/9, 1/9, 5/9 16 [239] G = A16

H26 −2211 −2411313 1/2,1/11,1/11,2/11 15 [11] G = S15

H27 −24337·113 1/2, 1/3, 1/3, 4/7 11 [237] G = S11

H28 1/3, 1/3,1/11,2/11 14 [11] G = S14

H29 −2313 as j 1/2, 1/3, 1/4, 3/8 13 [238] G = A13

H30 −223·52 −263355 1/3, 2/3,1/10,1/10 12 [10] G = S12

H31 −22345 −24385311 1/2, 2/3, 1/9, 1/9 11 [239] G = S11

H32 −3411 −38113 1/2, 1/3, 1/3, 2/9 11 [239] G = S11

H33 −527 5572 1/3, 1/3, 3/7, 3/7 20 [237] 2H ◦ H34
H34 −265572 1/2, 1/2, 1/3, 3/7 10 [237] G = A10

H35 −223·72 −24335·74 1/2, 1/3, 1/3, 2/3 7 [237] G = S7

H36 −22337 283672 1/3, 1/7, 1/7, 6/7 22 [237] G = S22

H37 283773 1/2, 1/2, 2/7, 2/7 18 [237] 2H ◦ E21
H38 −233·72 −283374 1/3, 1/3, 2/3, 2/7 16 [237] G = S16

H39 −225·7 as j 1/2, 1/2, 1/4, 2/5 7 [245] G = S7

H40 1/2, 1/7, 2/7, 5/7 15 [237] G = S15

H41 285273 1/4, 1/4, 2/5, 2/5 14 [245] 2H ◦ H39
H42 −24335372 1/3, 1/3, 1/7, 5/7 20 [237] G = A20

H43 −24537219 1/2, 1/3, 2/7, 2/7 25 [237] G = A25

H44 24537319 1/2, 1/7, 1/7, 5/7 21 [237] G = A21

H45 −225·72 18:−230510712 1/2, 1/2, 1/2, 1/7 15 [237] G = A15

H46 1/7, 1/7, 1/7, 1/7 60 [237] 4H{J19××}◦H45
H47 −235·72 −2133·5274 1/2, 1/2, 2/3, 1/7 8 [237] G = S8

H48 283·5375 2/3, 2/3, 1/7, 1/7 16 [237] 2H ◦ H47
H49 −7·172 −3·5·72175 1/2, 1/3, 1/3, 3/7 17 [237] G = A17

H50 −227·13 as j 1/2, 1/3, 2/7, 4/7 13 [237] G = A13

H51 −243·72133 1/3, 1/3, 2/7, 3/7 26 [237] G = S26

H52 −3·7·11 as j 1/3, 1/7, 3/7, 4/7 22 [237] G = S22

H53 −223·7211 as j 1/2, 2/3, 1/7, 3/7 11 [237] G = S11
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Id dj discQ(j) discQ(t) Branching frac. d [k`m] Mndr./cmp.
I1 4 2634 as j 1/2, 1/3, 1/4, 1/6 9 [246] G = A9

I2 2273 as j 1/3, 2/3, 1/7, 2/7 24 [237] G = S24

I3 2123276 1/2, 1/2, 1/3, 1/3 14 [237] 2H ◦ G35
I4 2373 21376 1/2, 1/2, 1/7, 2/7 24 [237] G = S24

I5 2107623 1/7, 1/7, 2/7, 2/7 48 [237] 2H ◦ I4
I6 24: 23756722 2/3, 1/7, 1/7, 1/7 38 [237] G = S38

I7 2672 2123·5·75 1/2, 1/4, 1/7, 1/7 9 [247] G = A9

I8 337 36527213 1/3, 1/7, 1/7, 5/7 28 [237] G = A28

I9 24: 330717193 1/2, 1/3, 1/3, 1/3 21 [237] G = A21

I10 −2811 as j 1/2, 2/3, 1/4, 1/8 11 [238] G = S11

I11 233352 2173655 1/2, 1/2, 1/5, 1/5 12 [245] 2H ◦ G46
I12 24337 as j 1/2, 1/2, 1/4, 1/6 7 [246] G = S7

I13 2123773 1/4, 1/4, 1/6, 1/6 14 [246] 2H ◦ I12
I14 223373 24: 218333718133 1/3, 1/3, 1/3, 1/7 36 [237] G = A36

I15 −223572 as j 1/2, 1/3, 2/3, 2/7 9 [237] G = S9

I16 263·11 as j 1/3, 1/4, 1/8, 3/8 22 [238] G = S22

I17 223413 as j 1/2, 1/3, 1/3, 1/9 13 [239] G = A13

I18 253313 as j 1/2, 1/2, 1/3, 1/8 13 [238] G = A13

I19 21436133 1/3, 1/3, 1/8, 1/8 26 [238] 2H ◦ I18
I20 72192 as j 1/2, 1/3, 2/7, 3/7 19 [237] G = S19

I21 22335·7·13 as j 1/2, 1/3, 1/7, 5/7 13 [237] G = A13

I22 5 21173 −23176 1/2, 1/2, 1/3, 2/7 16 [237] G = S16

I23 226337613 1/3, 1/3, 2/7, 2/7 32 [237] 2H ◦ I22
I24 263452 as j 1/2, 1/4, 1/5, 3/5 9 [245] G = A9

I25 24357 as j 1/2, 1/7, 2/7, 3/7 27 [237] G = S27

I26 223572 as j 1/3, 2/3, 1/7, 3/7 18 [237] G = S18

I27 335·73 −210365276 1/2, 1/2, 1/7, 3/7 18 [237] G = A18

I28 38537617 1/7, 1/7, 3/7, 3/7 36 [237] 2H ◦ I27
I29 2453112 as j 1/2, 1/2, 1/4, 1/5 11 [245] G = S11

I30 2153·56115 1/4, 1/4, 1/5, 1/5 22 [245] 2H ◦ I29
I31 2653132 as j 1/2, 1/4, 1/5, 2/5 13 [245] G = S13

I32 24327311 −2836527611231 1/2, 1/7, 1/7, 3/7 33 [237] G = A33

I33 223·73172 as j 1/2, 2/3, 1/7, 2/7 17 [237] G = S17
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Id dj discQ(j) discQ(t) Branching frac. d [k`m] Mndr./cmp.
J1 6 −21433 23737 1/2, 1/2, 1/8, 1/8 18 [238] 2H ◦ G17
J2 −2113652 as j 1/2, 1/3, 2/3, 1/8 9 [238] G = S9

J3 −38527 233165573 1/3, 1/3, 1/9, 1/9 20 [239] 2H ◦ J4
J4 2103175572 1/2, 1/2, 1/3, 1/9 10 [239] G = A10

J5 −335513 as j 1/2, 1/3, 1/5,1/10 13 [10] G = A13

J6 −24335·74 2123752710 1/3, 2/3, 1/7, 1/7 30 [237] G = S30

J7 −247423 21278233 1/3, 1/7, 1/7, 2/7 46 [237] G = S46

J8 −557211 3551174113 1/2, 1/3, 1/3,1/10 11 [10] G = S11

J9 −24347·114 28387311913 1/2, 1/3,1/11,1/11 13 [11] G = A13

J10 −223372172 as j 1/3, 1/7, 2/7, 3/7 34 [237] G = S34

J11 253473192 as j 1/2, 1/3, 1/7, 4/7 19 [237] G = S19

J12 −237211213 263674114133 1/3, 1/3, 1/7, 4/7 26 [237] G = S26

J13 7 −2275192 −2436710195 1/3, 1/3, 1/7, 2/7 38 [237] G = S38

J14 −2274233 −243579237 1/2, 1/3, 1/3, 2/7 23 [237] G = S23

J15 −22377511 −243165·710113 1/3, 1/3, 2/3, 1/7 22 [237] G = S22

J16 −33527417 −36557817319 1/3, 1/7, 1/7, 3/7 40 [237] G = A40

J17 −245·7417·23 2854711173233 1/2, 2/3, 1/7, 1/7 23 [237] G = S23

J18 8 2145417 22851113·173 1/2, 1/4, 1/5, 1/5 17 [245] G = A17

J19 9 2125576 236510714 1/2, 1/2, 1/7, 1/7 30 [237] 2H ◦ H45
J20 220132172 −24338134175 1/2, 1/3, 1/3, 1/8 17 [238] G = A17

J21 10 −2233452192 as j 1/2, 1/3, 1/4, 1/8 19 [238] G = S19

J22 −26365677112 as j 1/2, 1/3, 2/3, 1/7 15 [237] G = S15

J23 11 −26335976 as j 1/2, 1/3, 1/7, 3/7 25 [237] G = A25

J24 13 2103579314 as j 1/2, 1/3, 1/7, 2/7 31 [237] G = S31

J25 22367911519 −2283127181111192 1/2, 1/2, 1/3, 1/7 22 [237] G = A22

J26 263197201111132193 1/3, 1/3, 1/7, 1/7 44 [237] 2H ◦ J25
J27 14 −285271019·294 2183135472013·192299 1/2, 1/3, 1/3, 1/7 29 [237] G = A29

J28 15 −2123971011231·372 −224318724114192313375 1/2, 1/3, 1/7, 1/7 37 [237] G = A37
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• m-√ : the quadratic extension for the moduli field (only in table A);

• r-√ : the quadratic extension for the r-field (only in table A).

The tables are supplemented by pictures of respective minus-4-hyperbolic dessins d’enfants. Some thinly drawn17

dessins represent also the composition 4ϕ(1 − ϕ) giving a clean dessin. The composition label is then marked
by •. The J-pictures marked by the symbol # represent 4 dessins18 each, obtainable by reflecting (with respect to
a horizontal axis) their left and right parts independently. The dessins of B12, C6, C30, D45, F1, F4, F6, F7, F11,
H1, H10–H14, H46 are displayed in Figure 1, 2, 3 earlier.

C Appendix: Composite Belyi functions

Decomposition of a Belyi function ϕ(x) into smaller degree rational functions can be decided from the function
field lattice between C(x) and C(ϕ), as described in [14, § 1.7.2]. The subfield lattices are listed in our online
table [23, Decomposition or GaloisGroup].

On the other hand, composite minus-4-hyperbolic Belyi functions induce composite hypergeometric-to-Heun
transformations. Thereby special cases of the parametric transformations P1–P61 of [28, §2.2] and the Heun-to-
Heun transformations 2H , 4H of [28, §4.3] often occur as composition parts. The quadratic transformation 2H
acts on the exponent differences as (1/2, 1/2, α, β) ← (α, α, β, β) and changes the j-invariant to a 2-isogenous
j-invariant. The transformation 4H = 2H ◦ 2H transforms (1/2, 1/2, 1/2, α) ← (α, α, α, α) and does not
change the j-invariant. The composite transformations could be figured out by a careful consideration of possible
compositions of hypergeometric-to-hypergeometric, indecomposable hypergeometric-to-Heun (parametric or
some newly implied), and Heun-to-Heun transformations. That would constitute yet another check19 of our
list of Belyi functions. The most complicated decomposition lattice is for A18:

[4444]
%
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\
\
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P12:[2244]
�
�
��

\
\
\

C1:[2244]×

[288]:P2
l
l
l
l

[444]:P9
�
�
��

P4:[2224]
�
�
��

[248]×:A16

[248]:P10

[334]:A17
�
�
�

[238]
Q
Q
QQ

l
ll

(C.1)

In the square brackets, we see the [k`m] triples of intermediate hypergeometric equations, or similar indication
of intermediate Heun equations. The transformation from [238] to the Heun equations is indicated before their
square brackets. Similarly, the [k`m] triples are followed by the indication of transformations from them to the
final [4444]. The×-power indicates two copies of that intermediate function field. The diagram includes P10 and
P12, the most complicated parametric compositions [28, §C]. The components [238]−[248] and [334]−[444] are
cubic transformations, while the other lines represent quadratic ones (possibly 2H ).

In Tables of §B, we indicate the components either by an A-J label from our list (if applicable), or by the degree
otherwise. In the latter case, we give intermediate hypergeometric equations in the [k`m] notation. Intermediate
Heun equations are clear, hence no extras to 2H . Deeper branching is indicated by {}. The A-J, P labels inside

17 Our policy of drawing dessins is the following. White vertices of order 2 are not shown, but the edges going through them are drawn
thick. Other white vertices are shown, but the incident edges are drawn thin. A black vertex of degree ≥ 2 is not drawn (as it is a clear
branching point), unless it is incident to a thin edge. The dessins were drawn from the combinatorial representations (g0, g1, g∞) first by
hand, then by using a developed script language that was translated to LaTeX using Maple.

18 Apart from the #-labeling and Figure 1, all other pictures represent either one dessin (if there is a reflection symmetry) or two dessins
related by a complex conjugation (otherwise). In the cases like B13, F12, a reflection symmetry should be imagined on the Riemann sphere,
along a “circular” equator.

19 For example, any transformation to Heun’s equation with 2 (or 3) exponent differences equal to 1/2 can be composed with 2H (or
4H , respectively). Further, any Belyi function of the [k`m]-type [344] or [266] gives rise to a type-[246] composition (with the degree
doubled), while all [334], [248]-type functions give type-[238] compositions, with the degree 2 or 3 times larger. In the same way, the [335],
[255] Belyi functions give type [2 3 10], [245] (respectively) compositions. Quadratic transformation P1 of [28] can be composed to C1 and
all compositions in Table A of §B, as its j-invariant 1728 is 2-isogenous to itself and the j-value of C1.
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them either mean a transformation from a starting [k`m] to an intermediate Heun equation (after 4H ) or to the
target Heun equation (otherwise). The××-power indicates three copies of an intermediate function field. A label
inside nested {} refers to a composition string avoiding the merging point of the outer {}. These hints should be
enough to recover the composition lattices.

D Appendix: Coxeter decompositions

If a minus-4-hyperbolic Belyi function in a canonical form (of Definition 2.2) is defined over R, the Schwarz
maps20 of the related hypergeometric and Heun equations fit together nicely. Particularly, the quadrangle of
Heun’s equation is then tessellated into congruent (in the hyperbolic metric) triangles of the hypergeometric
equation. The degree formula in Lemma 3.1(ii) can be interpreted as the area ratio between the hyperbolic
quadrangle and the triangles, if we multiply both the numerator and the denominator by π. Subdivisions of
hyperbolic quadrangles (or triangles) into congruent hyperbolic triangles are called Coxeter decompositions in
[8]. The list of Coxeter decompositions can be compared with our list of Belyi maps with the r-field ⊂ R,
providing a mutual check of completeness.

The Belyi functions of Tables D, E, G (of Appendix B) give no Coxeter decompositions, as their r-fields
certainly have no real embeddings. The obstructed Belyi functions of §6 give no Coxeter decompositions either
(except F7 of §6.2). Here is the count of Coxeter decompositions induced by our Belyi functions:

• Table A gives 10 Coxeter decompositions. The last column shows that the other 14 Belyi functions have
imaginary quadratic r-fields.

• Tables B, C give 23 + 34 decompositions. The cases21 with an imaginary quadratic extension Q(t) ⊃ Q(j)
are B2, B6, B9, B10, B12, B18, B19, B21, B22, B27, B28 and C2, C3, C6, C11, C22, C24, C30, C31.

• Each entry of the F-table with discrim Q(t) < 0 gives one Coxeter decomposition; 10 in total.

• The entries F3, F23 with Q(t) = Q(j) give pairs of Coxeter decompositions. F20 gives another pair with
the t-field Q(

√
7,
√

3), but F25 gives none with the t-field Q(
√

4
√

22− 22).

• Each entry of the H-table with discrim Q(j) < 0 and either Q(t) = Q(j) or discrim Q(t) > 0 gives a
Coxeter decomposition; 11+11 in total.

• Similarly, the odd degree I, J-orbits with Q(t) = Q(j) or discrim Q(t) > 0 give single Coxeter
decompositions; 6 + 3 among I22–I33 and 2 + 3 in the J-table.

• I10, I15, J11 have pairs of real dessins and Q(t) = Q(j). They give pairs of Coxeter decompositions.

In total, we have 125 decompositions, just as listed in [8, Figures 10 (5)–(11), 12, 13, 15–18]. There is a caveat,
however. The decompositions 24 and 36 in [8, Figure 18] coincide, while one triangulated quadrangle with the
angles π/3, 2π/3, π/7, 3π/7 is missing. We identify the repeated decomposition as C4, and the missing one as
I26. All Coxeter decompositions from our Belyi functions can be discerned in Figure 4. The similar pictures for
Coxeter decompositions from parametric hypergeometric-to-Heun transformations are given in [27, Figure 2].

Belyi functions (with the r-field in R) and Coxeter decompositions are identified22 by multiplying the
branching fractions by π and looking for quadrangles in [8] with the same angles. Pictures (a), (b) in Figure
4 show the Coxeter decompositions 7, 6 in [8, Figure 15]. They represent the Belyi functions B11 and C13,

20 We already considered Schwarz maps in the paragraph after Remark 4.1. If a hypergeometric equation has real local exponent
differences α, β, γ in the interval [0, 1], the image of the upper half plane⊂ C under its Schwarz map is a curvilinear triangle with the angles
πα, πβ, πγ. A nice illustration can be found in [3, pg. 38]. Analytic continuation of Schwarz maps follows the Schwarz reflection principle.
Hodgkinson [11] first observed that pull-back transformations of hypergeometric equations induce tessellations of Schwarz triangles into
smaller congruent Schwarz triangles. Similarly, if a Heun equation has real local exponent differences α, β, γ, δ in the interval [0, 1], the
image of its Schwarz map is a curvilinear quadrangle with the angles πα, πβ, πγ, πδ.

21 Details of the r-extensions can be found in [23, j t and r Field MinPoly]. The list of cases with additional extensions for the
r-field correlates well with the list of Belyi coverings with interesting monodromy groups (such as PSL in tables of §B) and the list of multiple
Galois orbits with the same branching pattern (as one can inspect empty entries in the first columns in tables of §3.1).

22 Dessins d’enfants and Coxeter decompositions are different geometric representations of a Belyi covering. The difference is twofold:
the decompositions represent only a half of the Riemann sphere, and their vertices are the points not just above z ∈ {0, 1} but above z =∞
as well. To get a corresponding (real) dessin, two parallel copies of a Coxeter decomposition have to be glued along the edges to a topological
sphere, and the vertices above z =∞ with the incident edges, triangles have to be removed.



Belyi functions for hyperbolic Heun functions 39

(a) (b) (c)

(d) (e)
(f)

(g)

(h)

Fig. 4 The Coxeter decompositions of Felikson

respectively. Picture (c) contains two hyperbolic quadrangles subdivided into twelve (π/2, π/4, π/6)-triangles.
They represent the Belyi functions B4 and B5, and coincide with the triangulations 4, 3 in [8, Figure 12],
respectively. Picture (d) contains the first five triangulations in [8, Figure 15], into (π/2, π/3, π/10)-triangles.
Here are the labels of Belyi maps and the quadrangles, in the same sequence as in [8]:

C38: BCFK, F14: ACEG, C15: ACFH, C25: ACDG, B24: ACFG.
Picture (e) contains the 10 (π/2, π/3, π/9)-triangulations in [8, Figure 16]:

H2: DFKM, B7: EGKM, C41: EHLM, C7: EHKM, C9: CFKM,
H4: CFKN, H6: CFKP, A6: EFKM, C23: ACFK, H8: ABFK.

There is initial ambiguity for assigning B7 and H2 because of the same branching fractions. But B7 is a
composition 3 [339] ◦ 4 as shown in the B-table, and its Coxeter decomposition splits23 into 3 triangles with
the angles π/3, π/3, π/9 (each formed by 4 smaller triangles). Picture (f) contains the 19 (π/2, π/3, π/8)-
triangulations in [8, Figure 17]:

23 Coxeter decompositions do not always split according to (all) compositions of their Belyi functions, because smaller degree
components do not necessarily have Coxeter decompositions. For example, consider A18 = A16 ◦ 3, A19 = 2H ◦ A1, B4 = 2H ◦ D25,
B14 = 2H ◦ D9, J19 = 2H ◦ H45, J26 = 2H ◦ J25, etc.
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B1: ABEK, A18: BEGK, B14: BEKN, A5: BGKN, C1: ADST,
I10: FGKS, I10: ACET, C32: CEKQ, F19: DFUQ, C21: ADFU,

H29: ADFV, C28: ABRH, B29: ACEK, B15: ADSK, F8: ADFL,
B30: ADFM, C8: ABET, H22: PDFM, C5: ADEK.

Picture (g) contains the 58 (π/2, π/3, π/7)-triangulations in [8, Figure 18]. Here is the respective sequence of
Belyi maps and the quadrangles, with the repeated decomposition 36 replaced by the one for I26:

C34: CHRΣ, F3: HMRΣ, A15: MTV∆, A11: HKRΣ, H33: HORΣ, A14: A∆TV,
A21: ELTW, C29: RΣ∆Λ , I15: MSΣ∆, C42: CMS Σ, F22: CMS Π, I15: UV∆Θ,
B33: CHR Π, C40: CΛRΣ, H53: CΛR Π, B20: MRΣ∆, B17: CHRX, B25: CΛRX ,
H50: CMSX, C33: HMSΣ, C26: CMRΣ, C35: CMRΠ, C27: CΛRY, C4: CHRY,
H48: AΛRX, F3: CMRX, H40: CMSY, I33: AMSX, H37: BMSY, B32: HRY Γ,
B31: CMRY, B34: EHRX, F23: AMRX, C39: BMRY, F20: AMRY, I26: NRΣ∆,
F23: CNRΣ, C36: CNRΠ, H52: CNRX, F24: CNRY, F20: CMTV, B13: CMTW,
I23: EKRX, J11: DHRX, J11: HLS Σ, H44: EHRX, I25: BNRY, J24: FKRY,
J19: FLSY, H36: GHRY, C12: ANRX, J26: GMSY, B16: GMRY, C18: ANRY,
J17: EΘUW, J23: GPQY, I28: ANRZ, F21: GORY.

The ambiguity between A14 and B32 (due to the same branching fractions) is resolved by the reflection symmetry
of A14 = 2 ◦ 10. Picture (h) contains the 20 (π/2, π/4, π/5)-triangulations in [8, Figure 13]

B26: FKPS, H39: VYQT, C19: VKQT, C16: ACOS, B23: ACQS,
H16: ACQR, I24: FHPS, H17: DHPZ, F13: VKPT, C14: BXZT,

B8: BFST, H41: BFQT, I29: OLNZ, F15: OLNS, C10: VLNS,
I31: WUYQ, H18: WUKP, C17: BGPT, A20: AEMR, I30: WULN.

The is ambiguity between C14 and H17 is resolved by the composition C17 = 2H ◦ C14. The non-parametric
decompositions (5)–(11) of [8, Figure 10] and the decompositions (1), (2) of [8, Figure 12] represent the Galois
orbits F18, B3, C20, C37, F7, H21, A17, H15, A19, respectively. They can be obtained from our listed
quadrangles of (respectively) F19, B4, C21, C38, F8, H22, A18, H16, A20 by pairing their triangles to larger
triangles with the requisite angles (π/3, π/3, π/4), (π/3, π/4, π/4), (π/3, π/3, π/5) or (π/2, π/5, π/5).

E Appendix: Arithmetic observations

As observed in [28, §2.3], the t-parameters of Heun equations reducible to hypergeometric equations by a
pull-back transformation are arithmetically interesting. The whole orbit (2.1) of t-values can be encoded by
an arithmetic identity A + B = C with algebraic integers A,B,C (as “co-prime” as possible), as the set
{A/C,B/C,C/A,C/B,−A/B,−B/A}. Here are these identities for a few t-orbits in Q:

B25 : 1 + 2·112 = 35, B29 : 22 + 112 = 53, B30 : 1 + 3352 = 22132,

B31 : 1 + 25 3·52 = 74, B33 : 113 + 2274 = 37 5, B34 : 74 + 3353 = 24192.

The terms in these identities involve only small primes, usually in some power. Correspondingly, the t-values
factorize nicely in Q. These identities are interesting in the context of the ABC conjecture [30] and S-unit
equations [30]. The “factorization” pattern holds for the t-values in algebraic extensions of Q as well, though
arithmetic quality is then measured more technically [18] by the prime places and arithmetic height in P2(Q).
The underlying reason is that the Belyi coverings (of pull-back transformations) tend to degenerate only modulo
a few small primes [2]. Hence the t-orbit (2.1) degenerates only modulo those bad primes.

Amidst the encountered examples, we find the following well-known identitiesA+B = C in quadratic fields:

C18 :
(√

5−1
2

)12
+ 2432

√
5 =

(√
5+1
2

)12
, D37/D39 :

(
1+
√
−7

2

)13
+
√
−7 =

(
1−
√
−7

2

)13
.

They are among top 12 known examples of remarkable ABC identities [18] in algebraic number fields. Their
ABC-quality is ≈ 1.697794, 1.707222, respectively, while Nitaj’s table [18] includes examples with the quality
> 1.5. The Belyi function D42 gives a new example in Q(

√
−14) with the quality log(31353)/ log(56 · 2 · 7 · 32 ·
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52) ≈ 1.581910. However, the class number of Q(
√
−14) is equal to 4, hence an explicit arithmetic identity is

less impressive, without 13th powers:(
5− 2

√
−14

) (
11 +

√
−14

)3
+
(√
−14

)3
=
(
5 + 2

√
−14

) (
11−

√
−14

)3
. (E.1)

Less symmetric quadratic identities arise from the F, G-cases with Q(t) = Q(j). For example, G30 gives(
1+
√
−7

2

)10
+
(

1−
√
−7

2

)5
+
(
2 +
√
−7
)3

= 0. (E.2)

The Belyi coverings E10/E11give the following A+B = C example in a number field of degree 6. Let ζ denote
a root of z6 + 4z4 − 3z2 + 2. Then

ζ23 +

(
ζ + ζ2

2
− 5ζ3 + ζ5

4

)23(
1− ζ

2
− 3ζ2 − 3ζ3 + ζ4 − ζ5

4

)−6
=

(
−ζ + ζ2

2
+

5ζ3 + ζ5

4

)23(
1 + ζ

2
− 3ζ2 + 3ζ3 + ζ4 + ζ5

4

)−6
.

The numbers under the 23rd power have the norm 2, while the numbers in the (-6)th power are units.
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[26] R. Vidūnas. Algebraic transformations of Gauss hypergeometric functions. Funkcialaj Ekvacioj, 52(2):139–180, 2009.
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