# Belyi functions for hyperbolic hypergeometric-to-Heun transformations

Mark van Hoeij<sup>1, \*</sup> and Raimundas Vidūnas<sup>2, \*\*</sup>

<sup>1</sup> Department of Mathematics, Florida State University, Tallahassee, Florida 32306, USA.

<sup>2</sup> Department of Mathematical Informatics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.

**Key words** Belyi functions, Heun functions, pull-back transformations **MSC (2010)** 33E30, 33C05, 57M12, 14-04

A complete classification of Belyi functions for transforming certain hypergeometric equations to Heun equations is given. The considered hypergeometric equations have the local exponent differences 1/k,  $1/\ell$ , 1/m that satisfy  $k, \ell, m \in \mathbb{N}$  and the hyperbolic condition  $1/k + 1/\ell + 1/m < 1$ . There are 366 Galois orbits of Belyi functions giving the considered (non-parametric) hypergeometric-to-Heun pull-back transformations. Their maximal degree is 60, which is well beyond reach of standard computational methods. To obtain these Belyi functions, we developed two efficient algorithms that exploit the implied pull-back transformations.

### 1 Introduction

Belyi functions and *dessins d'enfants* [30] is a captivating field of research in algebraic geometry, complex analysis, Galois theory and related fields. However, computation of Belyi functions of degree over 20 is still considered hard [14, Example 2.4.10] even for genus 0 Belyi coverings  $\mathbb{P}^1 \to \mathbb{P}^1$ . This computational difficulty promises a long lasting appeal, both for constructionists and theoreticians. Grothendieck [10, pg. 248] doubted that *"there is a uniform method for solving the problem by computer"*. The subject of this paper is effective computation of certain Belyi functions  $\mathbb{P}^1 \to \mathbb{P}^1$ , of degree up to 60, utilizing the fact that those functions transform Fuchsian differential equations with a small number of singularities.

This paper considers genus 0 Belyi functions, that is, rational functions  $\varphi : \mathbb{P}^1_x \to \mathbb{P}^1_z$  that branches only in the 3 fibers  $z = \varphi(x) \in \{0, 1, \infty\}$ . We distinguish the two projective lines by the indices x, z just as in [27]. To describe the Belyi functions we classify, we introduce the following definitions.

**Definition 1.1** Given positive integers  $k, \ell, m$ , a Belyi function  $\varphi : \mathbb{P}^1_x \to \mathbb{P}^1_z$  is called  $(k, \ell, m)$ -regular if all points above z = 1 have branching order k, all points above z = 0 have branching order  $\ell$ , and all points above  $z = \infty$  have branching order m.

Examples of (2, 3, m)-regular Belyi functions with  $m \in \{3, 4, 5\}$  are the well-known Galois coverings  $\mathbb{P}^1 \to \mathbb{P}^1$  of degree 12, 24, 60 with the tetrahedral  $A_4$ , octahedral  $S_4$  or icosahedral  $A_5$  monodromy groups, respectively. The Platonic solids give their dessins d'enfants [17].

**Definition 1.2** Given yet another positive integer n, a Belyi function  $\varphi : \mathbb{P}^1_x \to \mathbb{P}^1_z$  is called  $(k, \ell, m)$ -minusn-regular if, with exactly n exceptions, all points above z = 1 have branching order k, all points above z = 0 have branching order  $\ell$ , and all points above  $z = \infty$  have branching order m. We will also use the shorter term  $(k, \ell, m)$ -minus-n.

Examples of  $(k, \ell, m)$ -minus-2 functions are quotients of the just mentioned Galois coverings by a cyclic monodromy group. If  $1/k + 1/\ell + 1/m > 1$  and  $n \ge 3$ , there are  $(k, \ell, m)$ -minus-n Belyi functions of arbitrary high degree. They give Kleinian pull-back transformations [12,25] to second order Fuchsian equations with finite monodromy (i.e., a basis of algebraic solutions) from a few standard hypergeometric equations. An example of a (2,3,5)-minus-3 Belyi function of degree 1001 is given online at [23] (click on the file: NamingConvention). As Remark 4.1 here shows,  $(k, \ell, m)$ -minus-1 Belyi functions exist only if  $1 \in \{k, \ell, m\}$ .

<sup>\*</sup> E-mail: hoeij@math.fsu.edu. Supported by NSF grants 1017880 and 1319547.

<sup>\*\*</sup> E-mail: vidunas@math.kobe-u.ac.jp. Supported by JSPS grant 20740075.

**Definition 1.3** A Belyi function  $\varphi$  is called *minus-n-hyperbolic* if:

- (i) there are positive integers  $k, \ell, m$  satisfying  $1/k + 1/\ell + 1/m < 1$  (the hyperbolic condition) such that  $\varphi$  is  $(k, \ell, m)$ -minus-*n*-regular;
- (*ii*) there is at least one point of branching order k above z = 1, a point of order  $\ell$  above z = 0, and a point of order m above  $z = \infty$ .

Minus-3-hyperbolic Belyi functions are listed in [26, §9]. Table 3 in [26] lists nine<sup>1</sup> Galois orbits of such Belyi functions, of degree up to 24.

Cases where (i) holds but not (ii) are called *parametric*, referring to the fact that at least one of  $k, \ell, m$  can be replaced by infinitely many other values without affecting (i). Parametric hypergeometric-to-Heun transformations were classified in [28] and have degrees up to 12.

This paper gives all *minus*-4-hyperbolic Belyi functions  $\mathbb{P}^1 \to \mathbb{P}^1$ . The motivation is that they give transformations of Gauss hypergeometric differential equations without Liouvillian [30] solutions to Heun equations (i.e., Fuchsian equations with 4 singularities). This allows to express those non-Liouvillian Heun functions in terms of better understood Gauss hypergeometric functions. The application to these transformations of Fuchsian equations is discussed in §4. This paper, combined with the list of *parametric* hypergeometric-to-Heun transformations in [28], covers all non-Liouvillian cases of hypergeometric-to-Heun transformations.

We used two algorithms to compute the minus-4-hyperbolic Belyi functions. They both utilize the fact that these Belyi functions give hypergeometric-to-Heun transformations. One algorithm is probabilistic and uses modular lifting. It exploits the fact that Heun's equation is represented by few parameters. The other algorithm is deterministic, and uses existence of a hypergeometric-to-Heun transformation to get more algebraic equations for the (a priori) undetermined coefficients of a Belyi function.

The branching patterns are enumerated in §3, following the approach from [27]. Some of our Belyi functions are related to notable Shimura curves [7], [29]. The application to hypergeometric-to-Heun transformations is explained in §4. Our algorithms are presented in §5. Section 6 discusses special *obstructed* cases of encountered Belyi functions. The Appendix sections give ordered lists A–J of computed Belyi functions, discusses composite Belyi functions, and compares our results with Felixon's list [8] of *Coxeter decompositions* in the hyperbolic plane. All dessins d'enfants of computed Belyi coverings are depicted in this paper, most of them next to the A–J tables of §B. Our list of dessins is long (compare with [1,4,15]), so all key steps had to be automated.

## 2 Organizing definitions, examples

To help organize the list of Belyi functions we start with a few definitions and informally discuss (with a few examples, including those of degree 60) dessins d'enfants in a geometric way.

**Definition 2.1** Let  $\varphi$  be a  $(k, \ell, m)$ -minus-*n*-regular Belyi function for some *n*. The *regular branchings* of  $\varphi$  are the points above z = 1 of order *k*, the points above z = 0 of order  $\ell$ , and the points above  $z = \infty$  of order *m*. The other *n* points in the three fibers are called *exceptional points* of  $\varphi$ . A *branching fraction* of  $\varphi$  is a rational number A/B, where A is a branching order at an exceptional point Q, and  $B \in \{k, \ell, m\}$  is the prescribed branching order for the fiber of Q.

**Definition 2.2** Let  $\varphi : \mathbb{P}^1_x \to \mathbb{P}^1_z$  be a  $(k, \ell, m)$ -minus-4 Belyi function. Let  $q_1, q_2, q_3, q_4 \in \mathbb{P}^1_x$  denote its exceptional points. The *j*-invariant of  $\varphi$  is the *j*-invariant of the elliptic curve  $Y^2 = \prod_{q_i \neq \infty} (X - q_i)$ , given by formula (2.2) below. It is invariant under Möbius transformations of  $\mathbb{P}^1_x$ .

A canonical form of  $\varphi$  is a composition of  $\varphi$  with a Möbius transformation that has three exceptional points at  $x = 0, 1, \infty$ . The fourth exceptional point then becomes x = t, where t is a cross-ratio of  $q_1, q_2, q_3, q_4$ . The cross-ratio depends on the order of  $q_1, q_2, q_3, q_4$ , and there is an  $S_3$ -orbit ( $S_3 \cong S_4/V_4$ )

$$\left\{t, 1-t, \frac{t}{t-1}, \frac{1}{t}, \frac{1}{1-t}, 1-\frac{1}{t}\right\}$$
(2.1)

<sup>&</sup>lt;sup>1</sup> Minus-3-hyperbolic Belyi functions give rise to the hypergeometric transformations described in [26, §9]. There are 10 different such Belyi functions up to Möbius transformations, in 9 Galois orbits. The degree 18 Belyi function there is defined over  $\mathbb{Q}(\sqrt{-7})$ .

of related cross-ratios. Any of these values is a *t*-value of  $\varphi$ . The *j*-invariant is

$$j(t) = \frac{256 \left(t^2 - t + 1\right)^3}{t^2 (t - 1)^2}.$$
(2.2)

As an example,  $t \in \{-1, 2, \frac{1}{2}\}$  gives j = 1728. If  $j \notin \{0, 1728\}$  then the six t-values in the above  $S_3$ -orbit are distinct.

**Definition 2.3** The *t*-field resp. *j*-field of  $\varphi$  is the number field generated by a *t*-value resp. the *j*-invariant. The *r*-field (*canonical realization field*) of  $\varphi$  is the smallest field over which a canonical form of  $\varphi$  is defined.

These fields do not depend on the ordering of the 4 exceptional points; any reordering will send t to an element of the set (2.1), all of which generate the same t-field. The r-field contains t and is well defined because two canonical forms of  $\varphi$  can only differ by a Möbius transformation defined over the t-field.

Example 2.4 The degree 12 rational function

$$\varphi(x) = \frac{27(x-1)(8x^3 - 72x^2 - 27x + 27)^3}{64x^2(x-3)^9(x-9)}$$

is a (2, 3, 9)-minus-4 Belyi map. Indeed, with precisely 4 exceptions in  $\mathbb{P}^1_x$ , the roots  $1 - \varphi(x)$  have multiplicity 2, the roots of  $\varphi(x)$  have multiplicity 3, and the poles have multiplicity 9. It is already in a canonical form, as x = 0, x = 1 and  $x = \infty$  are among the 4 exceptional points. The fourth exceptional point x = 9 is a *t*-value. The *j*-invariant is equal to  $2^273^3/3^4$  by formula (2.2).

The *branching pattern* of  $\varphi$  is given by three partitions of the degree d = 12 into branching orders above  $1, 0, \infty$ . Using the notation in [27], we express the *branching pattern* of  $\varphi$  shortly as follows:

$$6[2] = 3[3] + 2 + 1 = [9] + 2 + 1.$$

The prescribed branching orders are indicated with square brackets, with their multiplicity in front. The 4 branching orders that are not enclosed in square brackets represent the 4 exceptional points. Dividing them by their prescribed branching order(s) produces the 4 branching fractions: 1/3, 2/3, 1/9, 2/9.

In the application setting of hypergeometric-to-Heun transformations in §4, the regular branchings will become *regular points* (after a proper projective normalization) of the pulled-back Heun equation H; the exceptional points will be the *singularities* of H; and the branching fractions will be the *exponent differences* of H. The exponent differences of the hypergeometric equation under transformation will be 1/k,  $1/\ell$ , 1/m. Example 2.4 will be continued in §4.

Definitions 2.2, 2.3 will be used to group the obtained Belyi functions into manageable classes. The Belyi functions will be listed twice in this paper. The first list is Tables 2.3.7–3.4.4 of §3. Its ordering by the  $(k, \ell, m)$ -triples and branching patterns reflects the classification scheme. In Appendix §B, the list of Galois orbits is grouped and ordered by the *j*-fields, *t*-fields, branching fractions. This order allows quick recognition whether a given Heun function is reducible to a hypergeometric function with a rational argument  $\varphi$ .

Belyi functions nicely correspond to certain graphs called *dessins d'enfants*<sup>2</sup>. Mimicking [4, Section 2], we spell out standard correspondences for genus 0 Belyi functions as follows. There are 1-1 correspondences between these objects:

- (I) Belyi functions  $\mathbb{P}^1_x \to \mathbb{P}^1_z$  up to  $\operatorname{Aut}(\mathbb{P}^1_x)$ , i.e. up to Möbius transformations  $x \mapsto (ax+b)/(cx+d)$ .
- (II) Plane dessins d'enfants, up to a homeomorphism of the Riemann sphere.
- (III) The triples  $(g_0, g_1, g_\infty)$  of elements in a symmetric group  $S_d$ , such that:

<sup>&</sup>lt;sup>2</sup> A dessin d'enfant [30] is an oriented bi-colored graph (possibly with multiple edges), with a cyclic order of edges around each vertex given. This defines a unique (up to a homeomorphism) embedding of the bi-colored graph into a Riemann surface. Customarily, the vertex colors are black and white. The dessins d'enfants in this paper can be drawn on a plane because we only consider genus 0 Belyi coverings. Given a Belyi covering  $\varphi$ , its dessin d'enfant is realized as the pre-image of the interval segment  $[0, 1] \subset \mathbb{R} \subset \mathbb{C}$  onto its Riemann surface, with the vertices above z = 0 colored black and the vertices z = 1 colored white. The branching pattern of  $\varphi$  determines the degrees (i.e., valencies) of vertices of both colors of its dessin d'enfant, and the degrees of cells on the Riemann surface. The cell degree is determined by counting vertices of one color while tracing its boundary. The degree of a dessin d'enfant is the degree of the corresponding Belyi function.

- $g_0g_1g_\infty = 1;$
- the total number of cycles in  $g_0, g_1, g_\infty$  is equal to d + 2 (see the proof of Lemma 3.1);
- $g_0, g_1, g_\infty$  generate a transitive action on a set of d elements;

up to simultaneous conjugacy of  $g_0, g_1, g_\infty$  in  $S_d$ .

(IV) Field extensions of  $\overline{\mathbb{Q}}(z)$  of genus 0, unramified outside  $z = 0, 1, \infty$  ( $\overline{\mathbb{Q}}$  = algebraic closure of  $\mathbb{Q}$ ).

Part (III) gives the monodromy presentation of a Belyi covering, and d is the degree. The dessin d'enfant is basically a graphical representation of the combinatorial data in (III). This paper presents all obtained dessins pictorially, while the accompanying website [23] gives the Belyi maps (I), the permutations in (III) and other data (such as j, t, r-fields). For each fiber  $z \in \{0, 1, \infty\}$ , the conjugacy class of  $g_z$  in  $S_d$  is determined by the partition of d that reflects the branching pattern in the fiber. Part (IV) is convenient for considering the composition structure of Belyi maps; see Appendix C.

The considered Belyi functions have rather regular dessins d'enfants. Definitions 1.1–1.3 are easy to reformulate for dessins d'enfants:

**Definition 2.5** A dessin d'enfant is called  $(k, \ell, m)$ -minus-n-regular if, with exactly n exceptions, all white vertices have degree k, all black vertices have degree  $\ell$ , and all cells have degree m.

**Definition 2.6** A dessin d'enfant  $\Gamma$  is called *minus-n-hyperbolic* if:

- (i) there are positive integers  $k, \ell, m$  satisfying  $1/k + 1/\ell + 1/m < 1$  such that  $\Gamma$  is  $(k, \ell, m)$ -minus-*n*-regular;
- (*ii*) there is at least one white vertex of degree k, a black vertex of degree  $\ell$ , and a cell of degree m.

All minus-4-hyperbolic dessins d'enfants could be found by a combinatorial search on a computer. But with our Maple implementations it was faster to compute first the minus-4-hyperbolic Belyi functions, and then compute their monodromy permutations in (III). This paper presents all minus-4-hyperbolic dessins (up to complex conjugation), most of them next to the tables of Appendix §B.

In total, there are 872 Belyi functions of the minus-4-hyperbolic type, up to Möbius transformations in both x and z. They come in 366 Galois orbits<sup>3</sup>. In leap years we could decorate a calendar, one Galois orbit per day. We categorize and label the Galois orbits of the objects in (I)–(IV) as A1–J28; see §3.1 and Appendix §B. The largest Galois orbit J28 has 15 dessins, for a (2, 3, 7)-minus-4 branching pattern of degree 37. Completeness is checked with two independent algorithms and other checks, see §5 and Appendix §D.

The highest degree of a minus-4-hyperbolic Belyi function is 60. Its branching pattern is 30 [2] = 20 [3] = 8 [7] + 1 + 1 + 1 + 1. There are two Galois orbits for this branching pattern, with three dessins each. We identify the two Galois orbits as H14 and H46. The dessins d'enfants for these Belyi functions are depicted<sup>4</sup> in Figure 1. The 4 exceptional points in each dessin are represented by circular loops; they could be assumed to lie in the center of each cell of degree 1. The other cells (including the outer ones) have degree 7. The left-most dessins of H14 and H46 clearly have a reflection symmetry, hence they are defined over  $\mathbb{R}$ . The other two dessins of H46 are mirror images of each other, and are related by the complex conjugation.

The Belyi functions of degree 60 are composite. Their components are labeled H10 for H14, and H46, J19 for H45. The Belyi functions H10, H14 are examples that have an *obstruction*, as described in §6. This has interesting geometric consequences for the dessins d'enfants. Although both have a totally real moduli field  $\mathbb{Q}(\cos \frac{2\pi}{7})$ , not all dessins of H10 and H14 have a reflection symmetry. Rather, the complex conjugation may give a homeomorphic dessin, identifiable with the original only after an automorphism of the Riemann sphere. For example, consider the middle and the right-most dessins of H14 in Figure 1. The dessins d'enfants for H10 are depicted in Figure 2, together with most of other examples with an obstruction.

<sup>&</sup>lt;sup>3</sup> Belyi functions are explicitly defined over algebraic number fields, and the absolute Galois group  $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$  permutes Belyi coverings with the same branching pattern. The size of a Galois orbit of dessins d'enfants is the degree of the moduli field; see §6. Given a branching pattern, the set of Belyi coverings with that branching pattern is finite (up to Möbius transformations), possibly empty. The Galois action does not need to be transitive on this set, and several Galois orbits with the same branching pattern may appear.

<sup>&</sup>lt;sup>4</sup> The dessins in Figure 1 have all white vertices of order 2, hence they are examples of *clean* dessins d'enfants. It is customary to depict clean dessins without white vertices, so that edges connect black vertices directly, and loops are possible. A white vertex is then implied in the middle of each edge.

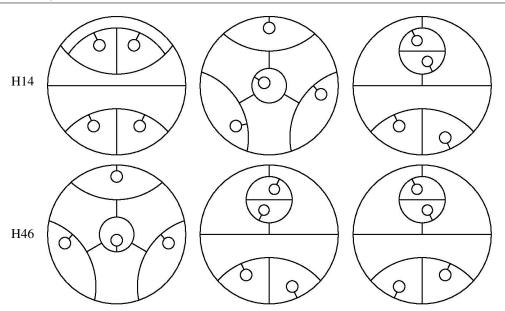



Fig. 1 The degree 60 dessins d'enfants

#### **3** The branching patterns

We enumerate the possible branching patterns in the same way as was done for *parametric* hypergeometric-to-Heun transformations in [27]. To end up with a finite number of cases, we use Hurwitz formula and the hyperbolic condition  $1/k + 1/\ell + 1/m < 1$ . Without loss of generality, we assume the non-decreasing order  $k \le \ell \le m$  for the regular branching orders from now on.

**Lemma 3.1** Let  $\varphi$  be a minus-4-hyperbolic Belyi covering of degree d, with the regular branching orders  $k \leq \ell \leq m \in \mathbb{Z}_{>0}$ . Then

- (i) There are exactly d 2 regular branchings and 4 exceptional points.
- (ii)  $d \left\lfloor \frac{d}{k} \right\rfloor \left\lfloor \frac{d}{\ell} \right\rfloor \left\lfloor \frac{d}{m} \right\rfloor \le 2.$

(iii) Let S denote the sum of 4 branching fractions. Then  $d = \frac{2-S}{1-\frac{1}{k}-\frac{1}{\ell}-\frac{1}{m}}$ .

(*iv*) 
$$\left(1 - \frac{1}{k} - \frac{1}{\ell}\right)m^2 - 3m + 4 \le 0.$$

(v) 
$$\frac{1}{2} \le \frac{1}{k} + \frac{1}{\ell} < 1.$$

Proof. By Hurwitz formula (or [26, Lemma 2.5]), there are 3d - (2d - 2) = d + 2 distinct points above  $\{0, 1, \infty\}$  when  $\varphi$  is a Belyi map  $\mathbb{P}^1 \to \mathbb{P}^1$ . The first claim follows. The number of regular branchings is at most  $\lfloor d/k \rfloor + \lfloor d/\ell \rfloor + \lfloor d/m \rfloor$ . This gives the inequality in *(ii)*. The number d - 2 of regular branchings is also equal to  $d/k + d/\ell + d/m - S$ , giving the degree formula in *(iii)*.

We have  $d \ge m$ , otherwise condition (*ii*) of Definition 1.3 is not satisfied. Combining this with the degree formula gives the inequality in (*iv*). Together with  $m \ge 4$ , the inequality in (*iv*) gives  $1 - 1/k - 1/\ell \le 1/2$ . Part (*v*) follows.

The inequalities in (*iv*), (*v*) give a finite list of triples  $(k, \ell, m)$ . Setting S = 4/m in part (*iii*) gives an upper bound for d, leaving the following candidates for  $(k, \ell, m, d)$ :

| $(2, 3, 7, \le 60),$  | $(2, 3, 8, \le 36),$  | $(2, 3, 9, \le 28),$  | $(2, 3, 10, \le 24),$ |
|-----------------------|-----------------------|-----------------------|-----------------------|
| $(2, 3, 11, \le 21),$ | $(2, 3, 12, \le 20),$ | $(2, 3, 13, \le 18),$ | $(2, 3, 14, \le 18),$ |
| $(2, 3, 15, \le 17),$ | $(2, 3, 16, \le 16),$ | $(2, 4, 5, \le 24),$  | $(2, 4, 6, \le 16),$  |
| $(2, 4, 7, \le 13),$  | $(2,4,8,\leq 12),$    | $(2, 4, 9, \le 11),$  | $(2,4,10,\le 10),$    |
| $(2, 5, 5, \le 12),$  | $(2, 5, 6, \le 10),$  | $(2, 5, 7, \le 9),$   | $(2, 5, 8, \le 8),$   |
| $(2, 6, 6, \le 8),$   | $(2, 6, 7, \le 7),$   | $(3, 3, 4, \le 12),$  | $(3, 3, 5, \le 9),$   |
| $(3,3,6,\leq 8),$     | $(3,3,7,\leq 7),$     | $(3,4,4,\leq 6),$     | $(3, 4, 5, \le 5),$   |
| $(4, 4, 4, \le 4).$   |                       |                       |                       |

The last two candidates give less than 4 exceptional points.

Given a candidate tuple  $(k, \ell, m, d)$ , it is straightforward to find the list of corresponding branching patterns. For some tuples the list is empty, e.g. for (2, 3, 15 or 16, d). Nevertheless, this step needs to be automated due to the large number of tuples. Our implementation that numerates the branching patterns is available at [23] (file: ComputeAll), we briefly describe its approach. Let  $h_1, h_0, h_\infty$  denote the eventual number of regular branchings in the fibers  $z = 1, 0, \infty$ , respectively. Then  $h_1 + h_0 + h_\infty = d - 2$  by Lemma 3.1(*i*), and  $0 < h_1 \leq \lfloor d/k \rfloor$ , etc. With a possible integer solution  $(h_1, h_0, h_\infty)$  at hand, we have to partition the numbers  $d - kh_1, d - \ell h_0, d - mh_\infty$  into total 4 positive parts, not equal to the respective regular orders  $k, \ell, m$ . For example, if  $(k, \ell, m, d) = (2, 3, 7, 28)$  then we either partition 7 into 3 parts (in the m = 7 fiber) or 4 into 4 parts (in the  $\ell = 3$  fiber). There are four such partitions of 7 and one of 4, hence five branching patterns.

Finding all branching patterns takes little CPU time, computing all Belyi coverings for each possible branching pattern is the most demanding step. The algorithms used to generate and verify the list of Belyi functions are presented in Section §5.

In total, there are 378 branching patterns<sup>5</sup> for minus-4-hyperbolic Belyi functions. We list them in the first two columns of Tables 2.3.7–3.4.4, by giving their branching fractions and the degree. The table numbering refers to the tuple  $(k, \ell, m)$ . The branching fractions are left unsimplified (e.g. 4/8 instead of 1/2) to keep the fibers and branching orders of exceptional points visible. The branching patterns are uniquely determined by the unsimplified branching fractions. The third column of Tables 2.3.7–3.4.4 gives a label for every Galois orbit with the branching pattern defined by the sequence of 4 branching fractions in the first column. The last column gives basic information about the size of Galois orbits, *j*-fields, *t*-fields of the computed Belyi functions.

#### 3.1 Summary of computed results

With the application to Heun equations in mind, we group the Belyi functions by the  $\mathbb{Q}$ -extension of the *j*-invariant. The cases with  $j \in \mathbb{Q}$  are further grouped by the *t*-field. We group the computed minus-4-hyperbolic Belyi functions into 10 classes, labeled A to J:

- A1–A24: the Belyi functions with j = 1728, that is  $t \in \{-1, 2, 1/2\}$ ;
- B1–B34: the other Belyi functions with  $t \in \mathbb{Q}$ ;
- C1–C42: the Belyi functions with  $j \in \mathbb{Q}$  and a real quadratic *t*-field;
- D1–D50: the Belyi functions with  $j \in \mathbb{Q}$  and an imaginary quadratic *t*-field;
- E1–E25: the Belyi functions with  $j \in \mathbb{Q}$  and the *t*-field has degree 6 over  $\mathbb{Q}$ ;
- F1–F25: the Belyi functions with a real quadratic *j*-field;
- G1–G52: the Belyi functions with an imaginary quadratic *j*-field;
- H1–H53: the Belyi functions with a cubic *j*-field;
- I1–I33: the Belyi functions with a *j*-field of degree 4 or 5;
- J1–J28: the Belyi functions with a *j*-field of degree at least 6 (and  $\leq 15$ ).

In each class, the Galois orbits of Belyi functions are ordered by the criteria described in Appendix  $\S$ A. A numbered label refers to a whole Galois orbit of Belyi functions (or dessins d'enfants), as mentioned in  $\S$  2. If

<sup>&</sup>lt;sup>5</sup> One branching pattern 6[3] = 9[2] = 8 + 7 + 1 + 1 + 1 is counted twice. It appears in Tables 2.3.7 and 2.3.8 because it is (2, 3, m)-minus-4-regular for two values of m (=7 or 8). It turns out, however, there are no Belyi functions with this branching pattern.

there is more than one Galois orbit with the same branching pattern, a line is devoted to each Galois orbit in Tables 2.3.7-3.4.4. The *j*-field is indicated as follows:

- by the field degree n, in the power notation  $j^n$ ;
- if the degree is 3, 4, 5 or 6, a minimal field polynomial  $X^n + a_{n-2}X^{n-2} + \ldots + a_1X + a_0$  is indicated by  $j^n(a_{n-2}, \ldots, a_1, a_0)$ ;
- if the field is quadratic,  $j^2(\sqrt{a})$  means the field  $\mathbb{Q}(\sqrt{a})$ ;
- if j = 0, it is stated so;
- for  $j \in \mathbb{Q} \setminus \{0\}$ , no *j*-notation is given, but the *t*-field and (possibly) the moduli field are indicated.

The *t*-field is specified as follows:

- if the *j*-field is indicated, the *t*-field degree n is given (in the power notation t<sup>n</sup>) only if *j* ≠ 0 and the *t*-field is a proper extension of the *j*-field;
- if  $j \in \mathbb{Q} \setminus \{0\}$  and  $t \in \mathbb{Q}$ , a value of t is given in the factorized form (as motivated by §E);
- if  $j \in \mathbb{Q} \setminus \{0\}$  and the *t*-field is quadratic,  $t(\sqrt{a})$  means the field  $\mathbb{Q}(\sqrt{a})$ ;
- if  $j \in \mathbb{Q} \setminus \{0\}$  and the *t*-field degree is greater than 2,  $t^{\text{spl}}(a, b)$  means the splitting field of a polynomial  $X^3 + aX + b$  with Galois group  $S_3$  (so  $[\mathbb{Q}(t) : \mathbb{Q}] = 6$ ; there are no cubic *t*-fields in our tables).

The size of the Galois orbit<sup>6</sup> equals the degree of the moduli field. In most entries, the moduli field equals the j-field<sup>7</sup> and in the remaining entries, it is a quadratic extension of the j-field. The moduli field is indicated only if it differs from the j-field, either with  $m^2(\sqrt{a})$  if it has degree is 2, or with  $m^n$  for degree n > 2.

**Example 3.2** The first example in Table 2.3.7 where the *j*-field is not the moduli field is entry A22 of degree 36. Table 2.3.7 lists  $m^2(\sqrt{-7})$ , t = -1. This *t*-value, as well as the name A22, indicate that j = 1728, while  $m^2(\sqrt{-7})$  indicates that the moduli field is  $\mathbb{Q}(\sqrt{-7})$ . The exponent in  $m^2$  indicates the degree of the moduli field, i.e., the number of dessins d'enfants.

The first entry in Table 2.3.7 contains: H14  $j^3(-7,7)$ ,  $t^6$ . The fact that the moduli field  $m^n(...)$  is not mentioned indicates that the moduli field equals  $\mathbb{Q}(j)$ . The notation  $j^3(...)$  indicates the degree over  $\mathbb{Q}$ , so the exponent 3 indicates the number of dessins d'enfants (see Figure 1). The notation  $j^3(-7,7)$  indicates  $\mathbb{Q}(j) \cong \mathbb{Q}[X]/(X^3 - 7X + 7)$  while  $t^6$  indicates that  $\mathbb{Q}(t)$  has degree 6 over  $\mathbb{Q}$ .

Similarly, in the second entry, H46  $j^3(-7,14)$ ,  $t^{18}$  the exponent in  $j^3$  indicates 3 dessins d'enfants (also in Figure 1), the numbers (-7,14) indicate that  $\mathbb{Q}(j) \cong \mathbb{Q}[X]/(X^3 - 7X + 14)$  while  $t^{18}$  indicates  $[\mathbb{Q}(t) : \mathbb{Q}] = 18$ .

In Table 2.3.10 the entry 5/10, 1/10, 1/10, 1/10 of degree 18 indicates the branching pattern 9 [2] = 6 [3] = 2 [10] + 5 + 1 + 1 + 1. The reason 5/10 is not reduced to 1/2 is to indicate that this exceptional point belongs to the prescribed branching order m = 10 instead of k = 2 (see Definition 2.1). According to Table 2.3.10 there is, up to Möbius transformations, only one Belyi covering with this branching pattern; the Belyi covering named E7 in the file BelyiMaps at [23]. By the above naming convention, j should be in  $\mathbb{Q}$  and  $[\mathbb{Q}(t) : \mathbb{Q}]$  should be 6. The notation  $t^{\text{spl}}(5, 10)$  in Table 2.3.10 indicates that  $\mathbb{Q}(t)$  is the splitting field of  $X^3 + 5X + 10$ .

More information about each computed Galois orbit can be found in the tables of Appendix §B and our website [23] (it gives an explicit size-reduced  $\varphi \in K(x)$  over a number field K of minimal degree, the j, t, r-fields and moduli field, the dessins in permutation form, the decomposition lattice or the monodromy group). In order to compute and simplify the whole set of minus-4-hyperbolic Belyi functions, and to obtain interesting additional information about them, we used the computer algebra package Maple 15, the polredabs command of GP/PARI, and had to implement several algorithms. The main work of computing the Belyi functions is described in §5. Here is a list of additional handled problems, sorted roughly by the amount of work involved:

• Given a minus-4-hyperbolic Belyi function, compute its branching type, its *t*-value, *j*-invariant, the canonical realization field, and moduli field.

<sup>&</sup>lt;sup>6</sup> Our notation allows to count the total number of dessins d'enfants in selected Galois orbits rather quickly in Tables 2.3.7–3.4.4. Each fourth column starts either with the  $m^n$  or  $j^n$  notation (where n is the size of the Galois orbit), or a statement of no covering, or starts with an indented data about t or j = 0. In the latter cases, n = 1.

<sup>&</sup>lt;sup>7</sup> The moduli field always contains the *j*-field, as the *j*-value is an invariant of Möbius transformations.

| <b>Table 2.3.7:</b> (k, l,               |          |            |                                                        |                                                                     | •  | GAG        | ·2 ( / ) · · 4                                                  |
|------------------------------------------|----------|------------|--------------------------------------------------------|---------------------------------------------------------------------|----|------------|-----------------------------------------------------------------|
| $^{1}/7,^{1}/7,^{1}/7,^{1}/7$            | 60       | H14        | $j^{3}(-7,7), t^{6}$                                   | 1/3,1/3,1/3,1/3                                                     | 28 | G36        | $j^2(\sqrt{-7}), t^4$                                           |
|                                          |          | H46        | $j^{3}(-7,14), t^{18}$                                 | 1/01/01/05/0                                                        |    | H13        | $j^{3}(-7,7), t^{6}$                                            |
| 1/7,1/7,1/7,2/7                          | 54       | D28        | $t(\sqrt{-3})$                                         | 1/3, 1/7, 1/7, 5/7                                                  |    | I8         | $j^4(0,3,3), t^8$                                               |
| 1/3,1/7,1/7,1/7                          | 52       | D35        | $t(\sqrt{-5})$                                         | $\frac{1}{3}, \frac{1}{7}, \frac{2}{7}, \frac{4}{7}$                |    | B16        | $t = 3^{3}/2$                                                   |
| 1/7,1/7,1/7,3/7                          | 48       |            | no covering                                            | $\frac{1}{3}, \frac{1}{7}, \frac{3}{7}, \frac{3}{7}$                |    | —          | no covering                                                     |
| 1/7,1/7,2/7,2/7                          |          | A21        | t = -1                                                 | $\frac{1}{3}, \frac{2}{7}, \frac{2}{7}, \frac{3}{7}$                | 27 | —<br>D4(   | no covering $(\sqrt{15})$                                       |
| 1/01/01/00/0                             | 10       | I5         | $j^4(-7, 0, 14), t^8$                                  | 1/2, 1/7, 1/7, 4/7                                                  | 27 | D46        | $t(\sqrt{-15})$                                                 |
| 1/3, 1/7, 1/7, 2/7                       | 46       | J7         | $j^{6}(2,4,8,4,4), t^{12}$                             | 1/2,1/7,2/7,3/7                                                     |    | B2         | $m^2(\sqrt{-7}), t=2^2$                                         |
| 1/2, 1/7, 1/7, 1/7                       | 45       | G44        | $j^2(\sqrt{-7}), t^{12}$                               | 1/02/72/72/7                                                        |    | I25        | $j^{5}(4, 4, 0, -8)$<br>no covering                             |
| $^{1}/3,^{1}/3,^{1}/7,^{1}/7$            | 44       | H11        | $j^{3}(-7,7), t^{6}$                                   | $\frac{1}{2},\frac{2}{7},\frac{2}{7},\frac{2}{7}$                   | 26 |            | $j^{6}(5, 1, 9, 1, 3), t^{12}$                                  |
|                                          | 40       | J26        | $j^{13}, t^{26}$                                       | $\frac{1}{3}, \frac{1}{3}, \frac{1}{7}, \frac{4}{7}$                | 20 | H51        | $j^{3}(4,2), t^{6}$                                             |
| 1/7, 1/7, 1/7, 4/7                       | 42       | G33        | $j^2(\sqrt{-7}), t^4$                                  | $\frac{1}{3}, \frac{1}{3}, \frac{2}{7}, \frac{3}{7}$                |    | C12        |                                                                 |
| 1/7, 1/7, 2/7, 3/7                       |          |            | no covering                                            | $\frac{2}{3},\frac{1}{7},\frac{1}{7},\frac{3}{7}$                   |    | D47        | $t(\sqrt{3})$                                                   |
| 1/7, 2/7, 2/7, 2/7                       | 40       | —<br>116   | no covering                                            | $\frac{2}{3},\frac{1}{7},\frac{2}{7},\frac{2}{7}$                   | 25 | J23        | $t(\sqrt{-15})$                                                 |
| 1/3, 1/7, 1/7, 3/7                       | 40       | J16        | $j^7, t^{14}$                                          | $\frac{1}{2},\frac{1}{3},\frac{1}{7},\frac{3}{7}$                   | 25 | J25<br>H43 | $j^{j}$<br>$j^{3}(2,2), t^{6}$                                  |
| 1/3, 1/7, 2/7, 2/7                       | 20       | G34        | $j^2(\sqrt{-7}), t^4$                                  | $^{1/2,1/3,2/7,2/7}_{1/2,1/2,1/7,2/7}$                              | 24 | п45<br>I4  | $j^{4}(-7,0,14), t^{8}$                                         |
| 1/2, 1/7, 1/7, 2/7                       | 39       | G43        | $j^2(\sqrt{-7}), t^4 \ j^7, t^{14}$                    | 1/3, 1/3, 1/3, 3/7                                                  | 24 | D20        | $m^{2}(\sqrt{-3}), j=0$                                         |
| 1/3, 1/3, 1/7, 2/7                       | 38       | J13        | $j^4(-7,0,14), t^{24}$                                 | 1/3, 1/3, 1/3, 1/3, 0/7<br>1/3, 2/3, 1/7, 2/7                       |    | D20<br>B6  | $m^{2}(\sqrt{-3}), j \equiv 0$<br>$m^{2}(\sqrt{-3}), t = 3^{2}$ |
| 2/3, 1/7, 1/7, 1/7                       | 27       | I6<br>128  | $j^{1}(-7,0,14), t^{-1}$<br>$j^{15}, t^{30}$           | 1/0,2/0,1/1,2/1                                                     |    | Б0<br>I2   | $m(\sqrt{-3}), t=3$<br>$j^4(0,0,7)$                             |
| 1/2, 1/3, 1/7, 1/7<br>1/2, 1/2, 1/2, 1/7 | 37<br>36 | J28<br>I14 | $j^4(0, 14, 21), t^{24}$                               | 1/7, 1/7, 2/7, 6/7                                                  |    | 12<br>     | no covering                                                     |
| 1/3, 1/3, 1/3, 1/7<br>1/7, 1/7, 1/7, 5/7 | 50       |            | $j$ (0, 14, 21), $\iota$<br>no covering                |                                                                     |    |            | $j^2(\sqrt{21}), t^4$                                           |
| 1/7, 1/7, 2/7, 4/7                       |          |            | $m^2(\sqrt{-7}), t = -1$                               | 1/7, 1/7, 3/7, 5/7<br>1/7, 1/7, 4/7, 4/7                            |    | г24<br>G40 | $j^{2}(\sqrt{-7}), t^{4}$                                       |
| 1/1,1/1,2/1,4/1                          |          | A22<br>D40 | $m(\sqrt{-7}), i = -1$ $t(\sqrt{-7})$                  | 1/7, 1/7, 4/7, 4/7<br>1/7, 2/7, 2/7, 5/7                            |    |            | $f(\sqrt{-t}), t$<br>no covering                                |
| 1/7,1/7,3/7,3/7                          |          | B12        | $t(\sqrt{-1})$ $t = 3^2$                               | 1/7,2/7,2/7,5/7<br>1/7,2/7,3/7,4/7                                  |    | _          | no covering                                                     |
| 1/1,1/1,0/1,0/1                          |          | I28        | t = 3<br>$j^5(7, 14, 0, -49), t^{10}$                  | 1/7, 3/7, 3/7, 3/7                                                  |    | _          | no covering                                                     |
| 1/7,2/7,2/7,3/7                          |          | 120        | no covering $(7, 14, 0, -49), t$                       | 2/7, 2/7, 2/7, 2/7, 4/7                                             |    | _          | no covering                                                     |
| 2/7, 2/7, 2/7, 2/7, 2/7                  |          | A23        | t = -1                                                 | 2/7, 2/7, 3/7, 3/7                                                  |    |            | $j^2(\sqrt{7}), t^4$                                            |
| -/ 1,-/ 1,-/ 1,-/ 1                      |          | E22        | $t = -1$ $t^{\text{spl}}(9,2)$                         | $\frac{2}{1/2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{7}$ | 23 | г20<br>J14 | $j^{7}(\sqrt{t}), t^{14}$                                       |
| 1/3,1/7,1/7,4/7                          | 34       | D17        | $t^{(3,2)}$<br>$t(\sqrt{-2})$                          | 1/2, 1/3, 1/3, 1/7, 1/7                                             | 25 | J14<br>J17 | $j^{\prime}, \iota_{j7 \ t}$                                    |
| 1/3, 1/7, 2/7, 3/7                       | 57       | J10        | $j^{6}(1,3,6,4,2)$                                     | 1/2, 1/2, 1/3, 1/7                                                  | 22 | J25        | $j^{7}, t^{14}$<br>$j^{13}, t^{26}$                             |
| 1/3, 2/7, 2/7, 2/7                       |          |            | no covering                                            | 1/3, 1/3, 2/3, 1/7                                                  | 22 | J15        | $j^{7}, t^{14}$                                                 |
| 1/2, 1/7, 1/7, 3/7                       | 33       | I32        | $j^5(6, 18, 18, -54), t^{10}$                          | 1/3, 1/7, 1/7, 6/7                                                  |    | H36        | $j^{3}(9,2), t^{6}$                                             |
| 1/2, 1/7, 2/7, 2/7                       | 55       | G41        | $j^{2}(\sqrt{-7}), t^{4}$                              | 1/3, 1/7, 2/7, 5/7                                                  |    | B34        | $t = 2^4 19^2 / 7^4$                                            |
| 1/3, 1/3, 1/7, 3/7                       | 32       | A10        | $\begin{array}{c} f(\sqrt{-1}), \\ t = -1 \end{array}$ | 1/3, 1/7, 3/7, 4/7                                                  |    | H52        | $j^{3}(-3,9)$                                                   |
| /0, /0, /1, /1                           | 52       | F21        | $j^{2}(\sqrt{7}), t^{4}$                               | 1/3, 2/7, 2/7, 4/7                                                  |    | G42        | $j^{2}(\sqrt{-7}), t^{4}$                                       |
| 1/3,1/3,2/7,2/7                          |          | C6         | $t(\sqrt{3})$                                          | 1/3, 2/7, 3/7, 3/7                                                  |    | _          | no covering                                                     |
| -/ 3,-/ 3,-/ 1,-/ 1                      |          | I23        | $j^{5}(-2, 4, -5, 4), t^{10}$                          | 1/2, 1/3, 1/3, 1/3                                                  | 21 | I9         | $j^4(0,3,3), t^{24}$                                            |
| 2/3,1/7,1/7,2/7                          |          | G32        | $j^{2}(\sqrt{-7})$                                     | 1/2, 1/7, 1/7, 5/7                                                  | -1 | H44        | $j^{3}(2,2), t^{6}$                                             |
| $^{1/2,1/3,1/7,2/7}$                     | 31       | J24        | $j^{(\vee 1)}$                                         | 1/2, 1/7, 2/7, 4/7                                                  |    | G30        | $j^{2}(\sqrt{-7})$                                              |
| $^{1/2,1/2,1/7,1/7}$                     | 30       | H10        | $j^{3}(-7,7), t^{6}$                                   | 1/2, 1/7, 3/7, 3/7                                                  |    | C36        | $t(\sqrt{21})$                                                  |
| /2, /2, /1, /1                           | 50       | J19        | $j^{9}, t^{18}$                                        | 1/2, 2/7, 2/7, 3/7                                                  |    | C39        | $t(\sqrt{21}) t(\sqrt{105})$                                    |
| 1/3,1/3,1/3,2/7                          |          |            | no covering                                            | 1/3, 1/3, 1/7, 5/7                                                  | 20 | H42        | $j^{3}(2,2), t^{6}$                                             |
| 1/3, 2/3, 1/7, 1/7                       |          | J6         | $j^6(17, 0, 3, 0, 15), t^{12}$                         | 1/3, 1/3, 2/7, 4/7                                                  | 20 | A11        | f(2,2), t = -1                                                  |
| 1/7, 1/7, 1/7, 6/7                       |          | D22        | j = 0                                                  | 1/3, 1/3, 3/7, 3/7                                                  |    | H33        | $j^{3}(-5,5), t^{6}$                                            |
| 1/7, 1/7, 2/7, 5/7                       |          | D5         | f = 0<br>$t(\sqrt{-1})$                                | 2/3, 1/7, 1/7, 4/7                                                  |    | A14        | f(0,0), t<br>t = -1                                             |
| 1/7, 1/7, 3/7, 4/7                       |          |            | no covering                                            | / ~, / •, / •, / •                                                  |    | B32        | $t = 2^8/11^2$                                                  |
| 1/7, 2/7, 2/7, 4/7                       |          | B13        | $t = 3^2$                                              | $^{2}/3,^{1}/7,^{2}/7,^{3}/7$                                       |    | F23        | $j^2(\sqrt{21})$                                                |
| 1/7, 2/7, 3/7, 3/7                       |          | C18        | t = 0<br>$t(\sqrt{5})$                                 | 2/3, 2/7, 2/7, 2/7                                                  |    | A15        | $ \begin{array}{c} f(\sqrt{21}) \\ t = -1 \end{array} $         |
| 2/7, 2/7, 2/7, 3/7                       |          | D23        | j = 0                                                  | 1/2, 1/3, 1/7, 4/7                                                  | 19 | J11        | $j^{6}(-18, 72, 144, -480, 288)$                                |
| 1/2, 1/3, 1/3, 1/7                       | 29       | J27        | $j^{14}, t^{28}$                                       | 1/2, 1/3, 2/7, 3/7                                                  | ., | I20        | $j^4(3,7,4)$                                                    |
| , _, , _, , _, , , , , , , ,             | _/       |            | J 7 °                                                  | / =, / 3, / •, / •                                                  |    |            | J (~)·) =/                                                      |

8\_\_\_\_\_

| 1/2, 1/2, 1/7, 3/7                       | 18 | I27        | $j^5(7, 14, 0, -49), t^{10}$                           | 1/3, 1/3, 1/3, 5/7                                                | 12       | E14        | $t^{ m spl}(3,1)$                                                  |
|------------------------------------------|----|------------|--------------------------------------------------------|-------------------------------------------------------------------|----------|------------|--------------------------------------------------------------------|
| 1/2, 1/2, 2/7, 2/7                       |    | A3         | t = -1                                                 | 1/3, 2/3, 1/7, 4/7                                                |          | B25        | $t = 3^{5}$                                                        |
|                                          |    | H37        | $j^3(9,2), t^6$                                        | 1/3, 2/3, 2/7, 3/7                                                |          | B20        | $t = 2^7/3$                                                        |
| $^{1}/3, ^{1}/3, ^{1}/3, ^{4}/7$         |    | E6         | $t^{\rm spl}(-3, 10)$                                  | 1/2, 1/3, 1/3, 4/7                                                | 11       | H27        | $j^{3}(-4,4), t^{6}$                                               |
| 1/3,2/3,1/7,3/7                          |    | I26        | $j^5(-2,3,9,3)$                                        | 1/2, 2/3, 1/7, 3/7                                                |          | H53        | $j^3(-42, 140)$                                                    |
| 1/3, 2/3, 2/7, 2/7                       |    |            | no covering                                            | 1/2, 2/3, 2/7, 2/7                                                |          | C42        | $t(\sqrt{385})$                                                    |
| 1/7,1/7,1/7,8/7                          |    |            | no covering                                            | 1/2, 1/2, 1/3, 3/7                                                | 10       | H34        | $j^{3}(-5,5), t^{6}$                                               |
| 1/7,1/7,3/7,6/7                          |    | C4         | $t(\sqrt{2})$                                          | 1/3, 1/3, 2/3, 3/7                                                |          | D30        | $t(\sqrt{-5})$                                                     |
| 1/7, 1/7, 4/7, 5/7                       |    |            | no covering                                            | 2/3, 2/3, 1/7, 2/7                                                |          | C40        | $t(\sqrt{105})$                                                    |
| 1/7,2/7,2/7,6/7                          |    |            | no covering                                            | 4/3, 1/7, 1/7, 1/7                                                |          | E20        | $t^{\rm spl}(21, 14)$                                              |
| 1/7, 2/7, 3/7, 5/7                       |    | B31        | $t = 7^4$                                              | 1/2, 1/2, 1/2, 2/7                                                | 9        | E21        | $t^{\rm spl}(9,2)$                                                 |
| 1/7, 2/7, 4/7, 4/7                       |    |            | no covering                                            | 1/2, 1/3, 2/3, 2/7                                                |          | I15        | $j^4(-24, 62, -48)$                                                |
| 1/7,3/7,3/7,4/7                          |    | D29        | $t(\sqrt{-3})$                                         | 1/2, 1/2, 2/3, 1/7                                                | 8        | H47        | $j^{3}(7,42), t^{6}$                                               |
| 2/7, 2/7, 2/7, 5/7                       |    |            | no covering                                            | 1/3, 2/3, 2/3, 1/7                                                | -        | C29        | $t(\sqrt{7})$                                                      |
| 2/7,2/7,3/7,4/7                          |    |            | no covering                                            | 1/2, 1/2, 1/2, 1/3                                                | 7        | G35        | $j^2(\sqrt{-7}), t^4$                                              |
| 2/7,3/7,3/7,3/7                          |    |            | no covering                                            | 1/2, 1/3, 1/3, 2/3                                                | ,        | H35        | $j^{3}(0,28), t^{6}$                                               |
| 1/2,1/3,1/3,3/7                          | 17 | H49        | $j^3(-17,51), t^6$                                     | /2, /0, /0, /0                                                    |          | 1100       | $J^{(0, 20)}, v$                                                   |
| 1/2,2/3,1/7,2/7                          |    | I33        | $j^5(9, 36, 40, 26)$                                   | <b>Table 2.3.8:</b> $(k, \ell, \ell)$                             | m) =     | (2, 3, 8)  | ).                                                                 |
| 1/2, 1/2, 1/3, 2/7                       | 16 | I22        | $j^5(-2, 4, -5, 4), t^{10}$                            | 1/8,1/8,1/8,1/8                                                   | 36       | F6         | $j^2(\sqrt{2}), t^4$                                               |
| 1/3, 1/3, 2/3, 2/7                       |    | A7         | $m^2(\sqrt{-3}), t = -1$                               | / 0, / 0, / 0, / 0                                                | 20       | G18        | $j^{2}(\sqrt{-2}), t^{12}$                                         |
|                                          |    | H38        | $j^3(21, 14), t^6$                                     | 2/8,2/8,1/8,1/8                                                   | 30       | B10        | $t = 3^2$                                                          |
| $^{1}/3,^{1}/7,^{2}/7,^{6}/7$            |    | G19        | $j^{2}(\sqrt{-3})$                                     | /0, /0, /0, /0                                                    | 20       | G5         | $j^2(\sqrt{-1}), t^4$                                              |
| 1/3,1/7,3/7,5/7                          |    | B17        | $t = 3^3/2$                                            | 1/8,1/8,1/8,3/8                                                   |          | D24        | $m^2(\sqrt{-2}), j=0$                                              |
| 1/3, 1/7, 4/7, 4/7                       |    |            | no covering                                            | 1/3, 2/8, 1/8, 1/8                                                | 28       | G8         | $j^{2}(\sqrt{-1}), t^{4}$                                          |
| 1/3, 2/7, 2/7, 5/7                       |    | D33        | $t(\sqrt{-5})$                                         | 1/2, 1/8, 1/8, 1/8                                                | 20       | G6         | $j^{2}(\sqrt{-1}), t^{4}$                                          |
| 1/3, 2/7, 3/7, 4/7                       |    | F3         | $j^2(\sqrt{2})$                                        | 1/3, 1/3, 1/8, 1/8                                                | 26       | C22        | $ \begin{array}{c} f(\sqrt{6})\\ t(\sqrt{6}) \end{array} $         |
| 1/3,3/7,3/7,3/7                          |    |            | no covering                                            | -/ 0,-/ 0,-/ 0                                                    | 20       | U22<br>I19 | $j^4(-3,2,6), t^8$                                                 |
| 2/3, 2/3, 1/7, 1/7                       |    | A12        | t = -1                                                 | 4/8,2/8,1/8,1/8                                                   | 24       | A5         | f(-3, 2, 0), t<br>t = -1                                           |
|                                          |    | H48        | $j^3(7,42), t^6$                                       | 2/8, 2/8, 2/8, 2/8, 2/8                                           | 27       | A18        | t = -1                                                             |
| 1/2, 1/2, 1/2, 1/7                       | 15 | H45        | $j^{3}(-7,14), t^{18}$                                 | 2/8, 2/8, 1/8, 3/8                                                |          |            | no covering                                                        |
| 1/2,1/3,2/3,1/7                          |    | J22        | $j^{10}$ $j^{10}$                                      | 1/8, 1/8, 1/8, 5/8                                                |          |            | no covering                                                        |
| 1/2,1/7,1/7,6/7                          |    | G25        | $j^{2}(\sqrt{-3}), t^{4}$                              | 1/8,1/8,3/8,3/8                                                   |          | B14        | $t = 3^2$                                                          |
| 1/2, 1/7, 2/7, 5/7                       |    | H40        | $j^{3}(2,2)$                                           | /0, /0, /0, /0                                                    |          | G15        | $j^2(\sqrt{-2}), t^4$                                              |
| 1/2,1/7,3/7,4/7                          |    | B33        | $t = 3^7 5 / 11^3$                                     | 4/8,1/3,1/8,1/8                                                   | 22       | _          | no covering                                                        |
| 1/2, 2/7, 2/7, 4/7                       |    |            | no covering                                            | 1/3, 2/8, 2/8, 2/8                                                | 22       | _          | no covering                                                        |
| 1/2,2/7,3/7,3/7                          |    | C35        | $t(\sqrt{21})$                                         | 1/3,2/8,1/8,3/8                                                   |          | I16        | $j^4(2,8,8)$                                                       |
| 1/2,1/2,1/3,1/3                          | 14 | G39        | $j^2(\sqrt{-7}), t^4$                                  | 1/2, 2/8, 2/8, 1/8                                                | 21       |            | no covering                                                        |
| /_,/_,/,,/,,/,                           |    | H12        | $j^{3}(-7,7), t^{6}$                                   | 1/2, 1/8, 1/8, 3/8                                                | 21       | G16        | $j^2(\sqrt{-2}), t^4$                                              |
|                                          |    | I3         | $j^4(0,0,7), t^8$                                      | 1/3, 1/3, 2/8, 2/8                                                | 20       | A9         | $\begin{array}{c} f(\sqrt{2}), t\\ t = -1 \end{array}$             |
| 1/3,1/3,1/3,2/3                          |    | E19        | $t^{\rm spl}(0,28)$                                    | /0, /0, /0, /0                                                    | 20       | H22        | $j^{3}(5,10), t^{6}$                                               |
| 1/3, 1/3, 1/7, 6/7                       |    | D26        | $t(\sqrt{-3})$                                         | 1/3,1/3,1/8,3/8                                                   |          | D16        | f(0, 10), t<br>$t(\sqrt{-2})$                                      |
| 1/3, 1/3, 2/7, 5/7                       |    | _          | no covering                                            | 2/3, 2/8, 1/8, 1/8                                                |          | A13        | $m^2(\sqrt{-2}), t=-1$                                             |
| 1/3, 1/3, 3/7, 4/7                       |    |            | no covering                                            | -/ 3,-/ 8,-/ 8,-/ 8                                               |          | G3         | $m(\sqrt{-2}), t = -1$<br>$j^2(\sqrt{-1}), t^4$                    |
| 2/3, 1/7, 1/7, 5/7                       |    | C27        | $t(\sqrt{7})$                                          | 1/2,1/3,2/8,1/8                                                   | 19       | J21        | $j^{10}(\sqrt{-1}), i$                                             |
| 2/3, 1/7, 2/7, 4/7                       |    | G31        | $j^2(\sqrt{-7})$                                       | 1/2, 1/3, 2/8, 1/8<br>1/2, 1/2, 1/8, 1/8                          | 19<br>18 | J21<br>F4  | $j^{2}(\sqrt{2}), t^{4}$                                           |
| 2/3, 1/7, 3/7, 3/7                       |    | C34        | $t(\sqrt{21})$                                         | 1/2,1/2,1/0,1/0                                                   | 10       |            |                                                                    |
| 2/3, 2/7, 2/7, 3/7                       |    | C34<br>C26 | $t(\sqrt{21})$<br>$t(\sqrt{7})$                        | 4/84/81/81/0                                                      |          | <b>J</b> 1 | $j^{6}(-4, 0, 12, 32, 32), t^{12}$<br>no covering                  |
| 1/2, 1/3, 1/7, 5/7                       | 13 | I21        | $j^4(0,4,48)$                                          | 4/8,4/8,1/8,1/8<br>4/8 2/8 2/8 2/8                                |          |            | no covering                                                        |
| 1/2, 1/3, 2/7, 4/7                       | 15 | H50        | $j^{3}(4,2)$                                           | 4/8,2/8,2/8,2/8<br>4/8,2/8,1/8,3/8                                |          | —<br>B1    | $t = 2^2$                                                          |
| 1/2, 1/3, 3/7, 3/7                       |    | C33        | $ \begin{array}{c} f(4,2)\\ t(\sqrt{13}) \end{array} $ | $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{8}$ |          | E5         | t = 2<br>$t^{\rm spl}(-3, 10)$                                     |
| 1/2, 1/3, 3/7, 3/7<br>1/2, 1/2, 1/7, 4/7 | 12 | G38        | $j^2(\sqrt{-7}), t^4$                                  | 1/3, 1/3, 1/3, 1/8, 1/8                                           |          | E3<br>G12  | $j^2(\sqrt{-2}), t^4$                                              |
| 1/2, 1/2, 2/7, 3/7                       | 12 | G38<br>F22 | $j^{2}(\sqrt{7}), t^{4}$                               | $\frac{1}{3}, \frac{2}{8}, \frac{3}{8}, \frac{1}{8}, \frac{5}{8}$ |          | D1         | $ \begin{array}{c} j  (\sqrt{-2}), t \\ t(\sqrt{-1}) \end{array} $ |
| -/ 2,-/ 2,-/ 1,9/ 1                      |    | 1'22       | $J(\mathbf{v}), \iota$                                 | / 0, -/ 0, -/ 0, 0, 0                                             |          |            | V I)                                                               |
|                                          |    |            |                                                        |                                                                   |          |            |                                                                    |

| 2/8,2/8,3/8,3/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18                                       | C5                                                                                                                                                                                                | $t(\sqrt{3})$                                                                                                                                                                                                                                                                                                                                                                  | $^{3/9,2/9,2/9,2/9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | no covering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2/8,6/8,1/8,1/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                                                                                                                                                   | no covering                                                                                                                                                                                                                                                                                                                                                                    | $^{6}/9,^{1}/9,^{1}/9,^{1}/9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    | E3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $t^{\mathrm{spl}}(3,2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1/8,1/8,1/8,7/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                                                                                                                                                   | no covering                                                                                                                                                                                                                                                                                                                                                                    | 1/9, 1/9, 2/9, 5/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    | C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $t(\sqrt{6})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1/8,1/8,3/8,5/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | —                                                                                                                                                                                                 | no covering                                                                                                                                                                                                                                                                                                                                                                    | 1/9, 2/9, 2/9, 4/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | no covering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1/8, 3/8, 3/8, 3/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17                                       | 120                                                                                                                                                                                               | no covering                                                                                                                                                                                                                                                                                                                                                                    | 1/3, 3/9, 3/9, 1/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                 | A6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t = -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1/2, 1/3, 1/3, 1/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17                                       | J20                                                                                                                                                                                               | $j^9, t^{18}$                                                                                                                                                                                                                                                                                                                                                                  | $^{1}/3,^{3}/9,^{2}/9,^{2}/9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    | C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $t(\sqrt{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4/8,1/3,2/8,2/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16                                       | —                                                                                                                                                                                                 | no covering<br>no covering                                                                                                                                                                                                                                                                                                                                                     | $^{1}/3,^{1}/9,^{1}/9,^{5}/9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    | H25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $j^3(3,1), t^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4/8,1/3,1/8,3/8<br>1/3,1/3,1/3,1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | <br>D8                                                                                                                                                                                            | $t(\sqrt{-2})$                                                                                                                                                                                                                                                                                                                                                                 | $^{1}/3,^{1}/9,^{2}/9,^{4}/9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    | H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $j^{3}(3,2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1/0,1/0,1/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | F2                                                                                                                                                                                                | $i(\sqrt{-2})$<br>$j^2(\sqrt{2})$                                                                                                                                                                                                                                                                                                                                              | 1/2, 3/9, 1/9, 2/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                                                 | H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $j^{3}(0,2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1/3,2/8,1/8,5/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | г2<br>В30                                                                                                                                                                                         | $f(\sqrt{2}) t = 2^2 13^2$                                                                                                                                                                                                                                                                                                                                                     | 1/2, 1/9, 1/9, 4/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    | D49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $t(\sqrt{-39})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1/3, 2/8, 3/8, 3/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | <u> </u>                                                                                                                                                                                          | t = 2 13<br>no covering                                                                                                                                                                                                                                                                                                                                                        | 1/2,2/9,2/9,2/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | no covering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1/3,6/8,1/8,1/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | G22                                                                                                                                                                                               | $j^2(\sqrt{-3}), t^4$                                                                                                                                                                                                                                                                                                                                                          | 1/3,1/3,3/9,2/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14                                                 | D39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $t(\sqrt{-7})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1/2, 4/8, 2/8, 1/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                                       | G22<br>G1                                                                                                                                                                                         | $j^{2}(\sqrt{-1})$                                                                                                                                                                                                                                                                                                                                                             | 1/3,1/3,1/9,4/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    | G21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $j^2(\sqrt{-3}), t^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1/2, 2/8, 2/8, 3/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                                       | B15                                                                                                                                                                                               | $ \begin{array}{c} f(\mathbf{v} & \mathbf{i}) \\ t = 3^4 \end{array} $                                                                                                                                                                                                                                                                                                         | 3/9,2/3,1/9,1/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    | D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $t(\sqrt{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1/2, 1/8, 1/8, 5/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | G9                                                                                                                                                                                                | $j^2(\sqrt{-1}), t^4$                                                                                                                                                                                                                                                                                                                                                          | 2/3,1/9,2/9,2/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    | C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $t(\sqrt{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1/2, 1/8, 3/8, 3/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | C8                                                                                                                                                                                                | $t(\sqrt{3})$                                                                                                                                                                                                                                                                                                                                                                  | 1/2,1/3,3/9,1/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13                                                 | I17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $j^4(0, 6, 9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4/8,1/3,1/3,2/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                                       | F8                                                                                                                                                                                                | $j^2(\sqrt{2}), t^4$                                                                                                                                                                                                                                                                                                                                                           | $\frac{1}{2}, \frac{1}{3}, \frac{2}{9}, \frac{2}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    | C41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $t(\sqrt{273})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4/8,2/3,1/8,1/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                                       |                                                                                                                                                                                                   | no covering                                                                                                                                                                                                                                                                                                                                                                    | 1/2, 1/2, 1/9, 2/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                 | H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $j^{3}(-3,4), t^{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1/3, 1/3, 1/8, 5/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | H23                                                                                                                                                                                               | $j^{3}(5,10), t^{6}$                                                                                                                                                                                                                                                                                                                                                           | 1/3, 1/3, 1/3, 3/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    | D19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | j = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1/3, 1/3, 3/8, 3/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | C28                                                                                                                                                                                               | f(0,10), v<br>$t(\sqrt{7})$                                                                                                                                                                                                                                                                                                                                                    | 1/3,2/3,1/9,2/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    | B7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $t = 3^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2/3, 2/8, 2/8, 2/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | _                                                                                                                                                                                                 | no covering                                                                                                                                                                                                                                                                                                                                                                    | 1/91/91/92/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                 | H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $j^{3}(0,3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2/3,2/8,1/8,3/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | B29                                                                                                                                                                                               | $t = 5^3/2^2$                                                                                                                                                                                                                                                                                                                                                                  | $^{1/2,1/3,1/3,2/9}_{1/2,2/3,1/9,1/9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                 | H32<br>H31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $j^3(6,1), t^6 \ j^3(-3,8), t^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1/2,4/8,1/3,1/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13                                       | I18                                                                                                                                                                                               | $j^4(-3,2,6)$                                                                                                                                                                                                                                                                                                                                                                  | 1/2, 1/2, 1/3, 1/9<br>1/2, 1/2, 1/3, 1/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                 | ПЭТ<br>J4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $j^{6}(-3, 3), t^{12}$<br>$j^{6}(3, 3, 0, 0, 5), t^{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1/2,1/3,2/8,3/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | H29                                                                                                                                                                                               | $j^{3}(-1,2)$                                                                                                                                                                                                                                                                                                                                                                  | 1/2, 1/2, 1/3, 1/9<br>1/3, 1/3, 2/3, 1/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                 | H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $j^{3}(0,3), t^{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1/2,1/2,2/8,2/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12                                       | C1                                                                                                                                                                                                | $t(\sqrt{2})$                                                                                                                                                                                                                                                                                                                                                                  | 1/2, 1/3, 1/3, 1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                                  | G26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $j^{2}(\sqrt{-3}), t^{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1/2,1/2,1/8,3/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | D9                                                                                                                                                                                                | $t(\sqrt{-2})$                                                                                                                                                                                                                                                                                                                                                                 | / 2, / 0, / 0, / 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                                  | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $J(\mathbf{v},\mathbf{o}),\mathbf{v}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1/2,1/2,1/8,3/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | D9<br>G14                                                                                                                                                                                         | $j^2(\sqrt{-2}), t^4$                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1/2,1/2,1/8,3/8<br>4/8,1/3,1/3,1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                                                                                                                                                                   | $j^2(\sqrt{-2}), t^4$<br>$t^{ m spl}(3,2)$                                                                                                                                                                                                                                                                                                                                     | <b>Table 2.3.10:</b> $(k, \ell$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , m) =                                             | = (2, 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | G14                                                                                                                                                                                               | $j^2(\sqrt{-2}), t^4$<br>$t^{ m spl}(3,2)$<br>$t(\sqrt{6})$                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    | =(2,3,<br>D6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{10)}{t(\sqrt{-1})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4/8,1/3,1/3,1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | G14<br>E2                                                                                                                                                                                         | $j^{2}(\sqrt{-2}), t^{4}$<br>$t^{ m spl}(3, 2)$<br>$t(\sqrt{6})$<br>$j^{2}(\sqrt{-2})$                                                                                                                                                                                                                                                                                         | $\frac{\text{Table 2.3.10: } (k, \ell)}{\frac{1}{10, \frac{1}{10, \frac{1}{10}, \frac{1}{10}, \frac{1}{10}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (, <i>m</i> ) = 24                                 | = (2, 3, 100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{10).}{t(\sqrt{-1})} \\ j^2(\sqrt{5}), t^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $^{4/8,1/3,1/3,1/3}_{1/3,2/3,2/8,2/8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                       | G14<br>E2<br>C21                                                                                                                                                                                  | $j^2(\sqrt{-2}), t^4$<br>$t^{ m spl}(3,2)$<br>$t(\sqrt{6})$                                                                                                                                                                                                                                                                                                                    | $\frac{\text{Table 2.3.10: } (k, \ell)}{\frac{1}{10, 1} (10, \frac{1}{10}, \frac{1}{10},$ | , m) =                                             | = (2, 3,<br>D6<br>F17<br>E7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \frac{10).}{t(\sqrt{-1})} \\ j^2(\sqrt{5}), t^4 \\ t^{\text{spl}}(5, 10) $                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4/8,1/3,1/3,1/3<br>1/3,2/3,2/8,2/8<br>1/3,2/3,1/8,3/8<br>1/2,1/3,1/3,3/8<br>1/2,2/3,2/8,1/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | G14<br>E2<br>C21<br>G10<br>F25<br>I10                                                                                                                                                             | $j^{2}(\sqrt{-2}), t^{4}$<br>$t^{ m spl}(3,2)$<br>$t(\sqrt{6})$<br>$j^{2}(\sqrt{-2})$<br>$j^{2}(\sqrt{22}), t^{4}$<br>$j^{4}(-2,4,-1)$                                                                                                                                                                                                                                         | Table 2.3.10: $(k, \ell)$ $1/10, 1/10, 1/10, 1/10$ $5/10, 1/10, 1/10, 1/10$ $2/10, 2/10, 2/10, 2/10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (, <i>m</i> ) = 24                                 | = (2, 3,<br>D6<br>F17<br>E7<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $     \begin{array}{r} 10). \\             t(\sqrt{-1}) \\             j^2(\sqrt{5}), t^4 \\             t^{\rm spl}(5, 10) \\             no covering     \end{array} $                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} 4/8,1/3,1/3,1/3\\ 1/3,2/3,2/8,2/8\\ 1/3,2/3,1/8,3/8\\ 1/2,1/3,1/3,3/8\\ 1/2,2/3,2/8,1/8\\ 1/2,1/2,1/2,2/8\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11<br>10                                 | G14<br>E2<br>C21<br>G10<br>F25<br>I10<br>H20                                                                                                                                                      | $j^{2}(\sqrt{-2}), t^{4}$ $t^{\text{spl}}(3, 2)$ $t(\sqrt{6})$ $j^{2}(\sqrt{-2})$ $j^{2}(\sqrt{22}), t^{4}$ $j^{4}(-2, 4, -1)$ $j^{3}(5, 10), t^{6}$                                                                                                                                                                                                                           | Table 2.3.10: $(k, \ell)$ $1/10, 1/10, 1/10, 1/10$ $5/10, 1/10, 1/10, 1/10, 1/10$ $2/10, 2/10, 2/10, 2/10, 2/10, 1/10, 3/10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (, <i>m</i> ) = 24                                 | = (2, 3,<br>D6<br>F17<br>E7<br><br>B24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $   \begin{array}{c}     10). \\     t(\sqrt{-1}) \\     j^2(\sqrt{5}), t^4 \\     t^{\rm spl}(5, 10) \\     no covering \\     t = 2^7/3   \end{array} $                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c} 4/8,1/3,1/3,1/3\\ 1/3,2/3,2/8,2/8\\ 1/3,2/3,1/8,3/8\\ 1/2,1/3,1/3,3/8\\ 1/2,2/3,2/8,1/8\\ 1/2,1/2,1/2,1/3,2/8\\ 1/3,1/3,2/3,2/8\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | G14<br>E2<br>C21<br>G10<br>F25<br>I10<br>H20<br>F19                                                                                                                                               | $ \begin{array}{c} j^2(\sqrt{-2}), t^4 \\ t^{\rm spl}(3,2) \\ t(\sqrt{6}) \\ j^2(\sqrt{-2}) \\ j^2(\sqrt{22}), t^4 \\ j^4(-2,4,-1) \\ j^3(5,10), t^6 \\ j^2(\sqrt{6}), t^4 \end{array} $                                                                                                                                                                                       | Table 2.3.10: $(k, \ell)$ $1/10, 1/10, 1/10, 1/10$ $5/10, 1/10, 1/10, 1/10, 1/10$ $2/10, 2/10, 2/10, 2/10, 2/10, 1/10, 3/10$ $2/10, 4/10, 1/10, 1/10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (, <i>m</i> ) = 24                                 | = (2, 3,<br>D6<br>F17<br>E7<br><br>B24<br>D4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \frac{10).}{t(\sqrt{-1})} \\ j^2(\sqrt{5}), t^4 \\ t^{spl}(5, 10) \\ no covering \\ t = 2^7/3 \\ t(\sqrt{-1}) $                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c} 4/8,1/3,1/3,1/3\\ 1/3,2/3,2/8,2/8\\ 1/3,2/3,1/8,3/8\\ 1/2,1/3,1/3,3/8\\ 1/2,2/3,2/8,1/8\\ 1/2,1/2,1/3,2/8\\ 1/3,1/3,2/3,2/8\\ 2/3,2/3,1/8,1/8\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | G14<br>E2<br>C21<br>G10<br>F25<br>I10<br>H20<br>F19<br>C32                                                                                                                                        | $ \begin{array}{c} j^2(\sqrt{-2}), t^4 \\ t^{\rm spl}(3,2) \\ t(\sqrt{6}) \\ j^2(\sqrt{-2}) \\ j^2(\sqrt{22}), t^4 \\ j^4(-2,4,-1) \\ j^3(5,10), t^6 \\ j^2(\sqrt{6}), t^4 \\ t(\sqrt{10}) \end{array} $                                                                                                                                                                       | Table 2.3.10: $(k, \ell)$ $1/10, 1/10, 1/10, 1/10$ $5/10, 1/10, 1/10, 1/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 1/10, 3/10$ $2/10, 4/10, 1/10, 1/10$ $1/10, 1/10, 3/10, 3/10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>(, m)</u> =<br>24<br>18                         | = (2, 3,<br>D6<br>F17<br>E7<br><br>B24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \frac{10).}{t(\sqrt{-1})} \\ j^{2}(\sqrt{5}), t^{4} \\ t^{spl}(5, 10) \\ no covering \\ t = 2^{7}/3 \\ t(\sqrt{-1}) \\ t(\sqrt{6}) $                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c} 4/8,1/3,1/3,1/3\\ 1/3,2/3,2/8,2/8\\ 1/3,2/3,1/8,3/8\\ 1/2,1/3,1/3,3/8\\ 1/2,2/3,2/8,1/8\\ 1/2,1/2,1/3,2/8\\ 1/3,1/3,2/3,2/8\\ 2/3,2/3,1/8,1/8\\ 1/2,1/2,1/2,1/2,1/8\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          | G14<br>E2<br>C21<br>G10<br>F25<br>I10<br>H20<br>F19<br>C32<br>G17                                                                                                                                 | $ \begin{array}{c} j^2(\sqrt{-2}), t^4 \\ t^{\rm spl}(3,2) \\ t(\sqrt{6}) \\ j^2(\sqrt{-2}) \\ j^2(\sqrt{22}), t^4 \\ j^4(-2,4,-1) \\ j^3(5,10), t^6 \\ j^2(\sqrt{6}), t^4 \\ t(\sqrt{10}) \\ j^2(\sqrt{-2}), t^{12} \end{array} $                                                                                                                                             | Table 2.3.10: $(k, \ell)$ $1/10, 1/10, 1/10, 1/10$ $5/10, 1/10, 1/10, 1/10$ $2/10, 2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 1/10, 3/10$ $2/10, 4/10, 1/10, 1/10$ $1/10, 1/10, 3/10, 3/10$ $1/3, 2/10, 2/10, 2/10, 2/10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (, <i>m</i> ) = 24                                 | = (2, 3,<br>D6<br>F17<br>E7<br><br>B24<br>D4<br>C25<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $   \begin{array}{r}     10). \\     \hline     t(\sqrt{-1}) \\     j^2(\sqrt{5}), t^4 \\     t^{spl}(5, 10) \\     no covering \\     t = 2^7/3 \\     t(\sqrt{-1}) \\     t(\sqrt{6}) \\     no covering   \end{array} $                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c} 4/8,1/3,1/3,1/3\\ 1/3,2/3,2/8,2/8\\ 1/3,2/3,1/8,3/8\\ 1/2,1/3,1/3,3/8\\ 1/2,2/3,2/8,1/8\\ 1/2,1/2,1/2,3/8\\ 1/2,1/2,1/3,2/8\\ 1/3,1/3,2/3,2/8\\ 2/3,2/3,1/8,1/8\\ 1/2,1/2,1/2,1/8\\ 1/2,1/2,1/2,1/8\\ 1/2,1/3,2/3,1/8\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10<br>9                                  | G14<br>E2<br>C21<br>G10<br>F25<br>I10<br>H20<br>F19<br>C32<br>G17<br>J2                                                                                                                           | $ \begin{array}{c} j^2(\sqrt{-2}), t^4 \\ t^{\rm spl}(3,2) \\ t(\sqrt{6}) \\ j^2(\sqrt{-2}) \\ j^2(\sqrt{22}), t^4 \\ j^4(-2,4,-1) \\ j^3(5,10), t^6 \\ j^2(\sqrt{6}), t^4 \\ t(\sqrt{10}) \\ j^2(\sqrt{-2}), t^{12} \\ j^6(0,8,9,0,18) \end{array} $                                                                                                                          | Table 2.3.10: $(k, \ell)$ $1/10, 1/10, 1/10, 1/10$ $5/10, 1/10, 1/10, 1/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 1/10, 3/10$ $2/10, 1/10, 3/10$ $1/10, 1/10, 3/10, 3/10$ $1/3, 2/10, 2/10, 2/10$ $1/3, 2/10, 1/10, 3/10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>(, m)</u> =<br>24<br>18                         | = (2,3,<br>D6<br>F17<br>E7<br><br>B24<br>D4<br>C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} 4/8,1/3,1/3,1/3\\ 1/3,2/3,2/8,2/8\\ 1/3,2/3,1/8,3/8\\ 1/2,1/3,1/3,3/8\\ 1/2,2/3,2/8,1/8\\ 1/2,1/2,1/3,2/8\\ 1/3,1/3,2/3,2/8\\ 2/3,2/3,1/8,1/8\\ 1/2,1/2,1/2,1/2,1/8\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                       | G14<br>E2<br>C21<br>G10<br>F25<br>I10<br>H20<br>F19<br>C32<br>G17<br>J2<br>F5                                                                                                                     | $ \begin{array}{c} j^2(\sqrt{-2}), t^4 \\ t^{\rm spl}(3,2) \\ t(\sqrt{6}) \\ j^2(\sqrt{-2}) \\ j^2(\sqrt{22}), t^4 \\ j^4(-2,4,-1) \\ j^3(5,10), t^6 \\ j^2(\sqrt{6}), t^4 \\ t(\sqrt{10}) \\ j^2(\sqrt{-2}), t^{12} \\ j^6(0,8,9,0,18) \\ j^2(\sqrt{2}), t^4 \end{array} $                                                                                                    | Table 2.3.10: $(k, \ell)$ $1/10, 1/10, 1/10, 1/10$ $5/10, 1/10, 1/10, 1/10$ $2/10, 2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 1/10, 3/10$ $2/10, 4/10, 1/10, 1/10$ $1/10, 1/10, 3/10, 3/10$ $1/3, 2/10, 2/10, 2/10, 2/10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>(, m)</u> =<br>24<br>18                         | = (2, 3, -) $= (2, 3, -)$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ $= -$ | $ \begin{array}{c} 10). \\ \hline t(\sqrt{-1}) \\ j^2(\sqrt{5}), t^4 \\ t^{\rm spl}(5, 10) \\ \text{no covering} \\ t = 2^7/3 \\ t(\sqrt{-1}) \\ t(\sqrt{6}) \\ \text{no covering} \\ j^2(\sqrt{-1}) \\ t(\sqrt{-14}) \end{array} $                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c} 4/8,1/3,1/3,1/3\\ 1/3,2/3,2/8,2/8\\ 1/3,2/3,1/8,3/8\\ 1/2,1/3,1/3,3/8\\ 1/2,2/3,2/8,1/8\\ 1/2,1/2,1/3,2/8\\ 1/3,1/3,2/3,2/8\\ 2/3,2/3,1/8,1/8\\ 1/2,1/2,1/2,1/8\\ 1/2,1/2,1/2,1/8\\ 1/2,1/3,2/3,1/8\\ 1/2,1/2,1/3,1/3\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10<br>9                                  | G14<br>E2<br>C21<br>G10<br>F25<br>I10<br>H20<br>F19<br>C32<br>G17<br>J2<br>F5<br>G13                                                                                                              | $ \begin{array}{c} j^2(\sqrt{-2}), t^4 \\ t^{\rm spl}(3,2) \\ t(\sqrt{6}) \\ j^2(\sqrt{-2}) \\ j^2(\sqrt{22}), t^4 \\ j^4(-2,4,-1) \\ j^3(5,10), t^6 \\ j^2(\sqrt{6}), t^4 \\ t(\sqrt{10}) \\ j^2(\sqrt{-2}), t^{12} \\ j^6(0,8,9,0,18) \\ j^2(\sqrt{-2}), t^4 \\ j^2(\sqrt{-2}), t^4 \end{array} $                                                                            | Table 2.3.10: $(k, \ell)$ $1/10, 1/10, 1/10, 1/10$ $5/10, 1/10, 1/10, 1/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 1/10, 3/10$ $2/10, 4/10, 1/10, 1/10$ $1/10, 1/10, 3/10, 3/10$ $1/3, 2/10, 2/10, 2/10$ $1/3, 2/10, 1/10, 3/10$ $1/3, 4/10, 1/10, 1/10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ( <u>, m)</u> =<br>24<br>18<br>16                  | = (2, 3,<br>D6<br>F17<br>E7<br><br>B24<br>D4<br>C25<br><br>G2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \frac{10).}{t(\sqrt{-1})} \\ j^2(\sqrt{5}), t^4 \\ t^{spl}(5, 10) \\ no covering \\ t = 2^7/3 \\ t(\sqrt{-1}) \\ t(\sqrt{6}) \\ no covering \\ j^2(\sqrt{-1}) \\ t(\sqrt{-14}) \\ t(\sqrt{5}) $                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c} 4/8,1/3,1/3,1/3\\ 1/3,2/3,2/8,2/8\\ 1/3,2/3,1/8,3/8\\ 1/2,1/3,1/3,3/8\\ 1/2,2/3,2/8,1/8\\ 1/2,1/2,1/2,3/8\\ 1/2,1/2,1/3,2/8\\ 1/3,1/3,2/3,2/8\\ 2/3,2/3,1/8,1/8\\ 1/2,1/2,1/2,1/8\\ 1/2,1/2,1/2,1/8\\ 1/2,1/3,2/3,1/8\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10<br>9                                  | G14<br>E2<br>C21<br>G10<br>F25<br>I10<br>H20<br>F19<br>C32<br>G17<br>J2<br>F5                                                                                                                     | $ \begin{array}{c} j^2(\sqrt{-2}), t^4 \\ t^{\rm spl}(3,2) \\ t(\sqrt{6}) \\ j^2(\sqrt{-2}) \\ j^2(\sqrt{22}), t^4 \\ j^4(-2,4,-1) \\ j^3(5,10), t^6 \\ j^2(\sqrt{6}), t^4 \\ t(\sqrt{10}) \\ j^2(\sqrt{-2}), t^{12} \\ j^6(0,8,9,0,18) \\ j^2(\sqrt{2}), t^4 \end{array} $                                                                                                    | Table 2.3.10: $(k, \ell)$ $1/10, 1/10, 1/10, 1/10$ $5/10, 1/10, 1/10, 1/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 1/10, 3/10$ $2/10, 4/10, 1/10, 1/10$ $1/10, 1/10, 3/10, 3/10$ $1/3, 2/10, 2/10, 2/10, 1/3, 10$ $1/3, 2/10, 1/10, 3/10$ $1/3, 4/10, 1/10, 1/10$ $1/2, 2/10, 2/10, 1/10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ( <u>, m)</u> =<br>24<br>18<br>16                  | = (2, 3, -) D6 F17 E7 - B24 D4 C25 - G2 D42 C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{c} 10). \\ \hline t(\sqrt{-1}) \\ j^2(\sqrt{5}), t^4 \\ t^{\rm spl}(5, 10) \\ \text{no covering} \\ t = 2^7/3 \\ t(\sqrt{-1}) \\ t(\sqrt{6}) \\ \text{no covering} \\ j^2(\sqrt{-1}) \\ t(\sqrt{-14}) \end{array} $                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c} 4/8,1/3,1/3,1/3\\ 1/3,2/3,2/8,2/8\\ 1/3,2/3,1/8,3/8\\ 1/2,1/3,1/3,3/8\\ 1/2,2/3,2/8,1/8\\ 1/2,1/2,1/3,2/8\\ 1/3,1/3,2/3,2/8\\ 2/3,2/3,1/8,1/8\\ 1/2,1/2,1/2,1/2,1/8\\ 1/2,1/2,1/2,1/8\\ 1/2,1/2,1/3,1/3\\ 1/3,1/3,1/3,2/3\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10<br>9<br>8                             | G14<br>E2<br>C21<br>G10<br>F25<br>I10<br>H20<br>F19<br>C32<br>G17<br>J2<br>F5<br>G13<br>D13                                                                                                       | $ \begin{array}{c} j^2(\sqrt{-2}), t^4 \\ t^{\rm spl}(3,2) \\ t(\sqrt{6}) \\ j^2(\sqrt{-2}) \\ j^2(\sqrt{22}), t^4 \\ j^4(-2,4,-1) \\ j^3(5,10), t^6 \\ j^2(\sqrt{6}), t^4 \\ t(\sqrt{10}) \\ j^2(\sqrt{-2}), t^{12} \\ j^6(0,8,9,0,18) \\ j^2(\sqrt{-2}), t^4 \\ j^2(\sqrt{-2}), t^4 \\ t(\sqrt{-2}) \end{array} $                                                            | Table 2.3.10: $(k, \ell)$ $1/10, 1/10, 1/10, 1/10$ $5/10, 1/10, 1/10, 1/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 1/10, 3/10$ $2/10, 4/10, 1/10, 1/10$ $1/10, 1/10, 3/10, 3/10$ $1/3, 2/10, 2/10, 2/10, 1/3, 10$ $1/3, 2/10, 1/10, 3/10$ $1/3, 4/10, 1/10, 1/10$ $1/2, 2/10, 2/10, 1/10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ( <u>, m)</u> =<br>24<br>18<br>16                  | = (2, 3, -) $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ | $ \begin{array}{c} 10). \\ \hline t(\sqrt{-1}) \\ j^2(\sqrt{5}), t^4 \\ t^{\rm spl}(5, 10) \\ \text{no covering} \\ t = 2^7/3 \\ t(\sqrt{-1}) \\ t(\sqrt{6}) \\ \text{no covering} \\ j^2(\sqrt{-1}) \\ t(\sqrt{-14}) \\ t(\sqrt{5}) \\ t(\sqrt{-15}) \end{array} $                                                                                                                                                                                                                                                     |
| $\begin{array}{l} 4/8,1/3,1/3,1/3\\ 1/3,2/3,2/8,2/8\\ 1/3,2/3,1/8,3/8\\ 1/2,1/3,1/3,3/8\\ 1/2,2/3,2/8,1/8\\ 1/2,1/2,1/3,2/8\\ 1/3,1/3,2/3,2/8\\ 2/3,2/3,1/8,1/8\\ 1/2,1/2,1/2,1/2,1/8\\ 1/2,1/2,1/2,1/3\\ 1/2,1/2,1/3,1/3\\ 1/3,1/3,1/3,2/3\\ \hline {\bf Table 2.3.9: } (k,\ell, \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 9 8 $m) =$                            | G14<br>E2<br>C21<br>G10<br>F25<br>I10<br>H20<br>F19<br>C32<br>G17<br>J2<br>F5<br>G13<br>D13<br>: (2, 3, 9                                                                                         | $j^{2}(\sqrt{-2}), t^{4}$ $t^{\text{spl}}(3, 2)$ $t(\sqrt{6})$ $j^{2}(\sqrt{-2}), t^{4}$ $j^{4}(-2, 4, -1)$ $j^{3}(5, 10), t^{6}$ $j^{2}(\sqrt{6}), t^{4}$ $t(\sqrt{10})$ $j^{2}(\sqrt{-2}), t^{12}$ $j^{6}(0, 8, 9, 0, 18)$ $j^{2}(\sqrt{-2}), t^{4}$ $t(\sqrt{-2})$                                                                                                          | Table 2.3.10: $(k, \ell)$ $1/10, 1/10, 1/10, 1/10$ $5/10, 1/10, 1/10, 1/10$ $2/10, 2/10, 2/10, 2/10, 2/10, 2/10, 2/10, 1/10, 3/10$ $2/10, 2/10, 1/10, 3/10$ $1/10, 1/10, 1/10, 1/10$ $1/10, 1/10, 1/10, 3/10$ $1/3, 2/10, 2/10, 2/10, 1/10, 3/10$ $1/3, 2/10, 2/10, 2/10, 1/10, 3/10$ $1/2, 2/10, 2/10, 1/10$ $1/2, 2/10, 2/10, 1/10$ $1/2, 1/10, 1/10, 3/10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ( <u>, m)</u> =<br>24<br>18<br>16<br>15            | = (2, 3, -) $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ $= (2, 3, -)$ | $   \begin{array}{r}     10). \\     \hline     t(\sqrt{-1}) \\     j^2(\sqrt{5}), t^4 \\     t^{spl}(5, 10) \\     no covering \\     t = 2^7/3 \\     t(\sqrt{-1}) \\     t(\sqrt{6}) \\     no covering \\     j^2(\sqrt{-1}) \\     t(\sqrt{-14}) \\     t(\sqrt{5}) \\     t(\sqrt{-15}) \\     t(\sqrt{-39})   \end{array} $                                                                                                                                                                                      |
| $\begin{array}{l} 4/8,1/3,1/3,1/3\\ 1/3,2/3,2/8,2/8\\ 1/3,2/3,1/8,3/8\\ 1/2,1/3,1/3,3/8\\ 1/2,2/3,2/8,1/8\\ 1/2,1/2,1/3,2/8\\ 1/3,1/3,2/3,2/8\\ 2/3,2/3,1/8,1/8\\ 1/2,1/2,1/2,1/2,1/8\\ 1/2,1/2,1/2,1/3,1/3\\ 1/2,1/2,1/3,1/3\\ 1/3,1/3,1/3,2/3\\ \hline {\bf Table 2.3.9: } (k,\ell,\\ \overline{3}/9,1/9,1/9,1/9\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10<br>9<br>8                             | G14<br>E2<br>C21<br>G10<br>F25<br>I10<br>H20<br>F19<br>C32<br>G17<br>J2<br>F5<br>G13<br>D13<br>: (2, 3, 9                                                                                         | $j^{2}(\sqrt{-2}), t^{4}$ $t^{\text{spl}}(3, 2)$ $t(\sqrt{6})$ $j^{2}(\sqrt{-2}), t^{4}$ $j^{4}(-2, 4, -1)$ $j^{3}(5, 10), t^{6}$ $j^{2}(\sqrt{6}), t^{4}$ $t(\sqrt{10})$ $j^{2}(\sqrt{-2}), t^{12}$ $j^{6}(0, 8, 9, 0, 18)$ $j^{2}(\sqrt{-2}), t^{4}$ $t(\sqrt{-2})$ no covering                                                                                              | Table 2.3.10: $(k, \ell)$ $1/10, 1/10, 1/10, 1/10$ $5/10, 1/10, 1/10, 1/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 4/10, 1/10, 1/10$ $1/10, 1/10, 3/10, 3/10$ $1/3, 2/10, 2/10, 2/10, 1/3, 10$ $1/3, 2/10, 2/10, 2/10$ $1/3, 4/10, 1/10, 1/10$ $1/2, 2/10, 2/10, 1/10, 1/2, 1/10, 1/10, 1/2, 1/10, 1/10, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ( <u>, m)</u> =<br>24<br>18<br>16<br>15            | = (2, 3, -) D6 F17 E7 B24 D4 C25 G2 D42 C15 D44 D50 C38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 10).\\ \hline t(\sqrt{-1})\\ j^2(\sqrt{5}), t^4\\ t^{\rm spl}(5, 10)\\ \text{no covering}\\ t=2^7/3\\ t(\sqrt{-1})\\ t(\sqrt{6})\\ \text{no covering}\\ j^2(\sqrt{-1})\\ t(\sqrt{-14})\\ t(\sqrt{-14})\\ t(\sqrt{-15})\\ t(\sqrt{-15})\\ t(\sqrt{-15})\\ t(\sqrt{-39})\\ t(\sqrt{-35})\\ j^2(\sqrt{5}), t^4 \end{array}$                                                                                                                                                                              |
| $\begin{array}{l} 4/8,1/3,1/3,1/3\\ 1/3,2/3,2/8,2/8\\ 1/3,2/3,1/8,3/8\\ 1/2,1/3,1/3,3/8\\ 1/2,2/3,2/8,1/8\\ 1/2,1/2,1/3,2/8\\ 1/3,1/3,2/3,2/8\\ 2/3,2/3,1/8,1/8\\ 1/2,1/2,1/2,1/2,1/8\\ 1/2,1/2,1/2,1/3\\ 1/2,1/2,1/3,1/3\\ 1/3,1/3,1/3,2/3\\ \hline {\bf Table 2.3.9: } (k,\ell, \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 9 8 $m) =$                            | G14<br>E2<br>C21<br>G10<br>F25<br>I10<br>H20<br>F19<br>C32<br>G17<br>J2<br>F5<br>G13<br>D13<br>: (2,3,9)<br><br>A24                                                                               | $j^{2}(\sqrt{-2}), t^{4}$ $t^{\text{spl}}(3, 2)$ $t(\sqrt{6})$ $j^{2}(\sqrt{-2}), t^{4}$ $j^{4}(-2, 4, -1)$ $j^{3}(5, 10), t^{6}$ $j^{2}(\sqrt{6}), t^{4}$ $t(\sqrt{10})$ $j^{2}(\sqrt{-2}), t^{12}$ $j^{6}(0, 8, 9, 0, 18)$ $j^{2}(\sqrt{-2}), t^{4}$ $t(\sqrt{-2})$ no covering<br>t = -1                                                                                    | Table 2.3.10: $(k, \ell)$ $1/10, 1/10, 1/10, 1/10$ $5/10, 1/10, 1/10, 1/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 1/10, 3/10$ $2/10, 4/10, 1/10, 1/10$ $1/3, 2/10, 2/10, 2/10$ $1/3, 2/10, 2/10, 2/10$ $1/3, 2/10, 1/10, 3/10$ $1/2, 2/10, 2/10, 1/10$ $1/2, 1/10, 1/10, 3/10$ $1/3, 1/3, 2/10, 2/10$ $1/3, 1/3, 1/10, 3/10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ( <u>, m)</u> =<br>24<br>18<br>16<br>15            | = (2, 3, -) D6 F17 E7 B24 D4 C25 G2 D42 C15 D44 D50 C38 D48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 10).\\ \hline t(\sqrt{-1})\\ j^2(\sqrt{5}), t^4\\ t^{\rm spl}(5, 10)\\ \text{no covering}\\ t=2^7/3\\ t(\sqrt{-1})\\ t(\sqrt{6})\\ \text{no covering}\\ j^2(\sqrt{-1})\\ t(\sqrt{-14})\\ t(\sqrt{5})\\ t(\sqrt{-14})\\ t(\sqrt{5})\\ t(\sqrt{-15})\\ t(\sqrt{-15})\\ t(\sqrt{-39})\\ t(\sqrt{21})\\ t(\sqrt{-35})\\ j^2(\sqrt{5}), t^4\\ j^6(0, 5, 0, 6, 15) \end{array}$                                                                                                                             |
| $\begin{array}{l} 4/8,1/3,1/3,1/3\\ 1/3,2/3,2/8,2/8\\ 1/3,2/3,1/8,3/8\\ 1/2,1/3,1/3,3/8\\ 1/2,2/3,2/8,1/8\\ 1/2,1/2,1/3,2/8\\ 1/3,1/3,2/3,2/8\\ 2/3,2/3,1/8,1/8\\ 1/2,1/2,1/2,1/2,1/8\\ 1/2,1/2,1/2,1/3,1/3\\ 1/3,1/3,1/3,2/3\\ \hline {\bf Table 2.3.9: } (k,\ell,\frac{3}{9},1/9,1/9,1/9\\ 1/9,1/9,2/9,2/9\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $10$ 9 8 $\underline{m} = \frac{10}{24}$ | $\begin{array}{c} G14\\ E2\\ C21\\ G10\\ F25\\ I10\\ H20\\ F19\\ C32\\ G17\\ J2\\ F5\\ G13\\ D13\\ \hline \\ (2,3,9)\\ \hline \\ (2,3,9)\\ \hline \\ A24\\ H8 \end{array}$                        | $j^{2}(\sqrt{-2}), t^{4}$ $t^{\text{spl}}(3, 2)$ $t(\sqrt{6})$ $j^{2}(\sqrt{-2}), t^{4}$ $j^{4}(-2, 4, -1)$ $j^{3}(5, 10), t^{6}$ $j^{2}(\sqrt{6}), t^{4}$ $t(\sqrt{10})$ $j^{2}(\sqrt{-2}), t^{12}$ $j^{6}(0, 8, 9, 0, 18)$ $j^{2}(\sqrt{-2}), t^{4}$ $t(\sqrt{-2})$ $t = -1$ $j^{3}(-3, 4), t^{6}$                                                                           | Table 2.3.10: $(k, \ell)$ $1/10, 1/10, 1/10, 1/10$ $5/10, 1/10, 1/10, 1/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 4/10, 1/10, 1/10$ $1/10, 1/10, 3/10, 3/10$ $1/3, 2/10, 2/10, 2/10, 1/3, 10$ $1/3, 2/10, 2/10, 2/10$ $1/3, 4/10, 1/10, 1/10$ $1/2, 2/10, 2/10, 1/10, 1/2, 1/10, 1/10, 1/2, 1/10, 1/10, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (m) = 24<br>18<br>16<br>15<br>14                   | = (2, 3, -) D6 F17 E7 B24 D4 C25 G2 D42 C15 D44 D50 C38 D48 F14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 10).\\ \hline t(\sqrt{-1})\\ j^2(\sqrt{5}), t^4\\ t^{\rm spl}(5, 10)\\ \text{no covering}\\ t=2^7/3\\ t(\sqrt{-1})\\ t(\sqrt{6})\\ \text{no covering}\\ j^2(\sqrt{-1})\\ t(\sqrt{-14})\\ t(\sqrt{5})\\ t(\sqrt{-14})\\ t(\sqrt{-15})\\ t(\sqrt{-15})\\ t(\sqrt{-15})\\ t(\sqrt{-39})\\ t(\sqrt{21})\\ t(\sqrt{-35})\\ j^2(\sqrt{5}), t^4\\ j^6(0, 5, 0, 6, 15)\\ j^2(\sqrt{5}) \end{array}$                                                                                                           |
| $\begin{array}{c} 4/8,1/3,1/3,1/3\\ 1/3,2/3,2/8,2/8\\ 1/3,2/3,1/8,3/8\\ 1/2,1/3,1/3,3/8\\ 1/2,2/3,2/8,1/8\\ 1/2,1/2,1/3,2/8\\ 1/3,1/3,2/3,2/8\\ 2/3,2/3,1/8,1/8\\ 1/2,1/2,1/2,1/2,1/8\\ 1/2,1/2,1/2,1/3,1/3\\ 1/2,1/2,1/3,1/3\\ 1/3,1/3,1/3,2/3\\ \hline {\bf Table 2.3.9:} (k,\ell,\frac{3}{9},1/9,1/9,1/9}\\ 1/9,1/9,2/9,2/9\\ 1/3,1/9,1/9,2/9\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 9 8 $m) = 24$ 22                      | G14<br>E2<br>C21<br>G10<br>F25<br>I10<br>H20<br>F19<br>C32<br>G17<br>J2<br>F5<br>G13<br>D13<br>: (2,3,9<br>-<br>A24<br>H8<br>H9                                                                   | $j^{2}(\sqrt{-2}), t^{4}$ $t^{\text{spl}}(3, 2)$ $t(\sqrt{6})$ $j^{2}(\sqrt{-2}), t^{4}$ $j^{4}(-2, 4, -1)$ $j^{3}(5, 10), t^{6}$ $j^{2}(\sqrt{6}), t^{4}$ $t(\sqrt{10})$ $j^{2}(\sqrt{-2}), t^{12}$ $j^{6}(0, 8, 9, 0, 18)$ $j^{2}(\sqrt{-2}), t^{4}$ $t(\sqrt{-2})$ $t = -1$ $j^{3}(-3, 4), t^{6}$ $j^{3}(-3, 4), t^{6}$                                                     | Table 2.3.10: $(k, \ell)$ $1/10, 1/10, 1/10, 1/10$ $5/10, 1/10, 1/10, 1/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 1/10, 3/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 1/10, 3/10$ $1/3, 2/10, 2/10, 2/10$ $1/3, 2/10, 2/10, 2/10$ $1/3, 2/10, 2/10, 3/10$ $1/2, 2/10, 2/10, 1/10$ $1/2, 1/10, 1/10, 3/10$ $1/2, 1/10, 1/10, 3/10$ $1/3, 1/3, 2/10, 2/10$ $1/3, 1/3, 2/10, 2/10$ $1/3, 1/3, 2/10, 2/10$ $1/3, 1/3, 2/10, 2/10$ $1/3, 1/3, 1/10, 3/10$ $2/3, 2/10, 1/10, 1/10$ $1/2, 1/3, 2/10, 1/10$ $1/2, 1/3, 2/10, 1/10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (m) = 24<br>18<br>16<br>15<br>14<br>13             | = (2, 3, -) $D6$ $F17$ $E7$ $$ $B24$ $D4$ $C25$ $$ $G2$ $D42$ $C15$ $D44$ $D50$ $C38$ $D44$ $D50$ $C38$ $D44$ $J5$ $F10$ $G7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 10).\\ \hline t(\sqrt{-1})\\ j^2(\sqrt{5}), t^4\\ t^{\rm spl}(5, 10)\\ \text{no covering}\\ t=2^7/3\\ t(\sqrt{-1})\\ t(\sqrt{6})\\ \text{no covering}\\ j^2(\sqrt{-1})\\ t(\sqrt{-14})\\ t(\sqrt{5})\\ t(\sqrt{-14})\\ t(\sqrt{5})\\ t(\sqrt{-15})\\ t(\sqrt{-39})\\ t(\sqrt{-39})\\ t(\sqrt{21})\\ t(\sqrt{-35})\\ j^2(\sqrt{5}), t^4\\ j^6(0, 5, 0, 6, 15)\\ j^2(\sqrt{5})\\ j^2(\sqrt{-1}), t^4 \end{array}$                                                                                       |
| $\begin{array}{c} 4/8,1/3,1/3,1/3\\ 1/3,2/3,2/8,2/8\\ 1/3,2/3,1/8,3/8\\ 1/2,1/3,1/3,3/8\\ 1/2,2/3,2/8,1/8\\ 1/2,1/2,1/3,2/8\\ 1/3,1/3,2/3,2/8\\ 2/3,2/3,1/8,1/8\\ 1/2,1/2,1/2,1/2,1/8\\ 1/2,1/2,1/2,1/3,1/3\\ 1/2,1/2,1/3,1/3\\ 1/3,1/3,1/3,2/3\\ \hline {\bf Table 2.3.9:} (k,\ell,\frac{3}{9},1/9,1/9,1/9\\ 1/9,1/9,2/9,2/9\\ 1/3,1/9,1/9,2/9\\ 1/2,1/9,1/9,1/9\\ 1/2,1/9,1/9,1/9\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $10$ 9 8 $\underline{m} = \frac{10}{24}$ | $ \begin{array}{c} G14\\ E2\\ C21\\ G10\\ F25\\ I10\\ H20\\ F19\\ C32\\ G17\\ J2\\ F5\\ G13\\ D13\\ \hline \\ (2,3,9)\\ \hline \\ (2,3,9)\\ \hline \\ A24\\ H8\\ H9\\ G52\\ \end{array} $         | $j^{2}(\sqrt{-2}), t^{4}$ $t^{\text{spl}}(3, 2)$ $t(\sqrt{6})$ $j^{2}(\sqrt{-2}), t^{4}$ $j^{4}(-2, 4, -1)$ $j^{3}(5, 10), t^{6}$ $j^{2}(\sqrt{6}), t^{4}$ $t(\sqrt{10})$ $j^{2}(\sqrt{-2}), t^{12}$ $j^{6}(0, 8, 9, 0, 18)$ $j^{2}(\sqrt{-2}), t^{4}$ $t(\sqrt{-2})$ h) no covering<br>$t = -1$ $j^{3}(-3, 4), t^{6}$ $j^{2}(\sqrt{-15}), t^{12}$                             | Table 2.3.10: $(k, \ell)$ $1/10, 1/10, 1/10, 1/10$ $5/10, 1/10, 1/10, 1/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 1/10, 3/10$ $2/10, 4/10, 1/10, 3/10$ $1/3, 2/10, 2/10, 2/10$ $1/3, 2/10, 2/10, 2/10$ $1/3, 2/10, 1/10, 3/10$ $1/2, 2/10, 2/10, 1/10$ $1/2, 1/10, 1/10, 3/10$ $1/3, 1/3, 2/10, 2/10$ $1/3, 1/3, 2/10, 2/10$ $1/3, 1/3, 2/10, 1/10$ $1/2, 1/2, 1/10, 1/10$ $1/2, 1/2, 1/10, 1/10$ $1/2, 1/3, 2/10, 1/10$ $1/2, 1/3, 2/10, 1/10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (m) = 24<br>18<br>16<br>15<br>14<br>13             | = (2, 3, -) D6 F17 E7 B24 D4 C25 G2 D42 C15 D44 D50 C38 D48 F14 J5 F10 G7 E13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c} 10).\\ \hline t(\sqrt{-1})\\ j^2(\sqrt{5}), t^4\\ t^{\rm spl}(5, 10)\\ {\rm no\ covering}\\ t=2^7/3\\ t(\sqrt{-1})\\ t(\sqrt{6})\\ {\rm no\ covering}\\ j^2(\sqrt{-1})\\ t(\sqrt{-14})\\ t(\sqrt{5})\\ t(\sqrt{-15})\\ t(\sqrt{-15})\\ t(\sqrt{-39})\\ t(\sqrt{21})\\ t(\sqrt{-35})\\ j^2(\sqrt{5}), t^4\\ j^6(0, 5, 0, 6, 15)\\ j^2(\sqrt{5})\\ j^2(\sqrt{-1}), t^4\\ t^{\rm spl}(3, 1)\\ \end{array} $                                                                                             |
| $\begin{array}{c} 4/8,1/3,1/3,1/3\\ 1/3,2/3,2/8,2/8\\ 1/3,2/3,1/8,3/8\\ 1/2,1/3,1/3,3/8\\ 1/2,2/3,2/8,1/8\\ 1/2,1/2,1/3,2/8\\ 1/3,1/3,2/3,2/8\\ 2/3,2/3,1/8,1/8\\ 1/2,1/2,1/2,1/2,1/8\\ 1/2,1/2,1/2,1/3,1/3\\ 1/2,1/2,1/3,1/3\\ 1/3,1/3,1/3,2/3\\ \hline {\bf Table 2.3.9:} (k,\ell,\frac{3}{9},1/9,1/9,1/9}\\ 1/9,1/9,2/9,2/9\\ 1/3,1/9,1/9,2/9\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $10$ 9 8 $\underline{m} = \frac{22}{21}$ | G14<br>E2<br>C21<br>G10<br>F25<br>I10<br>H20<br>F19<br>C32<br>G17<br>J2<br>F5<br>G13<br>D13<br>: (2,3,9<br>-<br>A24<br>H8<br>H9                                                                   | $j^{2}(\sqrt{-2}), t^{4}$ $t^{\text{spl}}(3, 2)$ $t(\sqrt{6})$ $j^{2}(\sqrt{-2}), t^{4}$ $j^{4}(-2, 4, -1)$ $j^{3}(5, 10), t^{6}$ $j^{2}(\sqrt{6}), t^{4}$ $t(\sqrt{10})$ $j^{2}(\sqrt{-2}), t^{12}$ $j^{6}(0, 8, 9, 0, 18)$ $j^{2}(\sqrt{-2}), t^{4}$ $t(\sqrt{-2})$ h). The covering t = -1<br>$j^{3}(-3, 4), t^{6}$ $j^{3}(-3, 4), t^{6}$ $j^{3}(-3, 1)$                    | Table 2.3.10: $(k, \ell)$ $1/10, 1/10, 1/10, 1/10$ $5/10, 1/10, 1/10, 1/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 4/10, 1/10, 1/10$ $1/10, 1/10, 3/10, 3/10$ $1/3, 2/10, 2/10, 2/10$ $1/3, 2/10, 1/10, 3/10$ $1/3, 4/10, 1/10, 1/10$ $1/2, 1/10, 1/10, 3/10$ $1/2, 1/3, 2/10, 2/10$ $1/3, 1/3, 2/10, 2/10$ $1/3, 1/3, 2/10, 2/10$ $1/3, 1/3, 1/10, 3/10$ $2/3, 2/10, 1/10, 1/10$ $1/2, 1/2, 1/10, 1/10$ $1/2, 1/2, 1/10, 1/10$ $1/3, 1/3, 1/3, 2/10$ $1/3, 1/3, 1/3, 2/10$ $1/3, 1/3, 1/10, 1/10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (m) = 24<br>18<br>16<br>15<br>14<br>13<br>12       | = (2, 3, -) D6 F17 E7 - B24 D4 C25 - G2 D42 C15 D44 D50 C38 D48 F14 J5 F10 G7 E13 H30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 10).\\ \hline t(\sqrt{-1})\\ j^2(\sqrt{5}), t^4\\ t^{\rm spl}(5, 10)\\ {\rm no\ covering}\\ t=2^7/3\\ t(\sqrt{-1})\\ t(\sqrt{6})\\ {\rm no\ covering}\\ j^2(\sqrt{-1})\\ t(\sqrt{-14})\\ t(\sqrt{-14})\\ t(\sqrt{-14})\\ t(\sqrt{-15})\\ t(\sqrt{-15})\\ t(\sqrt{-15})\\ t(\sqrt{-39})\\ t(\sqrt{-15})\\ j^2(\sqrt{5}), t^4\\ j^6(0, 5, 0, 6, 15)\\ j^2(\sqrt{5})\\ j^2(\sqrt{-1}), t^4\\ t^{\rm spl}(3, 1)\\ j^3(0, 10), t^6 \end{array}$                                                            |
| $\begin{array}{c} 4/8,1/3,1/3,1/3\\ 1/3,2/3,2/8,2/8\\ 1/3,2/3,1/8,3/8\\ 1/2,1/3,1/3,3/8\\ 1/2,2/3,2/8,1/8\\ 1/2,1/2,1/3,2/8\\ 1/3,1/3,2/3,2/8\\ 2/3,2/3,1/8,1/8\\ 1/2,1/2,1/2,1/2,1/8\\ 1/2,1/2,1/2,1/3,1/3\\ 1/2,1/2,1/3,1/3\\ 1/3,1/3,1/3,2/3\\ \hline {\bf Table 2.3.9:} (k,\ell,\frac{3}{9},1/9,1/9,1/9\\ 1/9,1/9,2/9,2/9\\ 1/3,1/9,1/9,2/9\\ 1/2,1/9,1/9,1/9\\ 1/2,1/9,1/9,1/9\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $10$ 9 8 $\underline{m} = \frac{22}{21}$ | $\begin{array}{c} G14\\ E2\\ C21\\ G10\\ F25\\ I10\\ H20\\ F19\\ C32\\ G17\\ J2\\ F5\\ G13\\ D13\\ \hline \\ (2,3,9)\\ \hline \\ (2,3,9)\\ \hline \\ A24\\ H8\\ H9\\ G52\\ H1\\ \end{array}$      | $j^{2}(\sqrt{-2}), t^{4}$ $t^{\text{spl}}(3, 2)$ $t(\sqrt{6})$ $j^{2}(\sqrt{-2}), t^{4}$ $j^{4}(-2, 4, -1)$ $j^{3}(5, 10), t^{6}$ $j^{2}(\sqrt{6}), t^{4}$ $t(\sqrt{10})$ $j^{2}(\sqrt{-2}), t^{12}$ $j^{6}(0, 8, 9, 0, 18)$ $j^{2}(\sqrt{-2}), t^{4}$ $t(\sqrt{-2})$ h) no covering<br>$t = -1$ $j^{3}(-3, 4), t^{6}$ $j^{2}(\sqrt{-15}), t^{12}$                             | Table 2.3.10: $(k, \ell)$ $1/10, 1/10, 1/10, 1/10$ $5/10, 1/10, 1/10, 1/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 4/10, 1/10, 1/10$ $1/10, 1/10, 3/10$ $1/3, 2/10, 2/10, 2/10$ $1/3, 2/10, 2/10, 2/10$ $1/3, 4/10, 1/10, 1/10$ $1/2, 1/10, 1/10, 3/10$ $1/2, 1/10, 1/10, 3/10$ $1/3, 1/3, 2/10, 2/10$ $1/3, 1/3, 2/10, 2/10$ $1/3, 1/3, 1/10, 3/10$ $2/3, 2/10, 1/10, 1/10$ $1/2, 1/2, 1/10, 1/10$ $1/2, 1/2, 1/10, 1/10$ $1/3, 1/3, 1/3, 2/10$ $1/3, 1/3, 1/3, 1/10, 1/10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (m) = 24<br>18<br>16<br>15<br>14<br>13<br>12<br>11 | = (2, 3, -) $D6$ $F17$ $E7$ $$ $B24$ $D4$ $C25$ $$ $G2$ $D42$ $C15$ $D44$ $D50$ $C38$ $D44$ $D48$ $F14$ $J5$ $F10$ $G7$ $E13$ $H30$ $J8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 10).\\ \hline t(\sqrt{-1})\\ j^2(\sqrt{5}),t^4\\ t^{\rm spl}(5,10)\\ {\rm no\ covering}\\ t=2^7/3\\ t(\sqrt{-1})\\ t(\sqrt{6})\\ {\rm no\ covering}\\ j^2(\sqrt{-1})\\ t(\sqrt{-14})\\ t(\sqrt{5})\\ t(\sqrt{-15})\\ t(\sqrt{-15})\\ t(\sqrt{-15})\\ t(\sqrt{-15})\\ t(\sqrt{-39})\\ t(\sqrt{21})\\ t(\sqrt{-39})\\ t(\sqrt{21})\\ t(\sqrt{-35})\\ j^2(\sqrt{5}),t^4\\ j^6(0,5,0,6,15)\\ j^2(\sqrt{5})\\ j^2(\sqrt{-1}),t^4\\ t^{\rm spl}(3,1)\\ j^3(0,10),t^6\\ j^6(5,5,10,-2,5),t^{12} \end{array}$ |
| $\begin{array}{c} 4/8,1/3,1/3,1/3\\ 1/3,2/3,2/8,2/8\\ 1/3,2/3,1/8,3/8\\ 1/2,1/3,1/3,3/8\\ 1/2,2/3,2/8,1/8\\ 1/2,1/2,1/3,2/8\\ 1/3,1/3,2/3,2/8\\ 2/3,2/3,1/8,1/8\\ 1/2,1/2,1/2,1/2,1/8\\ 1/2,1/2,1/2,1/8\\ 1/2,1/2,1/3,1/3\\ 1/2,1/2,1/3,1/3\\ 1/3,1/3,1/3,2/3\\ \hline {\bf Table 2.3.9: } (k,\ell,\frac{3}{3},9,1/9,1/9,1/9\\ 1/9,1/9,2/9,2/9\\ 1/3,1/9,1/9,1/9\\ 1/3,1/3,1/3,1/9,1/9\\ 1/3,1/3,1/3,1/9,1/9\\ 1/3,1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/9,1/9\\ 1/3,1/3,1/3,1/9,1/9\\ 1/3,1/3,1/3,1/9,1/9\\ 1/3,1/3,1/3,1/2\\ 1/3,1/3,1/2\\ 1/3,1/3,1/2\\ 1/3,1/3,1/2\\ 1/3,1/3,1/2\\ 1/3,1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ 1/3,1/2\\ $ | $10$ 9 8 $\underline{m} = 24$ 22 21 20   | $\begin{array}{c} G14\\ E2\\ C21\\ G10\\ F25\\ I10\\ H20\\ F19\\ C32\\ G17\\ J2\\ F5\\ G13\\ D13\\ \hline \\ (2,3,9)\\ \hline \\ (2,3,9)\\ \hline \\ A24\\ H8\\ H9\\ G52\\ H1\\ J3\\ \end{array}$ | $j^{2}(\sqrt{-2}), t^{4}$ $t^{\text{spl}}(3, 2)$ $t(\sqrt{6})$ $j^{2}(\sqrt{-2}), t^{4}$ $j^{4}(-2, 4, -1)$ $j^{3}(5, 10), t^{6}$ $j^{2}(\sqrt{6}), t^{4}$ $t(\sqrt{10})$ $j^{2}(\sqrt{-2}), t^{12}$ $j^{6}(0, 8, 9, 0, 18)$ $j^{2}(\sqrt{-2}), t^{4}$ $t(\sqrt{-2})$ no covering<br>$t = -1$ $j^{3}(-3, 4), t^{6}$ $j^{2}(\sqrt{-15}), t^{12}$ $j^{6}(3, 3, 0, 0, 5), t^{12}$ | Table 2.3.10: $(k, \ell)$ $1/10, 1/10, 1/10, 1/10$ $5/10, 1/10, 1/10, 1/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 2/10, 2/10, 2/10$ $2/10, 4/10, 1/10, 1/10$ $1/10, 1/10, 3/10, 3/10$ $1/3, 2/10, 2/10, 2/10$ $1/3, 2/10, 1/10, 3/10$ $1/3, 4/10, 1/10, 1/10$ $1/2, 1/10, 1/10, 3/10$ $1/2, 1/3, 2/10, 2/10$ $1/3, 1/3, 2/10, 2/10$ $1/3, 1/3, 2/10, 2/10$ $1/3, 1/3, 1/10, 3/10$ $2/3, 2/10, 1/10, 1/10$ $1/2, 1/2, 1/10, 1/10$ $1/2, 1/2, 1/10, 1/10$ $1/3, 1/3, 1/3, 2/10$ $1/3, 1/3, 1/3, 2/10$ $1/3, 1/3, 1/10, 1/10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (m) = 24<br>18<br>16<br>15<br>14<br>13<br>12       | = (2, 3, -) D6 F17 E7 - B24 D4 C25 - G2 D42 C15 D44 D50 C38 D48 F14 J5 F10 G7 E13 H30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 10).\\ \hline t(\sqrt{-1})\\ j^2(\sqrt{5}), t^4\\ t^{\rm spl}(5, 10)\\ {\rm no\ covering}\\ t=2^7/3\\ t(\sqrt{-1})\\ t(\sqrt{6})\\ {\rm no\ covering}\\ j^2(\sqrt{-1})\\ t(\sqrt{-14})\\ t(\sqrt{-14})\\ t(\sqrt{-14})\\ t(\sqrt{-15})\\ t(\sqrt{-15})\\ t(\sqrt{-15})\\ t(\sqrt{-39})\\ t(\sqrt{-15})\\ j^2(\sqrt{5}), t^4\\ j^6(0, 5, 0, 6, 15)\\ j^2(\sqrt{5})\\ j^2(\sqrt{-1}), t^4\\ t^{\rm spl}(3, 1)\\ j^3(0, 10), t^6 \end{array}$                                                            |

| Table 2 2 11. (k. /                                                                                                                                                                                                                            | 2 m) -                     | _ ( ງ ງ                                                  | 11)                                                                                                                                                                                                                                                                                                         | 1/4,3/4,1/5,1/5                                                                                                                                                                                                                                                                | 12                                        | F15                                                                                 | $j^2(\sqrt{5}), t^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Table 2.3.11:</b> $(k, \ell)$                                                                                                                                                                                                               |                            |                                                          |                                                                                                                                                                                                                                                                                                             | 1/5,1/5,1/5,4/5                                                                                                                                                                                                                                                                |                                           | D3                                                                                  | $t(\sqrt{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1/11,1/11,1/11,4/11                                                                                                                                                                                                                            | 18                         | _                                                        | no covering                                                                                                                                                                                                                                                                                                 | 1/5,1/5,2/5,3/5                                                                                                                                                                                                                                                                |                                           | B23                                                                                 | $t = 2^7/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1/11,1/11,2/11,3/11                                                                                                                                                                                                                            |                            | D15                                                      | $t(\sqrt{-2})$                                                                                                                                                                                                                                                                                              | 1/5, 2/5, 2/5, 2/5                                                                                                                                                                                                                                                             |                                           |                                                                                     | no covering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1/11,2/11,2/11,2/11                                                                                                                                                                                                                            |                            | —                                                        | no covering                                                                                                                                                                                                                                                                                                 | 1/2,2/4,1/4,1/5                                                                                                                                                                                                                                                                | 11                                        | I29                                                                                 | $j^5(10, 30, 30, 8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $^{1/3,1/_{11},1/_{11},3/_{11}}$                                                                                                                                                                                                               | 16                         | D41                                                      | $t(\sqrt{-7})$                                                                                                                                                                                                                                                                                              | 1/2,1/2,1/4,1/4                                                                                                                                                                                                                                                                | 10                                        | C14                                                                                 | $t(\sqrt{5})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1/3,1/11,2/11,2/11                                                                                                                                                                                                                             |                            | C13                                                      | $t(\sqrt{3})$                                                                                                                                                                                                                                                                                               | /=, /=, / =, / =                                                                                                                                                                                                                                                               | 10                                        | C30                                                                                 | $t(\sqrt{10})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1/2,1/11,1/11,2/11                                                                                                                                                                                                                             | 15                         | H26                                                      | $j^3(-4,4), t^6$                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                |                                           | H17                                                                                 | $j^{3}(5,10), t^{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1/3,1/3,1/11,2/11                                                                                                                                                                                                                              | 14                         | H28                                                      | $j^{3}(-4,4), t^{6}$                                                                                                                                                                                                                                                                                        | 2/4,2/4,1/4,1/4                                                                                                                                                                                                                                                                |                                           | F13                                                                                 | $j^{2}(\sqrt{5}), t^{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2/3,1/11,1/11,1/11                                                                                                                                                                                                                             |                            | E15                                                      | $t^{\rm spl}(-11, 22)$                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                |                                           |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1/2,1/3,1/11,1/11                                                                                                                                                                                                                              | 13                         | J9                                                       | $j^{6}(30,20,216,372,172), t^{12}$                                                                                                                                                                                                                                                                          | 2/4,1/5,1/5,3/5                                                                                                                                                                                                                                                                |                                           | D43                                                                                 | $t(\sqrt{-15})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1/3,1/3,1/3,1/11                                                                                                                                                                                                                               | 12                         | G45                                                      | $j^2(\sqrt{-11}), t^{12}$                                                                                                                                                                                                                                                                                   | 2/4,1/5,2/5,2/5                                                                                                                                                                                                                                                                |                                           | C16                                                                                 | $t(\sqrt{5})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                |                            |                                                          |                                                                                                                                                                                                                                                                                                             | 1/4,1/4,1/4,3/4                                                                                                                                                                                                                                                                |                                           |                                                                                     | no covering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>Table 2.3.12:</b> $(k, \ell)$                                                                                                                                                                                                               | (2, m) =                   | =(2,3,                                                   | 12).                                                                                                                                                                                                                                                                                                        | 1/4, 1/4, 1/5, 4/5                                                                                                                                                                                                                                                             |                                           | B8                                                                                  | $t = 3^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3/12,1/12,1/12,1/12                                                                                                                                                                                                                            | 18                         | D21                                                      | j = 0                                                                                                                                                                                                                                                                                                       | $^{1/4,1/4,2/5,3/5}$                                                                                                                                                                                                                                                           |                                           | —                                                                                   | no covering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2/12,2/12,1/12,1/12                                                                                                                                                                                                                            |                            | B11                                                      | $t = 3^2$                                                                                                                                                                                                                                                                                                   | 1/2, 1/4, 1/5, 3/5                                                                                                                                                                                                                                                             | 9                                         | I24                                                                                 | $j^5(-2, 4, -6, 4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1/3, 2/12, 1/12, 1/12                                                                                                                                                                                                                          | 16                         | D14                                                      | $t(\sqrt{-2})$                                                                                                                                                                                                                                                                                              | $^{1}/2,^{1}/4,^{2}/5,^{2}/5$                                                                                                                                                                                                                                                  |                                           | D27                                                                                 | $t(\sqrt{-3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| / =, / ==, / ==, / ==                                                                                                                                                                                                                          |                            | G24                                                      | $j^{2}(\sqrt{-3}), t^{4}$                                                                                                                                                                                                                                                                                   | $^{1}/2,^{1}/2,^{1}/5,^{2}/5$                                                                                                                                                                                                                                                  | 8                                         | H19                                                                                 | $j^3(5, 10), t^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1/2,1/12,1/12,1/12                                                                                                                                                                                                                             | 15                         | G27                                                      | $j^{2}(\sqrt{-3}), t^{12}$                                                                                                                                                                                                                                                                                  | $^{2}/4,^{2}/4,^{1}/5,^{2}/5$                                                                                                                                                                                                                                                  |                                           |                                                                                     | no covering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1/3, 1/3, 1/12, 1/12                                                                                                                                                                                                                           | 14                         | F9                                                       | $j^2(\sqrt{3}), i$                                                                                                                                                                                                                                                                                          | 2/4,1/4,1/4,3/5                                                                                                                                                                                                                                                                |                                           | C19                                                                                 | $t(\sqrt{6})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1/3,1/3,1/12,1/12                                                                                                                                                                                                                              | 14                         | гэ<br>G23                                                | $j^{2}(\sqrt{-3}), t^{4}$                                                                                                                                                                                                                                                                                   | 1/4,3/4,1/5,2/5                                                                                                                                                                                                                                                                |                                           | B26                                                                                 | $t = 3^4/2^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                |                            | 625                                                      | $f(\sqrt{-3}), l$                                                                                                                                                                                                                                                                                           | 1/2,2/4,1/4,2/5                                                                                                                                                                                                                                                                | 7                                         | H39                                                                                 | $j^{3}(2,2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>Table 2.3.13:</b> (k, l                                                                                                                                                                                                                     | (2, m) =                   | = (2, 3,                                                 | 13).                                                                                                                                                                                                                                                                                                        | 1/2,3/4,1/5,1/5                                                                                                                                                                                                                                                                |                                           | G29                                                                                 | $j^{2}(\sqrt{-5}), t^{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1/13,1/13,1/13,2/13                                                                                                                                                                                                                            | 18                         | E16                                                      | $t^{\rm spl}(-1,2)$                                                                                                                                                                                                                                                                                         | 1/2, 1/2, 2/4, 1/5                                                                                                                                                                                                                                                             | 6                                         | G46                                                                                 | $j^{2}(\sqrt{-15}), t^{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1/3, 1/13, 1/13, 1/13                                                                                                                                                                                                                          | 16                         | G28                                                      | $j^2(\sqrt{-3}), t^{12}$                                                                                                                                                                                                                                                                                    | 1/2, 1/2, 1/2, 1/3                                                                                                                                                                                                                                                             | 5                                         | E10                                                                                 | $t^{spl}(5, 10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1/0,1/13,1/13,1/13                                                                                                                                                                                                                             | 10                         | 028                                                      | $f(\sqrt{-3}), \iota$                                                                                                                                                                                                                                                                                       | / 2, / 2, / 2, / 1                                                                                                                                                                                                                                                             | 5                                         | LIU                                                                                 | 0 (0,10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>Table 2.3.14:</b> (k, l                                                                                                                                                                                                                     | (m) =                      | = (2, 3,                                                 | 14).                                                                                                                                                                                                                                                                                                        | <b>Table 2.4.6:</b> $(k, \ell, \ell)$                                                                                                                                                                                                                                          | m) =                                      | (2, 4, 6)                                                                           | i).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1/14,1/14,1/14,1/14                                                                                                                                                                                                                            | 18                         | C2                                                       | $t(\sqrt{2})$                                                                                                                                                                                                                                                                                               | 1/6,1/6,1/6,1/6                                                                                                                                                                                                                                                                | 16                                        | B28                                                                                 | $t = 3^4/2^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -/14,-/14,-/14,-/14                                                                                                                                                                                                                            | 10                         | C2                                                       | $\iota(\sqrt{2})$                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                |                                           | D11                                                                                 | $t(\sqrt{-2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Table 2 4 5. (1. 0                                                                                                                                                                                                                             | )                          | (9.4.5                                                   | \<br>\                                                                                                                                                                                                                                                                                                      | 1/4,1/4,1/6,1/6                                                                                                                                                                                                                                                                | 14                                        | C11                                                                                 | $t(\sqrt{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Table 2.4.5:</b> $(k, \ell, \ell)$                                                                                                                                                                                                          |                            |                                                          |                                                                                                                                                                                                                                                                                                             | / _, / _, / 0, / 0                                                                                                                                                                                                                                                             |                                           | I13                                                                                 | $j^4(0,4,12), t^8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1/5, 1/5, 1/5, 1/5                                                                                                                                                                                                                             | 24                         | A20                                                      | t = -1                                                                                                                                                                                                                                                                                                      | 3/6,1/6,1/6,1/6                                                                                                                                                                                                                                                                | 12                                        | D18                                                                                 | j = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                |                            | F12                                                      | $j^2(\sqrt{5})$                                                                                                                                                                                                                                                                                             | 2/6, 2/6, 1/6, 1/6                                                                                                                                                                                                                                                             |                                           | B5                                                                                  | $t = 3^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                |                            | G48                                                      | $j^2(\sqrt{-15}), t^4$                                                                                                                                                                                                                                                                                      | 1/4, 1/4, 1/4, 1/4                                                                                                                                                                                                                                                             |                                           | B4                                                                                  | $t = 2^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1/4,1/4,1/5,1/5                                                                                                                                                                                                                                | 22                         | I30                                                      | $j^5(10, 30, 30, 8), t^{10}$                                                                                                                                                                                                                                                                                | / 1, / 1, / 1, / 1                                                                                                                                                                                                                                                             |                                           | B22                                                                                 | $t = 2^{7}/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1/4,1/4,1/4,1/4                                                                                                                                                                                                                                | 20                         | C17                                                      | $t(\sqrt{5})$                                                                                                                                                                                                                                                                                               | 2/4,2/6,1/6,1/6                                                                                                                                                                                                                                                                | 10                                        | D22                                                                                 | t = 2 / 5<br>no covering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                |                            | D45                                                      | $t(\sqrt{-15})$                                                                                                                                                                                                                                                                                             | $^{3}/6, ^{1}/4, ^{1}/4, ^{1}/6$                                                                                                                                                                                                                                               | 10                                        | H5                                                                                  | $j^{3}(0,2), t^{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                |                            | E11                                                      | $t^{spl}(5, 10)$                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                |                                           |                                                                                     | $ \begin{array}{c} f(0,2), t\\ t(\sqrt{-5}) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1/5,1/5,1/5,2/5                                                                                                                                                                                                                                |                            |                                                          |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                |                                           | D22                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| , , , ,                                                                                                                                                                                                                                        |                            | E9                                                       | $t^{\rm spl}(5, 10)$                                                                                                                                                                                                                                                                                        | $\frac{2}{6},\frac{2}{6},\frac{1}{4},\frac{1}{4}$                                                                                                                                                                                                                              | 0                                         | D32                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2/4, 1/5, 1/5, 1/5                                                                                                                                                                                                                             | 18                         |                                                          | $t^{ m spl}(5, 10)$                                                                                                                                                                                                                                                                                         | 1/2,2/6,1/4,1/6                                                                                                                                                                                                                                                                | 9                                         | I1                                                                                  | $j^4(0, 8, 12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2/4, 1/5, 1/5, 1/5<br>1/4, 1/4, 1/5, 2/5                                                                                                                                                                                                       | 18                         |                                                          | $t^{ m spl}(5,10)$ no covering                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                | 9<br>8                                    | I1<br>C3                                                                            | $j^4(0, 8, 12) \ t(\sqrt{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1/4,1/4,1/5,2/5                                                                                                                                                                                                                                |                            |                                                          | $t^{ m spl}(5, 10)$<br>no covering<br>$j^2(\sqrt{-15}), t^4$                                                                                                                                                                                                                                                | 1/2, 2/6, 1/4, 1/6<br>1/2, 1/2, 1/6, 1/6                                                                                                                                                                                                                                       |                                           | I1<br>C3<br>G11                                                                     | $j^4(0, 8, 12)$<br>$t(\sqrt{2})$<br>$j^2(\sqrt{-2}), t^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1/4, 1/4, 1/5, 2/5<br>1/2, 1/4, 1/5, 1/5                                                                                                                                                                                                       | 17                         | —<br>G51<br>J18                                          | $t^{ m spl}(5, 10)$<br>no covering<br>$j^2(\sqrt{-15}), t^4$<br>$j^8, t^{16}$                                                                                                                                                                                                                               | $\frac{1}{2}, \frac{2}{6}, \frac{1}{4}, \frac{1}{6}$<br>$\frac{1}{2}, \frac{1}{2}, \frac{1}{6}, \frac{1}{6}$<br>$\frac{2}{4}, \frac{2}{4}, \frac{1}{6}, \frac{1}{6}$                                                                                                           |                                           | I1<br>C3<br>G11                                                                     | $j^4(0, 8, 12)$<br>$t(\sqrt{2})$<br>$j^2(\sqrt{-2}), t^4$<br>no covering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1/4, 1/4, 1/5, 2/5<br>1/2, 1/4, 1/5, 1/5<br>2/4, 1/4, 1/4, 1/5                                                                                                                                                                                 |                            | —<br>G51<br>J18<br>H18                                   | $t^{\text{spl}}(5, 10)$<br>no covering<br>$j^2(\sqrt{-15}), t^4$<br>$j^8, t^{16}$<br>$j^3(5, 10), t^6$                                                                                                                                                                                                      | 1/2, 2/6, 1/4, 1/6<br>1/2, 1/2, 1/6, 1/6<br>2/4, 2/4, 1/6, 1/6<br>2/4, 2/6, 1/4, 1/4                                                                                                                                                                                           |                                           | I1<br>C3<br>G11<br>—<br>D12                                                         | $j^4(0, 8, 12)$<br>$t(\sqrt{2})$<br>$j^2(\sqrt{-2}), t^4$<br>no covering<br>$t(\sqrt{-2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1/4, 1/4, 1/5, 2/5<br>1/2, 1/4, 1/5, 1/5<br>2/4, 1/4, 1/4, 1/5<br>1/5, 1/5, 1/5, 3/5                                                                                                                                                           | 17                         | —<br>G51<br>J18<br>H18<br>E18                            | $t^{ m spl}(5,10)$<br>no covering<br>$j^2(\sqrt{-15}), t^4$<br>$j^8, t^{16}$<br>$j^3(5,10), t^6$<br>$t^{ m spl}(0,10)$                                                                                                                                                                                      | 1/2,2/6,1/4,1/6<br>1/2,1/2,1/6,1/6<br>2/4,2/4,1/6,1/6<br>2/4,2/6,1/4,1/4<br>1/4,3/4,1/6,1/6                                                                                                                                                                                    |                                           | I1<br>C3<br>G11<br>—<br>D12<br>G20                                                  | $j^4(0, 8, 12)$<br>$t(\sqrt{2})$<br>$j^2(\sqrt{-2}), t^4$<br>no covering<br>$t(\sqrt{-2})$<br>$j^2(\sqrt{-3}), t^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1/4, 1/4, 1/5, 2/5<br>1/2, 1/4, 1/5, 1/5<br>2/4, 1/4, 1/4, 1/5<br>1/5, 1/5, 1/5, 3/5<br>1/5, 1/5, 2/5, 2/5                                                                                                                                     | 17<br>16                   | —<br>G51<br>J18<br>H18<br>E18<br>H16                     | $t^{ m spl}(5, 10)$<br>no covering<br>$j^2(\sqrt{-15}), t^4$<br>$j^8, t^{16}$<br>$j^3(5, 10), t^6$<br>$t^{ m spl}(0, 10)$<br>$j^3(5, 10)$                                                                                                                                                                   | 1/2, 2/6, 1/4, 1/6<br>1/2, 1/2, 1/6, 1/6<br>2/4, 2/4, 1/6, 1/6<br>2/4, 2/6, 1/4, 1/4                                                                                                                                                                                           |                                           | I1<br>C3<br>G11<br>—<br>D12                                                         | $ \begin{array}{c} j^4(0,8,12) \\ t(\sqrt{2}) \\ j^2(\sqrt{-2}), t^4 \\ \text{no covering} \\ t(\sqrt{-2}) \\ j^2(\sqrt{-3}), t^4 \\ j^4(0,4,12) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1/4, 1/4, 1/5, 2/5<br>1/2, 1/4, 1/5, 1/5<br>2/4, 1/4, 1/4, 1/5<br>1/5, 1/5, 1/5, 3/5<br>1/5, 1/5, 2/5, 2/5<br>1/2, 1/4, 1/4, 1/4                                                                                                               | 17<br>16<br>15             | —<br>G51<br>J18<br>H18<br>E18<br>H16<br>E25              | $t^{ m spl}(5,10)$<br>no covering<br>$j^2(\sqrt{-15}), t^4$<br>$j^8, t^{16}$<br>$j^3(5,10), t^6$<br>$t^{ m spl}(0,10)$<br>$j^3(5,10)$<br>$t^{ m spl}(25,50)$                                                                                                                                                | 1/2,2/6,1/4,1/6<br>1/2,1/2,1/6,1/6<br>2/4,2/4,1/6,1/6<br>2/4,2/6,1/4,1/4<br>1/4,3/4,1/6,1/6                                                                                                                                                                                    | 8                                         | I1<br>C3<br>G11<br>—<br>D12<br>G20                                                  | $j^4(0, 8, 12)$<br>$t(\sqrt{2})$<br>$j^2(\sqrt{-2}), t^4$<br>no covering<br>$t(\sqrt{-2})$<br>$j^2(\sqrt{-3}), t^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1/4, 1/4, 1/5, 2/5<br>1/2, 1/4, 1/5, 1/5<br>2/4, 1/4, 1/4, 1/5<br>1/5, 1/5, 1/5, 3/5<br>1/5, 1/5, 2/5, 2/5<br>1/2, 1/4, 1/4, 1/4<br>2/4, 1/5, 1/5, 2/5                                                                                         | 17<br>16                   | —<br>G51<br>J18<br>H18<br>E18<br>H16<br>E25<br>D38       | $\begin{array}{c} t^{\rm spl}(5,10) \\ {\rm no\ covering} \\ j^2(\sqrt{-15}), t^4 \\ j^8, t^{16} \\ j^3(5,10), t^6 \\ t^{\rm spl}(0,10) \\ j^3(5,10) \\ t^{\rm spl}(25,50) \\ t(\sqrt{-7}) \end{array}$                                                                                                     | $\frac{1/2,2/6,1/4,1/6}{1/2,1/2,1/6,1/6}$ $\frac{2/4,2/4,1/6,1/6}{2/4,2/6,1/4,1/4}$ $\frac{1/4,3/4,1/6,1/6}{1/2,2/4,1/4,1/6}$                                                                                                                                                  | 8                                         | I1<br>C3<br>G11<br>—<br>D12<br>G20<br>I12                                           | $ \begin{array}{c} j^4(0,8,12) \\ t(\sqrt{2}) \\ j^2(\sqrt{-2}), t^4 \\ \text{no covering} \\ t(\sqrt{-2}) \\ j^2(\sqrt{-3}), t^4 \\ j^4(0,4,12) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1/4, 1/4, 1/5, 2/5<br>1/2, 1/4, 1/5, 1/5<br>2/4, 1/4, 1/4, 1/5<br>1/5, 1/5, 1/5, 3/5<br>1/5, 1/5, 2/5, 2/5<br>1/2, 1/4, 1/4, 1/4<br>2/4, 1/5, 1/5, 2/5<br>1/4, 1/4, 1/5, 3/5                                                                   | 17<br>16<br>15             | <br>G51<br>J18<br>H18<br>E18<br>H16<br>E25<br>D38<br>C10 | $\begin{array}{c} t^{\rm spl}(5,10) \\ {\rm no\ covering} \\ j^2(\sqrt{-15}), t^4 \\ j^8, t^{16} \\ j^3(5,10), t^6 \\ t^{\rm spl}(0,10) \\ j^3(5,10) \\ t^{\rm spl}(25,50) \\ t(\sqrt{-7}) \\ t(\sqrt{3}) \end{array}$                                                                                      | 1/2, 2/6, 1/4, 1/6<br>1/2, 1/2, 1/6, 1/6<br>2/4, 2/4, 1/6, 1/6<br>2/4, 2/6, 1/4, 1/4<br>1/4, 3/4, 1/6, 1/6<br>1/2, 2/4, 1/4, 1/6<br>1/2, 1/2, 1/4, 1/4                                                                                                                         | 8<br>7<br>6                               | II<br>C3<br>G11<br>—<br>D12<br>G20<br>I12<br>C24<br>D25                             | $ \begin{array}{c} j^4(0,8,12) \\ t(\sqrt{2}) \\ j^2(\sqrt{-2}), t^4 \\ \text{no covering} \\ t(\sqrt{-2}) \\ j^2(\sqrt{-3}), t^4 \\ j^4(0,4,12) \\ t(\sqrt{6}) \\ t(\sqrt{-3}) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1/4, 1/4, 1/5, 2/5<br>1/2, 1/4, 1/5, 1/5<br>2/4, 1/4, 1/4, 1/5<br>1/5, 1/5, 1/5, 3/5<br>1/5, 1/5, 2/5, 2/5<br>1/2, 1/4, 1/4, 1/4<br>2/4, 1/5, 1/5, 2/5<br>1/4, 1/4, 1/5, 3/5<br>1/4, 1/4, 2/5, 2/5                                             | 17<br>16<br>15<br>14       |                                                          | $\begin{array}{c} t^{\rm spl}(5,10) \\ {\rm no\ covering} \\ j^2(\sqrt{-15}), t^4 \\ j^8, t^{16} \\ j^3(5,10), t^6 \\ t^{\rm spl}(0,10) \\ j^3(5,10) \\ t^{\rm spl}(25,50) \\ t(\sqrt{-7}) \\ t(\sqrt{3}) \\ j^3(2,2), t^6 \end{array}$                                                                     | $\frac{1/2, 2/6, 1/4, 1/6}{1/2, 1/2, 1/6, 1/6}$ $\frac{2/4, 2/4, 1/6, 1/6}{2/4, 2/6, 1/4, 1/4}$ $\frac{1/4, 3/4, 1/6, 1/6}{1/2, 2/4, 1/4, 1/6}$ $\frac{1/2, 2/4, 1/4, 1/6}{1/2, 1/2, 1/4, 1/4}$ $$ <b>Table 2.4.7:</b> $(k, \ell, )$                                           | 8 $7$ $6$ $m) =$                          | II<br>C3<br>G11<br>—<br>D12<br>G20<br>I12<br>C24<br>D25                             | $j^{4}(0, 8, 12)$<br>$t(\sqrt{2})$<br>$j^{2}(\sqrt{-2}), t^{4}$<br>no covering<br>$t(\sqrt{-2})$<br>$j^{2}(\sqrt{-3}), t^{4}$<br>$j^{4}(0, 4, 12)$<br>$t(\sqrt{6})$<br>$t(\sqrt{-3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1/4, 1/4, 1/5, 2/5<br>1/2, 1/4, 1/5, 1/5<br>2/4, 1/4, 1/4, 1/5<br>1/5, 1/5, 1/5, 3/5<br>1/5, 1/5, 2/5, 2/5<br>1/2, 1/4, 1/4, 1/4<br>2/4, 1/5, 1/5, 2/5<br>1/4, 1/4, 1/5, 3/5<br>1/4, 1/4, 2/5, 2/5<br>1/2, 1/4, 1/5, 2/5                       | 17<br>16<br>15<br>14<br>13 |                                                          | $\begin{array}{c} t^{\rm spl}(5,10) \\ {\rm no\ covering} \\ j^2(\sqrt{-15}), t^4 \\ j^8, t^{16} \\ j^3(5,10), t^6 \\ t^{\rm spl}(0,10) \\ j^3(5,10) \\ t^{\rm spl}(25,50) \\ t(\sqrt{-7}) \\ t(\sqrt{3}) \\ j^3(2,2), t^6 \\ j^5(0,10,5,18) \end{array}$                                                   | $\frac{1/2, 2/6, 1/4, 1/6}{1/2, 1/2, 1/6, 1/6}$ $\frac{2/4, 2/4, 1/6, 1/6}{2/4, 2/6, 1/4, 1/4}$ $\frac{1/4, 3/4, 1/6, 1/6}{1/2, 2/4, 1/4, 1/6}$ $\frac{1/2, 1/2, 1/4, 1/4}{1/2, 1/2, 1/4, 1/4}$ $\frac{1}{1/7, 1/7, 1/7, 2/7}$                                                 | $8$ $7$ $6$ $\underline{m} = 12$          | II<br>C3<br>G11<br>—<br>D12<br>G20<br>I12<br>C24<br>D25                             | $j^{4}(0, 8, 12)$<br>$t(\sqrt{2})$<br>$j^{2}(\sqrt{-2}), t^{4}$<br>no covering<br>$t(\sqrt{-2})$<br>$j^{2}(\sqrt{-3}), t^{4}$<br>$j^{4}(0, 4, 12)$<br>$t(\sqrt{6})$<br>$t(\sqrt{-3})$<br>T).<br>no covering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1/4, 1/4, 1/5, 2/5<br>1/2, 1/4, 1/5, 1/5<br>2/4, 1/4, 1/4, 1/5<br>1/5, 1/5, 1/5, 3/5<br>1/5, 1/5, 2/5, 2/5<br>1/2, 1/4, 1/4, 1/4<br>2/4, 1/5, 1/5, 2/5<br>1/4, 1/4, 1/5, 3/5<br>1/4, 1/4, 2/5, 2/5                                             | 17<br>16<br>15<br>14       |                                                          | $\begin{array}{c} t^{\rm spl}(5,10) \\ {\rm no\ covering} \\ j^2(\sqrt{-15}), t^4 \\ j^8, t^{16} \\ j^3(5,10), t^6 \\ t^{\rm spl}(0,10) \\ j^3(5,10) \\ t^{\rm spl}(25,50) \\ t(\sqrt{-7}) \\ t(\sqrt{3}) \\ j^3(2,2), t^6 \\ j^5(0,10,5,18) \\ j^2(\sqrt{5}), t^4 \end{array}$                             | $\frac{1/2, 2/6, 1/4, 1/6}{1/2, 1/2, 1/6, 1/6}$ $\frac{2/4, 2/4, 1/6, 1/6}{2/4, 2/6, 1/4, 1/4}$ $\frac{1/4, 3/4, 1/6, 1/6}{1/2, 2/4, 1/4, 1/6}$ $\frac{1/2, 1/2, 1/4, 1/4}{1/2, 1/2, 1/4, 1/4}$ $\frac{1}{1/7, 1/7, 1/7, 2/7}$ $\frac{2/4, 1/7, 1/7, 1/7}{2/4, 1/7, 1/7, 1/7}$ | 8 $7$ $6$ $m) =$                          | II<br>C3<br>G11<br>—<br>D12<br>G20<br>I12<br>C24<br>D25<br>(2,4,7<br>—              | $j^{4}(0, 8, 12)$<br>$t(\sqrt{2})$<br>$j^{2}(\sqrt{-2}), t^{4}$<br>no covering<br>$t(\sqrt{-2})$<br>$j^{2}(\sqrt{-3}), t^{4}$<br>$j^{4}(0, 4, 12)$<br>$t(\sqrt{6})$<br>$t(\sqrt{-3})$<br>The provide the second sec |
| 1/4, 1/4, 1/5, 2/5<br>1/2, 1/4, 1/5, 1/5<br>2/4, 1/4, 1/4, 1/5<br>1/5, 1/5, 1/5, 3/5<br>1/5, 1/5, 2/5, 2/5<br>1/2, 1/4, 1/4, 1/4<br>2/4, 1/5, 1/5, 2/5<br>1/4, 1/4, 1/5, 3/5<br>1/4, 1/4, 2/5, 2/5<br>1/2, 1/4, 1/5, 2/5<br>1/2, 1/2, 1/5, 1/5 | 17<br>16<br>15<br>14<br>13 |                                                          | $\begin{array}{c} t^{\rm spl}(5,10) \\ {\rm no\ covering} \\ j^2(\sqrt{-15}), t^4 \\ j^8, t^{16} \\ j^3(5,10), t^6 \\ t^{\rm spl}(0,10) \\ j^3(5,10) \\ t^{\rm spl}(25,50) \\ t(\sqrt{-7}) \\ t(\sqrt{3}) \\ j^3(2,2), t^6 \\ j^5(0,10,5,18) \\ j^2(\sqrt{5}), t^4 \\ j^4(-3,0,6), t^8 \end{array}$         | $\frac{1/2, 2/6, 1/4, 1/6}{1/2, 1/2, 1/6, 1/6}$ $\frac{2/4, 2/4, 1/6, 1/6}{2/4, 2/6, 1/4, 1/4}$ $\frac{1/4, 3/4, 1/6, 1/6}{1/2, 2/4, 1/4, 1/6}$ $\frac{1/2, 1/2, 1/4, 1/4}{1/2, 1/2, 1/4, 1/4}$ $\frac{1}{1/7, 1/7, 1/7, 2/7}$                                                 | $8$ $7$ $6$ $\underline{m} = 12$          | II<br>C3<br>G11<br>—<br>D12<br>G20<br>I12<br>C24<br>D25<br>(2,4,7)<br>—             | $j^{4}(0, 8, 12)$<br>$t(\sqrt{2})$<br>$j^{2}(\sqrt{-2}), t^{4}$<br>no covering<br>$t(\sqrt{-2})$<br>$j^{2}(\sqrt{-3}), t^{4}$<br>$j^{4}(0, 4, 12)$<br>$t(\sqrt{6})$<br>$t(\sqrt{-3})$<br>T).<br>no covering<br>no covering<br>$t(\sqrt{-5})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1/4, 1/4, 1/5, 2/5<br>1/2, 1/4, 1/5, 1/5<br>2/4, 1/4, 1/4, 1/5<br>1/5, 1/5, 1/5, 3/5<br>1/5, 1/5, 2/5, 2/5<br>1/2, 1/4, 1/4, 1/4<br>2/4, 1/5, 1/5, 2/5<br>1/4, 1/4, 1/5, 3/5<br>1/4, 1/4, 2/5, 2/5<br>1/2, 1/4, 1/5, 2/5                       | 17<br>16<br>15<br>14<br>13 |                                                          | $\begin{array}{l}t^{\rm spl}(5,10)\\ {\rm no\ covering}\\ j^2(\sqrt{-15}),t^4\\ j^8,t^{16}\\ j^3(5,10),t^6\\ t^{\rm spl}(0,10)\\ j^3(5,10)\\ t^{\rm spl}(25,50)\\ t(\sqrt{-7})\\ t(\sqrt{3})\\ j^3(2,2),t^6\\ j^5(0,10,5,18)\\ j^2(\sqrt{5}),t^4\\ j^4(-3,0,6),t^8\\ t=-1\end{array}$                       | $\frac{1/2, 2/6, 1/4, 1/6}{1/2, 1/2, 1/6, 1/6}$ $\frac{2/4, 2/4, 1/6, 1/6}{2/4, 2/6, 1/4, 1/4}$ $\frac{1/4, 3/4, 1/6, 1/6}{1/2, 2/4, 1/4, 1/6}$ $\frac{1/2, 1/2, 1/4, 1/4}{1/2, 1/2, 1/4, 1/4}$ $\frac{1}{1/7, 1/7, 1/7, 2/7}$ $\frac{2/4, 1/7, 1/7, 1/7}{2/4, 1/7, 1/7, 1/7}$ | $8$ $7$ $6$ $\underline{m} = 12$          | II<br>C3<br>G11<br>—<br>D12<br>G20<br>I12<br>C24<br>D25<br>(2,4,7<br>—              | $j^{4}(0, 8, 12)$<br>$t(\sqrt{2})$<br>$j^{2}(\sqrt{-2}), t^{4}$<br>no covering<br>$t(\sqrt{-2})$<br>$j^{2}(\sqrt{-3}), t^{4}$<br>$j^{4}(0, 4, 12)$<br>$t(\sqrt{6})$<br>$t(\sqrt{-3})$<br>The provide the second sec |
| 1/4, 1/4, 1/5, 2/5<br>1/2, 1/4, 1/5, 1/5<br>2/4, 1/4, 1/4, 1/5<br>1/5, 1/5, 1/5, 3/5<br>1/5, 1/5, 2/5, 2/5<br>1/2, 1/4, 1/4, 1/4<br>2/4, 1/5, 1/5, 2/5<br>1/4, 1/4, 1/5, 3/5<br>1/4, 1/4, 1/5, 2/5<br>1/2, 1/2, 1/5, 1/5<br>2/4, 2/4, 1/5, 1/5 | 17<br>16<br>15<br>14<br>13 |                                                          | $\begin{array}{l}t^{\rm spl}(5,10)\\ {\rm no\ covering}\\ j^2(\sqrt{-15}),t^4\\ j^8,t^{16}\\ j^3(5,10),t^6\\ t^{\rm spl}(0,10)\\ j^3(5,10)\\ t^{\rm spl}(25,50)\\ t(\sqrt{-7})\\ t(\sqrt{3})\\ j^3(2,2),t^6\\ j^5(0,10,5,18)\\ j^2(\sqrt{5}),t^4\\ j^4(-3,0,6),t^8\\ t=-1\\ j^2(\sqrt{-15}),t^4\end{array}$ | $\frac{1/2, 2/6, 1/4, 1/6}{1/2, 1/2, 1/6, 1/6}$ $\frac{2/4, 2/4, 1/6, 1/6}{2/4, 2/6, 1/4, 1/4}$ $\frac{1/4, 3/4, 1/6, 1/6}{1/2, 2/4, 1/4, 1/6}$ $\frac{1/2, 1/2, 1/4, 1/4}{1/7, 1/7, 1/7, 1/7}$ $\frac{1}{1/4, 1/4, 1/7, 2/7}$                                                 | $8$ $7$ $6$ $\underline{m} = 12$ $10$     | II<br>C3<br>G11<br>—<br>D12<br>G20<br>I12<br>C24<br>D25<br>(2,4,7)<br>—<br>D34      | $j^{4}(0, 8, 12)$<br>$t(\sqrt{2})$<br>$j^{2}(\sqrt{-2}), t^{4}$<br>no covering<br>$t(\sqrt{-2})$<br>$j^{2}(\sqrt{-3}), t^{4}$<br>$j^{4}(0, 4, 12)$<br>$t(\sqrt{6})$<br>$t(\sqrt{-3})$<br>T).<br>no covering<br>no covering<br>$t(\sqrt{-5})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1/4, 1/4, 1/5, 2/5<br>1/2, 1/4, 1/5, 1/5<br>2/4, 1/4, 1/4, 1/5<br>1/5, 1/5, 1/5, 3/5<br>1/5, 1/5, 2/5, 2/5<br>1/2, 1/4, 1/4, 1/4<br>2/4, 1/5, 1/5, 2/5<br>1/4, 1/4, 1/5, 3/5<br>1/4, 1/4, 2/5, 2/5<br>1/2, 1/4, 1/5, 2/5<br>1/2, 1/2, 1/5, 1/5 | 17<br>16<br>15<br>14<br>13 |                                                          | $\begin{array}{l}t^{\rm spl}(5,10)\\ {\rm no\ covering}\\ j^2(\sqrt{-15}),t^4\\ j^8,t^{16}\\ j^3(5,10),t^6\\ t^{\rm spl}(0,10)\\ j^3(5,10)\\ t^{\rm spl}(25,50)\\ t(\sqrt{-7})\\ t(\sqrt{3})\\ j^3(2,2),t^6\\ j^5(0,10,5,18)\\ j^2(\sqrt{5}),t^4\\ j^4(-3,0,6),t^8\\ t=-1\end{array}$                       | $\frac{1/2, 2/6, 1/4, 1/6}{1/2, 1/2, 1/6, 1/6}$ $\frac{2/4, 2/4, 1/6, 1/6}{2/4, 2/6, 1/4, 1/4}$ $\frac{1/4, 3/4, 1/6, 1/6}{1/2, 2/4, 1/4, 1/6}$ $\frac{1/2, 2/4, 1/4, 1/6}{1/2, 1/2, 1/4, 1/4}$ $\frac{1}{1/7, 1/7, 1/7, 2/7}$ $\frac{1/4, 1/4, 1/7, 2/7}{1/2, 1/4, 1/7, 1/7}$ | $8$ $7$ $6$ $\underline{m} = 12$ $10$ $9$ | II<br>C3<br>G11<br>—<br>D12<br>G20<br>I12<br>C24<br>D25<br>(2,4,7<br>—<br>D34<br>I7 | $j^{4}(0, 8, 12)$<br>$t(\sqrt{2})$<br>$j^{2}(\sqrt{-2}), t^{4}$<br>no covering<br>$t(\sqrt{-2})$<br>$j^{2}(\sqrt{-3}), t^{4}$<br>$j^{4}(0, 4, 12)$<br>$t(\sqrt{6})$<br>$t(\sqrt{-3})$<br>T).<br>no covering<br>no covering<br>$t(\sqrt{-5})$<br>$j^{4}(2, 8, 9), t^{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| <b>Table 2.4.8:</b> $(k, \ell, \ell)$ | m) = | = (2, 4, 8    | 3).                        | <b>Table 2.6.6:</b> $(k, \ell, \ell)$ | m) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2, 6, 6) | i).                     |
|---------------------------------------|------|---------------|----------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------|
| 1/8,1/8,1/8,1/8                       | 12   |               | no covering                | 1/6,1/6,1/6,1/6                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B27       | $t = 3^4/2^5$           |
| 1/4,1/4,1/8,1/8                       | 10   | B9            | $t = 3^2$                  | / 0, / 0, / 0, / 0                    | , in the second s | D10       | $t(\sqrt{-2})$          |
| , , , , , , , , , , -                 |      | G4            | $j^{2}(\sqrt{-1}), t^{4}$  | <b>Table 3.3.4:</b> $(k, \ell, \ell)$ | m) —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                         |
| 1/4,1/4,1/4,1/4                       | 8    | A16           | t = -1                     |                                       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | ,                       |
|                                       |      |               |                            | 1/4, 1/4, 1/4, 1/4                    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A17       | t = -1                  |
| <b>Table 2.5.5:</b> $(k, \ell, \ell)$ | m) = | = (2, 5, 5)   | 5).                        | 1/3,1/3,1/4,1/4                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A8        | t = -1                  |
| 1/5,1/5,1/5,1/5                       | 12   | A19           | t = -1                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H21       | $j^3(5,10), t^6$        |
| , ., ., .,                            |      | F11           | $j^2(\sqrt{5})$            | 2/4,1/4,1/4,1/4                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | no covering             |
|                                       |      | G47           | $j^{2}(\sqrt{-15}), t^{4}$ | 1/3,1/3,1/3,1/4                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E4        | $t^{\rm spl}(-3, 10)$   |
| 1/5,1/5,1/5,2/5                       | 10   | E8            | $t^{\rm spl}(5,10)$        | $^{1}/3, ^{1}/3, ^{1}/3, ^{1}/3$      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D7        | $t(\sqrt{-2})$          |
| 1/5, 1/5, 1/5, 3/5                    | 8    | E17           | $t^{\rm spl}(0, 10)$       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F1        | $j^{2}(\sqrt{2})$       |
| 1/5, 1/5, 2/5, 2/5                    |      | H15           | $j^3(5,10)$                | 2/4,1/3,1/3,1/4                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F7        | $m^4, j(\sqrt{2}), t^4$ |
| 1/2, 1/5, 1/5, 2/5                    | 7    | D37           | $t(\sqrt{-7})$             | $^{2}/4,^{1}/3,^{1}/3,^{1}/3$         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E1        | $t^{\mathrm{spl}}(3,2)$ |
| 1/2, 1/2, 1/5, 1/5                    | 6    | A1            | t = -1                     | 1/3,2/3,1/4,1/4                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C20       | $t(\sqrt{6})$           |
| /_, /_, /0, /0                        | Ũ    | G49           | $j^2(\sqrt{-15}), t^4$     | 1/3, 1/3, 2/3, 1/4                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F18       | $j^2(\sqrt{6}), t^4$    |
| <b>Table 2.5.6:</b> $(k, \ell, \ell)$ | m) - | - (956        | :)                         | <b>Table 3.3.5:</b> $(k, \ell,$       | m) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3, 3, 5) | <b>b</b> ).             |
| ·                                     |      |               |                            | 1/5,1/5,1/5,1/5                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | no covering             |
| 1/6, 1/6, 1/6, 1/6                    | 10   | C31           | $t(\sqrt{10})$             | 1/3, 1/3, 1/5, 1/5                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C37       | $t(\sqrt{21})$          |
| 2/6,1/5,1/5,1/5                       | 8    | _             | no covering                | 1/3,1/3,1/3,1/5                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E12       | $t^{\rm spl}(3,1)$      |
| 1/5,2/5,1/6,1/6                       | _    | D36           | $t(\sqrt{-6})$             | 1/3, 1/3, 1/3, 1/3                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B18       | $t = 2^{5}/5$           |
| 1/2, 1/5, 1/5, 1/6                    | 7    | H24           | $j^3(3,1), t^6$            | , , , ,                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -         | ,                       |
|                                       |      | (a <b>-</b> - | ->                         | <b>Table 3.4.4:</b> $(k, \ell, \ell)$ | m) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3, 4, 4) | e).                     |
| <b>Table 2.5.7:</b> $(k, \ell, \ell)$ | m) = | (2, 5, 7)     |                            | 1/4,1/4,1/4,1/4                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B3        | $t = 2^{2}$             |
| $^{1/5,1/5,1/5,1/7}$                  | 8    | E23           | $t^{\mathrm{spl}}(2,2)$    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B21       | $t = 2^7/3$             |
|                                       |      |               |                            | $^{1}/3,^{1}/3,^{1}/4,^{1}/4$         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D31       | $t(\sqrt{-5})$          |
|                                       |      |               |                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                         |

| $\overline{k,\ell,m}$ | Max.   | Br. pa | tterns  | Cover | rings | Mod | uli fie | ld deg | gree |    |    |          |
|-----------------------|--------|--------|---------|-------|-------|-----|---------|--------|------|----|----|----------|
|                       | degree | Total  | No cov. | Orb.  | Total | 1   | 2       | 3      | 4    | 5  | 6  | $\geq 7$ |
| 2, 3, 7               | 60     | 152    | 30      | 140   | 427   | 51  | 27      | 25     | 11   | 8  | 5  | 13       |
| 2, 3, 8               | 36     | 65     | 16      | 58    | 130   | 23  | 24      | 4      | 4    |    | 2  | 2        |
| 2, 3, 9               | 24     | 32     | 6       | 29    | 67    | 12  | 3       | 11     | 1    |    | 2  |          |
| 2, 3, 10              | 24     | 20     | 2       | 21    | 38    | 13  | 5       | 1      |      |    | 2  |          |
| 2, 3, 1114            | 18     | 18     | 2       | 18    | 33    | 9   | 6       | 2      |      |    | 1  |          |
| 2, 4, 5               | 24     | 40     | 5       | 42    | 91    | 21  | 10      | 6      | 1    | 4  |    | 1        |
| 2, 4, 6/7/8           | 16     | 24     | 5       | 25    | 43    | 16  | 4       | 1      | 4    |    |    |          |
| 2, 5/6/7              | 12     | 12     | 1       | 15    | 22    | 10  | 3       | 2      |      |    |    |          |
| 3, 3/4/5              | 12     | 15     | 2       | 16    | 21    | 12  | 3       | 1      |      |    |    |          |
| Total                 | —      | 378    | 69      | 366   | 872   | 167 | 85      | 53     | 21   | 12 | 12 | 16       |

 Table 1
 Statistics of Belyi maps

- Given two triples  $(g_1, g_0, g_\infty)$  of elements in  $S_d$  as in (III) of §2, decide whether they represent the same dessin d'enfant (decide simultaneous conjugacy).
- In the *obstructed* cases as described in §6, compute the obstruction conic and a conic-model (if possible).
- Find possible decompositions of a Belyi function  $\varphi(x)$  into smaller degree rational functions.
- Given a Belyi function  $\varphi \in K(x)$  and an embedding  $K \to \mathbb{C}$ , compute the dessin d'enfant of  $\varphi$  under this embedding.
- Find a Möbius-equivalent Belyi function  $\tilde{\varphi}(x)$  of substantially smaller bit-size, if possible.

Our algorithms for obstruction conics, size reduction, dessins d'enfants, and decomposition, are given in [24, §3, §4]. The implementations and computed data are available at [23].

A portion of computed Belyi functions has been known, inevitably. Most notably, the Belyi covering G45 defined over  $\mathbb{Q}(\sqrt{-11})$  has the monodromy group isomorphic to the sporadic Mathieu group  $M_{12}$ . Its humanoid dessin d'enfant is called *Monsieur Mathieu*; see the appendix dessins. The Galois orbits A19, G47, F11 are considered in [9] and [31, Example 5.7]. The C30 dessin (turned 90° in Figure 2 here) appears in [5] as a *rabbit with a lopped off left ear and a sidelong smirk on the right hand side*. The degree 24 coverings with  $(k, \ell) = (2, 3)$  were computed in [4].

An important area where Belyi functions appear is Shimura curves [7], [29], [22]. Checking the list of low genus Shimura curves  $\mathcal{X}_0(n)$  in [29], we recognize our H10, H11, H12 as Belyi coverings for the congruence groups  $\Gamma_0(29)$ ,  $\Gamma_0(43)$ ,  $\Gamma_0(13) \subset PSL(2, \mathcal{O})$ , where  $\mathcal{O}$  is the quaternion order over  $\mathbb{Q}(\text{Re }\zeta_7)$  considered in [7]. H1 is a Belyi covering for  $\Gamma_0(19)$  of similar quaternions over  $\mathbb{Q}(\text{Re }\zeta_9)$ . The coverings A2, A6, A7, A8, A16, A19, A20, C1 appear in diagrams III, VI, XI in [22]. Minus-4-hyperbolic Belyi functions appear in coverings of classical modular curves as well. Checking the Cummins-Pauli online list [6] of genus 0 congruence subgroups of PSL(2,  $\mathbb{Z}$ ), we recognize A5, A18, B19, C1, D8, D19, G13, G35, G39 as coverings for the congruence subgroups  $8I^0 = \Gamma_1(8)$ ,  $8G^0$ ,  $10A^0$ ,  $8D^0$ ,  $8E^0$ ,  $9C^0$ ,  $8A^0$ ,  $7A^0$ ,  $7C^0$ , respectively. Any Belyi covering gives a modular curve with respect to some (not necessarily congruence) subgroup of PSL(2,  $\mathbb{Z}$ ), since  $\Gamma(2) \subset PSL(2, \mathbb{Z})$  is a free group on two generators [29]. The minus-4-hyperbolic functions tend to give Shimura curves corresponding to manageable non-congruence subgroups. Our computational routine [23, ComputeBelyi.mpl] can be used to investigate genus 0 Shimura curves more thoroughly.

#### 4 Application to Heun functions

The minus-4-hyperbolic Belyi functions have application to transformations between hypergeometric and Heun functions (or their differential equations). This allows to express some Heun functions in terms of better understood hypergeometric functions. In fact, we utilize this application in our algorithms to compute the Belyi functions.

The Gauss hypergeometric equation

$$\frac{d^2 y(z)}{dz^2} + \left(\frac{C}{z} + \frac{A+B-C+1}{z-1}\right) \frac{dy(z)}{dz} + \frac{AB}{z(z-1)} y(z) = 0$$
(4.1)

and the Heun differential equation

$$\frac{d^2Y(x)}{dx^2} + \left(\frac{c}{x} + \frac{d}{x-1} + \frac{a+b-c-d+1}{x-t}\right)\frac{dY(x)}{dx} + \frac{abx-q}{x(x-1)(x-t)}Y(x) = 0$$
(4.2)

are second order Fuchsian equations [30] with 3 or 4 singularities, respectively. The singular points are  $z = 0, 1, \infty$  and  $x = 0, 1, t, \infty$ . If  $C \notin \mathbb{Z}$ , a basis of local solutions of (4.1) at x = 0 is given by the famous *Gauss hypergeometric series*:

$$z^{0} \cdot {}_{2}F_{1}\left(\begin{array}{c}A, B\\C\end{array}\right| z\right), \qquad z^{1-C} \cdot {}_{2}F_{1}\left(\begin{array}{c}1+A-C, 1+B-C\\2-C\end{array}\right| z\right).$$
 (4.3)

The starting powers 0, 1 - C of the local parameter z are the *local exponents* at z = 0. The local exponents at z = 1 are 0, C - A - B, while the exponents at  $z = \infty$  are A, B. The local exponents for Heun's equation (4.2) are

 $\begin{array}{ll} \text{at } x = 0: & 0, 1-c; \\ \text{at } x = 1: & 0, 1-d; \\ \end{array} \qquad \qquad \begin{array}{ll} \text{at } x = \infty: & a, b; \\ \text{at } x = t: & 0, c+d-a-b. \end{array}$ 

The local solution at x = 0 with the exponent 0 is denoted by

$$\operatorname{Hn}\left(\begin{array}{c|c}t & a, b \\ q & c; d \end{array} \middle| x\right).$$
(4.4)

The parameter q is an *accessory parameter*; it does not influence the local exponents. If  $c \notin \mathbb{Z}$ , then an independent local solution at x = 0 is

$$x^{1-c}\operatorname{Hn}\left(\begin{array}{c}t\\q_1\end{array}\middle|\begin{array}{c}a-c+1,\ b-c+1\\2-c;\ d\end{array}\middle|x\right)$$
(4.5)

with  $q_1 = q - (c - 1)(a + b - c - d + dt + 1)$ .

A pull-back transformation has the form

$$z \mapsto \varphi(x), \qquad y(z) \mapsto Y(x) = \theta(x) y(\varphi(x)),$$
(4.6)

where  $\varphi(x)$  is a rational function, and  $\theta(x)$  is a radical function (an algebraic root of a rational function). Geometrically, the transformation *pulls-back* a differential equation on  $\mathbb{P}^1_z$  to a differential equation on  $\mathbb{P}^1_x$ , with respect to the covering  $\varphi: \mathbb{P}^1_x \to \mathbb{P}^1_z$  determined by the rational function  $\varphi(x)$ .

Pull-back transformations between hypergeometric and Heun equations give identities between the classical Gauss hypergeometric and Heun functions. For example, we have

$$\operatorname{Hn}\left(\begin{array}{c}9\\7/9\end{array}\Big|\begin{array}{c}1/3,1\\7/9;2/3\end{array}\Big|x\right) = \theta(x) \ _{2}\operatorname{F_{1}}\left(\begin{array}{c}1/36,13/36\\8/9\end{array}\Big|\varphi_{0}(x)\right),\tag{4.7}$$

where  $\varphi_0(x)$  is the reciprocal of  $\varphi(x)$  from Example 2.4, and  $\theta(x) = (1-x)^{-1/36} \left(1-x-\frac{8}{3}x^2-\frac{8}{27}x^3\right)^{-1/12}$ . The transformation of singularities and local exponents for Fuchsian equations is explained in [27, Lemma 2.1]. The pre-factor  $\theta(x)$  shifts the local exponents at some points, but does not change the exponent difference anywhere. The rational function  $\varphi_0(x)$  multiplies local exponents and their differences by the branching order at each point. If Q is a singularity of the starting Fuchsian equation in d/dz, a point P above Q will be non-singular for the pulled-back equation only if the branching order at P is n and the exponent difference at Q is equal to 1/n(and Q is not a logarithmic point when n = 1). For example, the  $_2F_1$  function in (4.7) solves a hypergeometric equation with exponent differences 1/2, 1/3, 1/9 at  $z = 1, \infty, 0$ , respectively, while the exponent differences for the pulled-back Heun equation are the branching fractions 2/9, 1/3, 1/9, 2/3 at  $x = 0, 1, t, \infty$ , respectively. The roots of  $8x^3 - 72x^2 - 27x + 27$  became non-singular after the proper choice of  $\theta(x)$ . The rational function  $\varphi(x)$ of Example 2.4 is identified by the label B7 in Table 2.3.9 of §3.1 and in Appendix §B.

Recently, *parametric* transformations between Heun and hypergeometric equations without Liouvillian solutions<sup>8</sup> were classified in [27], [28]. They apply to hypergeometric equations where at least one exponent difference is parametric, i.e., not restricted to a fixed value 1/n with  $n \in \mathbb{N}$ . In total, there are 61 parametric transformations up to the well known symmetries of hypergeometric and Heun equations [28]. But the number of Galois orbits of utilized Belyi coverings (up to Möbius transformations) is 48. These Belyi functions are listed in [27, Table 4]. They satisfy condition (*i*) but not (*ii*) of Definition 1.3, because the parameter(s) could be specialized to satisfy the hyperbolic condition. The parametric transformations are labeled P1–P61 in [28], following similar criteria as in Appendix §A here. The Belyi functions of this article complete the list of hypergeometric-to-Heun transformations when no Liouvillian solutions are involved.

**Remark 4.1** Non-existence of Belyi functions with some branching patterns can be proved by non-existence of implied transformations of Fuchsian equations [27, §5]. For example, there is no (2, 3, 10)-minus-4 Belyi function with the branching pattern 9[2] = 6[3] = [10] + 2 + 2 + 2 + 2, because it would also be a (2, 3, 2)-minus-1 function. It would pull-back a hypergeometric equation with the exponent difference is not 1/2, 1/3, 1/2 to a non-existent Fuchsian equation with a single singularity where the exponent difference is not 1 (but 5). This example illustrates that there are no  $(k, \ell, m)$ -minus-1 functions, unless  $1 \in \{k, \ell, m\}$ . In the exceptions, the implied hypergeometric equation must have a logarithmic singularity with the exponent difference 1. In particular, the polynomial  $(x^n + 1)^k$  is a (k, 1, nk)-minus-1 Belyi function, and  $(x^3 - 3x)^{2k}/(x^2 - 2)^{3k}$  is a (2k, 1, 3k)-minus-1 Belyi function.

<sup>&</sup>lt;sup>8</sup> Liouvillian solutions [30] of second order linear differential equations are the "elementary" solutions: power, algebraic, exponential, trigonometric functions, their integrals (in particular, logarithmic and inverse trigonometric functions). They can be written in the form  $y = \exp(\int r) {}_2F_1(\varphi)$ , where  $r, \varphi$  are rational functions,  ${}_2F_1$  is Gauss' hypergeometric function with a reducible, dihedral or finite monodromy. There are algorithms to find Liouvillian solutions in this form [25], hence a table of pull-back transformations is not needed. The hyperbolic restriction  $1/k + 1/\ell + 1/m < 1$  gives a finite list of  $(k, \ell, m)$ -minus-4-regular Belyi functions, while  $1/k + 1/\ell + 1/m \ge 1$  would lead to infinitely many Belyi functions.

An interesting observation is that the pull-back covering  $\varphi_0(x)$  can be recovered from local solutions of the related hypergeometric and Heun equations, if only an oracle would tell us one constant. Particularly, suppose that the point x = 0 of Heun's equation lies above the singularity z = 0 of hypergeometric equation. Let  $y_1, y_2$  denote the hypergeometric local solutions in (4.3), respectively, and let  $Y_1, Y_2$  denote the Heun local solutions in (4.4), (4.5), respectively. We have the formula  $Y_1(x) = \theta(x) y_1(\varphi_0(x))$  like (4.7), and a similar formula [28, Lemma 3.1] relating  $y_2, Y_2$  but normalized by a constant K that depends on the first power series term of  $\varphi_0(x)$ . The quotient  $\psi_1(x) = Y_2/Y_1$  does not depend on the pre-factor  $\theta(x)$ , and can be identified with the respective quotient  $\psi_0(z) = y_2/y_1$  up to the constant multiple K. We have  $\psi_1(x) = x^{1-c} (1 + O(x))$  and  $\psi_0(z) = z^{1-C} (1+O(z))$ . The identification  $\psi_0(z) = K\psi_1(x)$  gives  $z = \psi_0^{-1}(K\psi_1(x))$ . So  $\varphi_0(x)$  is the composition of  $\psi_0^{-1}$  with  $K\psi_1(x)$  for some constant K. For instance, the Belyi function of Example 2.4 can be computed by inverting the function

$$z^{1/9} {}_{2}F_{1}\left( \left. \begin{array}{c} 5/36, 17/36 \\ 10/9 \end{array} \right| z \right) \Big/ {}_{2}F_{1}\left( \left. \begin{array}{c} 1/36, 13/36 \\ 8/9 \end{array} \right| z \right)$$

and composing with

$$(Kx^2)^{1/9}\operatorname{Hn}\left(\begin{array}{c}9\\187/81\end{array}\left|\begin{array}{c}5/9,11/9\\11/9;2/3\end{array}\right|x\right)\left/\operatorname{Hn}\left(\begin{array}{c}9\\7/9\end{array}\right|\begin{array}{c}1/3,1\\7/9;2/3\end{array}\right|x\right)$$

where K = -64/3. The ratio of two independent solutions of the same differential equation of order 2 is called a *Schwarz map* of the differential equation. We consider the Schwarz maps<sup>9</sup> again in Appendix §D.

This observation is significant in a few ways. Firstly, a data base of our Belyi functions could be given by the data of Heun equations to which they apply (the exponent differences, the parameters q, t), the hyperbolic type  $(k, \ell, m)$ , and the constant K. The Belyi coverings would be then recovered by reconstructing a rational function from a power series. If d is the degree of a Belyi covering, 2d + 8 power series terms would suffice (and exclude most of false rational reconstructions). Secondly, given a branching pattern (and thus the exponent differences of presumably related Heun and hypergeometric equations), the Belyi coverings  $\varphi(x)$  could be computed by assuming undetermined constants t, q, K and finding algebraic restrictions between them for reconstruction of  $\varphi(x)$  from the power series of  $\psi_0^{-1}(K\psi_1(x))$ . This approach does not appear practical, but §5.2 presents a deterministic algorithm that uses an implied Heun-to-hypergeometric transformation in a similarly general way, and eliminates all undetermined variables except 3 before calling Gröbner basis routines. And thirdly, our probabilistic algorithm §5.1 searches through all possible t, q, K in finite fields, reconstructs possible minus-4-hyperbolic Belyi functions over considered finite fields, and uses a version of Hensel lifting to produce Belyi functions in  $\overline{\mathbb{Q}}(x)$ .

# 5 Computation of Belyi coverings

The list of minus-4-hyperbolic Belyi functions was originally generated by a probabilistic algorithm by a thorough examination of Heun functions and their Schwarz maps over some finite fields, and lifting, identifying the obtained Belyi functions in  $\overline{\mathbb{Q}}(x)$ . This is explained in §5.1. The complete list was generated by considering at most 7 finite fields  $\mathbb{F}_p = \mathbb{Z}/(p)$  for p < 960, though eventually we kept the algorithm running for total 100 primes. In principle, this does not ensure completeness of the list however.

The deterministic algorithm in §5.2 takes a branching pattern as an input, and produces the Belyi coverings with that branching pattern. By using the implied Heun-to-hypergeometric transformations, smaller degree algebraic systems for undetermined coefficients are obtained than with straightforward methods, and with far less *parasitic* solutions [13]. The deterministic algorithm produced the same Belyi maps (up to Möbius transformations) as the probabilistic one. Completeness of our results is proved assuming correct implementation of the deterministic algorithm.

<sup>&</sup>lt;sup>9</sup> In the general context of Fuchsian equations related by a pull-back transformation, the pull-back covering can be similarly recovered by a proper identification (up to a constant multiple) of Schwarz maps as well. In fact, our implemented algorithms often assume a pull-back of a hypergeometric equation to a Fuchsian equation with 4 singularities (rather than canonically normalized Heun's equation), so to avoid unnecessary extensions. This is done when two or more branching fractions are equal and represent points in the same fiber, as demonstrated by the polynomial W in Example 5.2. Instead of the constants t, q, K in §5.1, the constants j, q, K were generally used.

As a practical matter of confidence, the completeness of results is foremost verified by the same output of the two independent algorithms. In addition, we did a combinatorial search to find all minus-4-hyperbolic dessins d'enfants, up to degree 36. This gives a verification of a large part ( $\approx 95\%$ ) of relevant branching patterns, covering  $\approx 91\%$  of obtained dessins. We also compared the list of Belyi functions with the *r*-field in  $\mathbb{R}$  with Felikson's list [8] of *Coxeter decompositions* in the hyperbolic plane; see Appendix §D. This provides enough confidence in completeness of our results.

#### 5.1 A probabilistic modular method

The used probabilistic algorithm is based on the expectation that a Belyi function will be properly defined over a *p*-adic field  $\mathbb{Q}_p$  for some prime *p* among a sequence of considered subsequent or random primes. Concretely, suppose that a Belyi function  $\varphi(x)$  pulls-back a hypergeometric equation  $H_0$  to Heun's equation  $H_1$  with specific parameters *t*, *q*, and that respective Schwarz maps of both equations are identified by a constant *K* as described after Remark 4.1. If *t*, *q*, *K* are elements of a number field  $\mathbb{Q}(\alpha)$ , then  $\varphi(x) \in \mathbb{Q}(\alpha)(x)$ . By Chebotarev's theorem [30], the minimal polynomial for  $\alpha$  has a root in  $\mathbb{F}_p$  for a positive density of primes *p*. The density is at least 1/D, where *D* is the degree of the number field  $\mathbb{Q}(\alpha)$ . For all but finitely many of those primes, we will have  $\alpha \in \mathbb{Q}_p$  and  $t, q, K \in \mathbb{Z}_p$  (the *p*-adic integers). The Belyi function  $\varphi(x)$  can be found as follows:

- (*i*) Consider all possible values  $\overline{t}, \overline{q}, \overline{K} \in \mathbb{F}_p$  of t, q, K reduced modulo an (eventually) suitable prime p;
- (*ii*) Reconstruct  $\varphi(x)$  in  $\mathbb{F}_p(x)$  by identifying the Schwarz maps as described after Remark 4.1. We need the first 2d + 8 terms in the Schwarz maps  $\psi_0(x)$  and  $\psi_1(x)$  to be in  $\mathbb{F}_p$ , so p has to be sufficiently large. For example, if a local exponent difference is 1/3, then we need p > 3(2d + 8) to ensure this. For degree 60 coverings, the starting prime was  $907 > 7(2 \cdot 60 + 8)$ .
- (*iii*) Use Hensel lifting to obtain an expression of  $\varphi(x)$  in  $\mathbb{Q}_p(x)$ ;
- (*iv*) Use LLL techniques to compute minimal polynomials of its coefficients, thus reconstructing  $\varphi(x)$  as an element of  $\mathbb{Q}(\alpha)(x)$ .

Our strategy is as follows. For each branching pattern of Tables 2.3.7–3.4.4, we run through a sequence of primes p and the possible reduced values  $\overline{t}, \overline{q}, \overline{K} \in \mathbb{F}_p$ . For each of the  $O(p^2)$  pairs of  $\overline{t}, \overline{q}$  we have to compute series expansions for the solutions of  $H_0$  and  $H_1$ . This is done rapidly using linear recurrences for coefficients of these solutions; Maple has the command gfun[diffeqtorec] for getting the recurrences. We expect  $\varphi$  to be in  $\mathbb{F}_p[[x]]$  for suitable primes p. If  $\psi_0 \circ \varphi$  matches  $K\psi_1$  in  $\mathbb{Q}_p[[x]]$ , then this poses certain necessary conditions<sup>10</sup> on the p-adic valuations of the coefficients of  $\psi_0$  and  $\psi_1$ . We compute the series solutions of  $H_0$  and  $H_1$  to enough precision so that we can test these necessary conditions. This way, many pairs  $\overline{t}, \overline{q}$  can be discarded, and we typically end up with  $O(p^1)$  pairs. Thus, the rational reconstruction step (*ii*) "only" needs to be called for  $O(p^2)$  combinations of  $\overline{t}, \overline{q}, \overline{K}$ .

If we find a  $\varphi$  mod p, we store it in a file. Another program will Hensel lift it, apply LLL reconstruction to  $\mathbb{Q}(\alpha)(x)$ , and compare with the already computed data base. Each Belyi map  $\varphi$  has a density  $\delta_{\varphi}$  of suitable primes. The expected number of times that the same  $\varphi$  will be found is then  $100 \cdot \delta_{\varphi}$ . Unless the density is tiny, the likelihood that  $\varphi$  will be found is very high. The smallest  $\delta_{\varphi}$  encountered was 1/6, for the H10–H14 coverings<sup>11</sup> with the realization field  $\mathbb{Q}(\zeta_7)$ . Most of the table was found after just two primes. The first 10 primes took about a week on Maple, running on 8 Intel X3210 CPU cores. Among the 100 primes, each Belyi function was found at least 16 times.

The modular method is quite slow, because  $O(p^2)$  combinations of  $\overline{t}, \overline{q}, \overline{K}$  have to be inspected for each p. But its advantage is low requirement of computer memory. This means that the computation can continue for weeks on end, without a risk that the computation will halt due to memory problems, and without human intervention (this is important, because if human intervention is needed in any of the steps, then, in a table with hundreds of cases, a gap would become likely).

<sup>&</sup>lt;sup>10</sup> If  $\varphi = \lambda x^m + \dots \in \mathbb{Z}_p[[x]]$  is substituted into  $\psi_0 = x^v(1 + a_1x + a_2x^2 + \dots)$ , with  $a_i \in \mathbb{Q}_p$ , and if the first  $a_i \notin \mathbb{Z}_p$  is  $a_n$ , and if  $\psi_1 = \lambda^v x^{vm}(1 + b_1x + b_2x^2 + \dots)$  is the result of the substitution, then the first  $b_i \notin \mathbb{Z}_p$  must be  $b_{mn}$ .

<sup>&</sup>lt;sup>11</sup> The estimate  $\delta_{\varphi} \geq 1/\deg \mathbb{Q}(\alpha)$  is sharp when  $\mathbb{Q}(\alpha) \supset \mathbb{Q}$  is a Galois extension. This is the case for  $\mathbb{Q}(\zeta_7)$ . Higher degree encountered number fields (such as for J28) had significantly higher  $\delta_{\varphi} > 1/6$ .

#### 5.2 A deterministic algorithm

A  $(k, \ell, m)$ -minus-4 Belyi function is determined by a polynomial identity

$$P^{\ell} U = Q^m V + R^k W, \tag{5.1}$$

where P, Q, R are monic polynomials in  $\mathbb{C}[x]$  whose roots are the regular branchings, and U, V, W are polynomials whose roots are exceptional points with correct multiplicities. The Belyi function is then expressed as

$$\varphi(x) = \frac{P^{\ell} U}{Q^m V}, \qquad 1 - \varphi(x) = \frac{R^k W}{Q^m V}.$$
(5.2)

The polynomials P, Q, R should not have multiple roots; V may be monic. The degrees of the polynomials in (5.1) are determined by the branching pattern and the assignment of  $x = \infty$ . The most straightforward computational method is to assume undetermined coefficients of the polynomials in (5.1), and solve the resulting system of algebraic equations between the coefficients. This is not practical for Belyi functions of degree  $\geq 12$ , mainly because of numerous *parasitic* [13] solutions where some polynomials in (5.1) have common roots.

A more restrictive set of equations for undetermined coefficients can be obtained by differentiating  $\varphi(x)$ , as comprehensively described in [24, §2.1]. In particular, the roots of  $\varphi'(x)$  include the branching points above  $\varphi = 1$  with the multiplicities reduced by 1. A factorized shape of the logarithmic derivative of  $\varphi(x)$  and  $\varphi(x) - 1$  must be the following:

$$\frac{\varphi'(x)}{\varphi(x)} = h_1 \frac{R^{k-1} W}{P \, Q \, F}, \qquad \qquad \frac{\varphi'(x)}{\varphi(x) - 1} = h_2 \frac{P^{\ell-1} W}{Q \, R \, F}. \tag{5.3}$$

Here  $h_1, h_2$  are constants, and F is the product of irreducible factors of UVW, each to the power 1. On the other hand,

$$\frac{\varphi'(x)}{\varphi(x)} = \ell \frac{P'}{P} + \frac{U'}{U} - m \frac{Q'}{Q} - \frac{V'}{V}, \qquad \frac{\varphi'(x)}{\varphi(x) - 1} = k \frac{R'}{R} + \frac{W'}{W} - m \frac{Q'}{Q} - \frac{V'}{V}.$$
(5.4)

We have thus two expressions for both logarithmic derivatives, of  $\varphi(x)$  and  $\varphi(x) - 1$ . As shown in [24, §2.1], this gives a generally stronger over-determined set of algebraic equations, of smaller degree and with less parasitic solutions. If k = 2, the polynomial R can be even eliminated symbolically.

To get an even more restrictive system of algebraic equations, we utilize the fact that our Belyi functions transform hypergeometric equations to Heun equations. The method bluntly uses the following lemma.

**Lemma 5.1** Let  $\varphi(x)$  be a Belyi map as in (5.2). Hypergeometric equation (4.1) with

$$A = \frac{1}{2} \left( 1 - \frac{1}{k} - \frac{1}{\ell} - \frac{1}{m} \right), \quad B = \frac{1}{2} \left( 1 - \frac{1}{k} - \frac{1}{\ell} + \frac{1}{m} \right), \quad C = 1 - \frac{1}{\ell}$$

is transformed to the following differential equation under the pull-back transformation  $z \mapsto \varphi(x), y(z) \mapsto (Q^m V)^A Y(\varphi(x))$ :

$$\begin{split} \frac{d^2 Y(x)}{dx^2} &+ \left(\frac{F'}{F} - \frac{U'}{\ell U} - \frac{V'}{mV} - \frac{W'}{kW}\right) \frac{Y(x)}{dx} + \\ &+ A \left[ B \left( \frac{h_1 h_2 P^{\ell-2} R^{k-2} U W}{Q^2 F^2} - \frac{m^2 Q'^2}{Q^2} - \frac{V'^2}{V^2} \right) + \frac{mQ''}{Q} + \frac{V''}{V} + \\ &+ \left( \frac{1}{k} + \frac{1}{\ell} \right) \frac{mQ'V'}{QV} + \left( \frac{mQ'}{Q} + \frac{V'}{V} \right) \left( \frac{F'}{F} - \frac{U'}{\ell U} - \frac{V'}{V} - \frac{W'}{kW} \right) \right] Y(x) = 0. \end{split}$$

Proof. A lengthy symbolic computation, using (5.2) and (5.4).

The transformed equation is to be identified with the target Heun equation, or (if the roots of U, V, W are not normalized to  $x = 0, 1, t, \infty$ ) with a Fuchsian equation with 4 singularities at the roots of UVW. The accessory

parameter q is a new undetermined variable. The terms to dY(x)/dx are always identical, but comparison of the terms to Y(x) gives new algebraic equations between the undetermined variables. If k = 2,  $\ell = 3$ , not only R but also P can be eliminated symbolically. The two expressions in (5.4) and Lemma 5.1 then give a non-linear differential equation for Q, with q and the coefficients of U, V, W as parametric variables. After substitution of general polynomial expression for Q, we collect to the powers of x and get a system of algebraic equation for undetermined coefficients. This is explained more thoroughly in [24, §2.2]. The logarithmic derivative ansatz and Lemma 5.1 do not use the location  $\varphi = 1$  of the third fiber, hence the polynomials U, V, W can be assumed to be monic as well. Then the Belyi function  $\varphi(x)$  has to be adjusted by a constant multiple at the latest stage. In most cases, all but 3 variables<sup>12</sup> are eliminated linearly, leaving only so many variables for hard Gröbner basis computations. Our implementation [23, ComputeBelyi.mpl] for Maple 15 computes the degree 60 Belyi maps in 110s, the Galois orbit J28 in 274s, and the orbit pair H11, J26 in 830s.

**Example 5.2** Consider computation of degree 54 Belyi functions with the branching fractions 1/7, 1/7, 1/7, 1/7, 2/7. We assign the branching fraction 2/7 to  $x = \infty$ , so that U = W = 1. The polynomials P, Q, R, V are assumed to be monic, without multiple roots, of degree 18, 7, 27, 3 respectively. If we would assume V = x(x-1)(x-t), the Heun equation would have a = 9/14, b = 13/14 and c = d = 6/7. To avoid increase of the moduli field, we rather assume  $V = x^3 + v_2x + v_3$ . Here the  $x^2$  term is zero-ed by a translation  $x \to x + \beta$ , so that only scaling Möbius transformations  $x \to \alpha x$  are left to act. The transformed Fuchsian equation must have the following term to Y(x): ab(x - q)/V. The logarithmic derivative ansatz gives

$$2R = 3P'QV - 7PQ'V - PQV', \qquad 2P^2 = 2QR'V - 7Q'RV - QRV',$$

while Lemma 5.1 gives

$$\frac{13}{84} \left( \frac{4P}{Q^2 V^2} - \frac{49Q'^2}{Q^2} - \frac{V'^2}{V^2} \right) + \frac{7Q''}{Q} + \frac{V''}{V} + \frac{35Q'V'}{6QV} = \frac{351\left(x-q\right)}{7V}$$

Symbolic elimination of R, P on Maple gives the following differential expression:

$$\frac{7Q''''}{15Q} + \frac{7Q'''}{3Q} \left(\frac{V'}{V} - \frac{Q'}{Q}\right) + \frac{(7Q'')^2}{26Q^2} + \frac{Q''V'}{QV} \left(\frac{13V'}{7V} - \frac{35Q'}{13Q}\right) 
+ \frac{3Q''}{7QV} \left(115q - \frac{1033}{13}x\right) + \frac{Q'^2}{7Q^2V} \left(\frac{3}{2}(163x - 247q) + \frac{16V'^2}{13V}\right) - \frac{13V'}{2V^2} 
+ \frac{3Q'}{2QV} \left(\left(\frac{183}{7}q - \frac{241}{13}x\right)\frac{V'}{V} + \frac{67}{21}\right) + \frac{18}{V^2} \left(2x - \frac{13}{5}q\right) \left(\frac{46}{13}x - \frac{27}{7}q\right) = 0.$$

Here the values V'' = 6x, V''' = 6, V'''' = 0 are simplified. Substituting the explicit V,  $Q = x^7 + c_1 x^6 + \dots + c_6 x + c_7$  and clearing the denominator, we obtain a polynomial expression of degree 15 in x. The leading term gives  $q = -5c_1/52$ . The next term gives nothing new (as follows from [24, Lemma 2.1]). But the next 5 equations allow subsequent elimination of  $c_3, c_4, c_5, c_6, c_7$  in terms of  $c_1, c_2, v_2, v_3$ . The 4 remaining variables are weighted-homogeneous, with the weights 1, 2, 2, 3. Elimination of  $v_2, v_3$  using the other 10 equations is done with the Gröbner basis routine of Maple 15 in about 35s (on a PC with 2.66GHz Intel Core Duo). The algebraic system has 4 Galois orbits of solutions, 3 of them parasitic<sup>13</sup>. The proper solution has the label D28. We can take

$$V = x^3 - 4899x - 370078, \quad Q = x^7 + 28x^6 + \frac{29063265}{512}x^5 + \dots$$

The expression for  $\varphi(x)$  is long. We looked for an optimizing Möbius transformation. The bit size of  $\varphi(x)$  is reduced by the factor  $\approx 2.26$  after the Möbius substitution  $x \mapsto (241x - 212)/(x + 4)$ . Then

$$\varphi(x) = \frac{P^3}{864(x-4)(3x^2+1)(x+4)^2Q^7},$$

<sup>&</sup>lt;sup>12</sup> Or all except 4 weighted homogeneous variables, if the scaling transformations  $x \to \alpha x$  are left to act. The Schwarz maps of §5.1 are determined by 3 values as well: the location parameter, the accessory parameter, and the constant multiple.

<sup>&</sup>lt;sup>13</sup> The parasitic solutions are: the degree 18 coverings mentioned in footnote 3; a degree 10 covering with the branching pattern 5 [2] = 3 [2] + 4 [1] = 7 + 2 + 1; and the non-cyclic cubic Belyi covering. In all cases, the simplification of the numerator and the denominator of  $\varphi(x)$  is by a linear polynomial to the maximal power (36, 44 or 51).

Belyi functions for hyperbolic Heun functions

| Id  | branching               | d  | $[k\ell m]$ | Moduli                                 | Obstruction                            | Bad             |
|-----|-------------------------|----|-------------|----------------------------------------|----------------------------------------|-----------------|
|     | fractions               |    |             | field                                  | conic                                  | primes          |
| B12 | 1/7, 1/7, 3/7, 3/7      | 36 | [237]       | Q                                      | $u^2 + v^2 + 7$                        | $7,\infty$      |
| C6  | 1/3, 1/3, 2/7, 2/7      | 32 | [237]       | $\mathbb{Q}$                           | $u^2 + v^2 + 1$                        | $2,\infty$      |
| C30 | 1/2, 1/2, 1/4, 1/4      | 10 | [245]       | $\mathbb{Q}$                           | $u^2 + 2v^2 + 5$                       | $5,\infty$      |
| D45 | 1/4, 1/4, 1/4, 1/4      | 20 | [245]       | $\mathbb{Q}$                           | $u^2 + 2v^2 + 5$                       | $5,\infty$      |
| F1  | 1/3, 1/3, 1/3, 1/3      | 8  | [334]       | $\mathbb{Q}(\sqrt{2})$                 | $u^2 + 3v^2 + \sqrt{2} - 1$            | $3,\infty$      |
| F4  | 1/2, 1/2, 1/8, 1/8      | 18 | [238]       | $\mathbb{Q}(\sqrt{2})$                 | $u^2 + v^2 + 1$                        | $\infty,\infty$ |
| F6  | 1/8, 1/8, 1/8, 1/8      | 36 | [238]       | $\mathbb{Q}(\sqrt{2})$                 | $u^2 + v^2 + 1$                        | $\infty,\infty$ |
| F11 | 1/5, 1/5, 1/5, 1/5      | 12 | [255]       | $\mathbb{Q}(\sqrt{5})$                 | $u^2 + 2v^2 + \sqrt{5}$                | $5,\infty$      |
| H1  | 1/3, 1/3, 1/9, 1/9      | 20 | [239]       | $\mathbb{Q}(\operatorname{Re}\zeta_9)$ | $u^2 + v^2 + \operatorname{Re}\zeta_9$ | $\infty,\infty$ |
| H10 | 1/2, 1/2, 1/7, 1/7      | 30 | [237]       | $\mathbb{Q}(\operatorname{Re}\zeta_7)$ | $u^2 + v^2 - \operatorname{Re}\zeta_7$ | $\infty,\infty$ |
| H11 | 1/3, 1/3, 1/7, 1/7      | 44 | [237]       | $\mathbb{Q}(\operatorname{Re}\zeta_7)$ | $u^2 + v^2 - \operatorname{Re}\zeta_7$ | $\infty,\infty$ |
| H12 | 1/2, 1/2, 1/3, 1/3      | 14 | [237]       | $\mathbb{Q}(\operatorname{Re}\zeta_7)$ | $u^2 + v^2 - \operatorname{Re}\zeta_7$ | $\infty,\infty$ |
| H13 | 1/3, 1/3, 1/3, 1/3      | 28 | [237]       | $\mathbb{Q}(\operatorname{Re}\zeta_7)$ | $u^2 + v^2 - \operatorname{Re}\zeta_7$ | $\infty,\infty$ |
| H14 | 1/7, 1/7, 1/7, 1/7, 1/7 | 60 | [237]       | $\mathbb{Q}(\operatorname{Re}\zeta_7)$ | $u^2 + v^2 - \operatorname{Re}\zeta_7$ | $\infty,\infty$ |

Table 2Belyi functions with an obstruction.

where 
$$Q = 3x^7 - 7x^6 - 14x^5 - 98x^4 + 147x^3 - 7x^2 + 56x + 16$$
 and  
 $P = 47x^{18} - 2028x^{17} + 5502x^{16} + 54540x^{15} - 263535x^{14} - 32592x^{13} + 2249268x^{12} - 3436872x^{11} + 14145x^{10} - 1425900x^9 - 8774370x^8 - 1715652x^7 - 10594017x^6 + 2223144x^5 - 5284080x^4 + 1638144x^3 - 1306368x^2 + 239616x - 135168.$ 

# 6 Moduli fields and obstruction conics

Particularly interesting are Belyi functions with moduli field issues. Here we present these instances among the minus-4-hyperbolic functions. At the same time, we briefly recall cohomological and conic obstructions on realization fields of Belyi functions, give a straightforward characterization of the obstruction conic (in Lemma 6.2) that applies to our cases, and express a few Belyi coverings as functions on the obstruction conics. Further computational and geometrical details are considered in [24,  $\S4$ ].

Let  $\mathcal{O}$  denote the group of Möbius transformations:

$$\mathcal{O} = \left\{ \frac{ax+b}{cx+d} \,|\, a, b, c, d \in \overline{\mathbb{Q}} \text{ with } ad - bc \neq 0 \right\} \cong \operatorname{Aut}(\overline{\mathbb{Q}}(x)/\overline{\mathbb{Q}}).$$

Two rational functions  $\varphi_1, \varphi_2 \in \overline{\mathbb{Q}}(x)$  are called *Möbius-equivalent*, denoted  $\varphi_1 \sim \varphi_2$ , if there exists  $\mu \in \mathcal{O}$  with  $\varphi_1 \circ \mu = \varphi_2$ . A *realization field* of a Belyi covering  $\varphi$  is any number field over which some Möbius equivalent function  $\varphi \circ \mu$  is defined. The *r*-field from Definition 2.3 is such a field, but often not of minimal degree.

**Definition 6.1** Let  $\varphi \in \overline{\mathbb{Q}}(x)$  be a Belyi function. The *moduli field*  $M_{\varphi}$  is the fixed field of  $\{\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) | \varphi \sim \sigma(\varphi) \}$ .

The moduli field is known to be equal to the intersection of the realization fields of  $\varphi$ . Two Belyi functions are Möbius-equivalent if and only if they have the same dessin d'enfant (up to a homeomorphism). Thus, the moduli field of a dessin d'enfant is well defined. The number of different dessins (up to homeomorphism) in a Galois orbit is equal to the degree of the moduli field.

For each Belyi function  $\varphi$  in our list, we determined its moduli field and realization fields. Among the minus-4-hyperbolic Belyi functions, there are 14 Galois orbits for which the moduli field is not a realization field. They are given in Table 2. The realization fields are then determined by an *obstruction conic*, as explained in §6.1. The last two columns characterize the conics.

The moduli fields are computed directly from Definition 6.1 by checking which Galois conjugates of  $\varphi$  are Möbius-equivalent to  $\varphi$ . The computed Belyi functions  $\varphi$  always had  $[K_{\varphi} : \mathbb{Q}(j)] \leq 2$ , where  $\mathbb{Q}(j)$  is the *j*-field

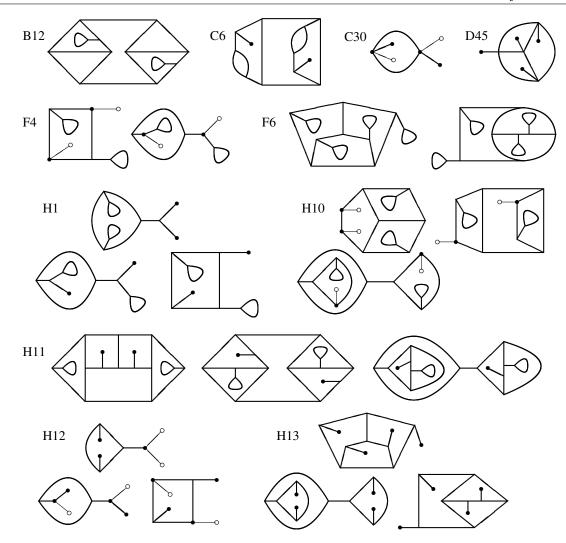



Fig. 2 The coverings (except F1, F11, H14) with an obstruction

and  $K_{\varphi}$  denotes the smallest number field with  $\varphi \in K_{\varphi}(x)$ . But  $\mathbb{Q}(j) \subseteq M_{\varphi} \subseteq K_{\varphi}$ . Therefore, the moduli field can only be  $\mathbb{Q}(j)$  or  $K_{\varphi}$ . If  $\mathbb{Q}(j) = K_{\varphi}$  then  $M_{\varphi} = \mathbb{Q}(j)$ . If  $\mathbb{Q}(j) \neq K_{\varphi}$ , then let  $\sigma$  be the non-trivial element of  $\operatorname{Gal}(K_{\varphi}/\mathbb{Q}(j))$ . The moduli field is then determined simply by checking whether  $\varphi \sim \sigma(\varphi)$  or not.

The dessins d'enfants of most of the Belyi maps of Table 2 are depicted in Figure 2. The other Galois orbits with obstructed dessins are found in Figures 1 and 3. The interesting questions whether a dessin has a moduli field  $\subset \mathbb{R}$ , and if so, does it have a realization over  $\mathbb{R}$ , are considered in [5]. Although all moduli fields in the obstructed cases are real, not all their dessins have a reflection symmetry (i.e., have a realization over  $\mathbb{R}$ ). Rather, their complex conjugates are equivalent to the original up to a homeomorphism that permutes the cells, reflecting a non-trivial Möbius equivalence. The number of these skew-symmetric dessins depends on the number of bad  $\infty$ -primes shown in the last column of Table 2. The moduli fields for H1, H10–H14 have three infinite primes, but only two of them are bad. Therefore one dessin in those orbits has a reflection symmetry, and the other two are skew symmetric. Likewise, F1 and F11 each have one dessin with  $\mathbb{R}$ -realization and one dessin without.

#### 6.1 Obstructions on realization fields

If the moduli field  $M_{\varphi}$  is not a realization field, the realization fields are determined by a *conic obstruction*. For each of the cases of Table 2, the realization fields are those extensions of  $M_{\varphi}$  that have a rational point on the conic curves given in the sixth column.

For  $\varphi \in \overline{\mathbb{Q}}(x)$ , let us denote  $\Gamma_{\varphi} = \operatorname{Gal}(\overline{\mathbb{Q}}/M_{\varphi})$ . Let

$$\mathcal{O}_{\varphi} = \{ \mu \in \mathcal{O} | \varphi \circ \mu = \varphi \} \cong \operatorname{Aut}(\overline{\mathbb{Q}}(x) / \overline{\mathbb{Q}}(\varphi)),$$

be the group of Möbius automorphisms of  $\varphi$ . For any  $\sigma \in \Gamma_{\varphi}$  we have  $|\mathcal{O}_{\varphi}|$  choices for  $\mu \in \mathcal{O}$  in  $\sigma(\varphi) = \varphi \circ \mu$ . If for each  $\sigma \in \Gamma_{\varphi}$  we can choose such  $\mu_{\sigma} \in \mathcal{O}$  so that  $\mu_{\sigma} \circ \sigma(\mu_{\rho}) = \mu_{\sigma\rho}$  for any  $\sigma, \rho \in \Gamma_{\varphi}$ , then we have a cocycle of Galois cohomology [20] representing an element of  $H^1(\Gamma_{\varphi}, \mathcal{O})$ . This choice is certainly possible if  $|\mathcal{O}_{\varphi}| = 1$ . The realization fields L are then those which are mapped to the identity in  $H^1(\text{Gal}(\overline{\mathbb{Q}}/L), \mathcal{O})$ . As recalled in [9], the elements of  $H^1(\Gamma_{\varphi}, \mathcal{O})$  are in one-to-one correspondence with isomorphism classes of conic curves over  $M_{\varphi}$ . This is a special case of the construction in [20, Ch. XIV].

In turn, a conic is determined up to birational equivalence over  $M_{\varphi}$  by the primes  $\mathfrak{p}$  of bad reduction. The number of bad primes is always even. The bad primes are precisely those for which  $\varphi$  has no realization over the completion of  $M_{\varphi}$  at  $\mathfrak{p}$ . The completion at a real prime is isomorphic to  $\mathbb{R}$ . Notice that the conics for C6 and F4 look the same  $u^2 + v^2 + 1 = 0$  but over different moduli fields. In particular, their sets of bad primes differ.

In [9, §7] it is proved that if  $\varphi(x) \in \overline{\mathbb{Q}}(x)$  has a Galois cocycle, then there is a realization over a quadratic extension of the moduli field  $M_{\varphi}$ . These realizations are straightforward to obtain for Belyi functions with exactly two points of some branching order in the same fiber  $f \in \{0, 1, \infty\}$ . Designating those two points as  $x = \infty$ , x = 0 extends the moduli field at most quadratically. This applies to all our examples except D45, F6, H13, H14.

Suppose now  $\varphi(x) \in M_{\varphi}(\sqrt{A})$  for  $A \in M_{\varphi}$ , and let  $\mu(x) \in \mathcal{O}$  be the cocycle representative of those Galois elements that conjugate  $\sqrt{A} \to -\sqrt{A}$ . With  $x = \infty$ , x = 0 set as just above, the possible Möbius transformations are  $x \mapsto -x$  or  $x \mapsto B/x$ . In the former case, the quadratic extension disappears after the scaling  $x \mapsto \sqrt{A} x$ .

**Lemma 6.2** Suppose that we have a Belyi function  $\varphi(x) \in M_{\varphi}(\sqrt{A})$  where  $M_{\varphi}$  is the moduli field. Suppose that there is a Galois cocycle that sends the Galois elements that conjugate  $\sqrt{A} \to -\sqrt{A}$  to  $x \mapsto B/x$  for  $B \in M_{\varphi}$ . Then the obstruction conic is isomorphic to  $u^2 = Av^2 + B$ .

Proof. The functions

$$u = \frac{1}{2} \left( x + \frac{B}{x} \right), \qquad v = \frac{1}{2\sqrt{A}} \left( x - \frac{B}{x} \right). \tag{6.1}$$

are invariant under the Galois action, hence they are  $M_{\varphi}$ -rational functions on the obstruction conic. They are related by  $u^2 = Av^2 + B$ .

**Example 6.3** The branching pattern for C30 is 2[5] = 2[4] + 1 + 1 = 4[2] + 1 + 1. The moduli field is  $\mathbb{Q}$ . Here is a realization over  $\mathbb{Q}(\sqrt{-3})$ , with the points of branching order 5 assigned as  $x = \infty$ , x = 0:

$$\varphi(x) = \frac{2(x^2 + 5x - 5)^4 \left( (x^2 + 5)\sqrt{-3} - 3x^2 - 60x + 15 \right)}{(12x)^5}.$$
(6.2)

We have  $|\mathcal{O}_{\varphi}| = 1$ , since the numerator of  $\varphi(y) - \varphi(x)$  has only one linear factor y - x. Let  $\sigma : \sqrt{-3} \mapsto -\sqrt{-3}$  denote the non-trivial element of  $\operatorname{Gal}(\mathbb{Q}(\sqrt{-3})/\mathbb{Q})$ . The numerator of  $\varphi(y) - \sigma(\varphi(x))$  has a linear factor xy + 5, giving the Möbius transformation  $\mu(x) = -5/x$  for  $\sigma(\varphi) = \varphi \circ \mu$ . By Lemma 6.2, the obstruction conic is isomorphic to  $C : u^2 + 3v^2 + 5 = 0$ . We can express  $\varphi$  as a function on this conic by writing  $\varphi(x)$  as a product of Laurent polynomials and substituting

$$x = u + v\sqrt{-3}, \qquad \frac{1}{x} = \frac{-u + v\sqrt{-3}}{5}.$$

The expression is

$$\varphi = \left(\frac{u}{6} + \frac{5}{12}\right)^4 (v - u - 10) \in \mathbb{Q}(u, v) / (u^2 + 3v^2 + 5).$$
(6.3)

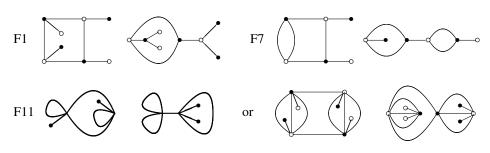



Fig. 3 Ambiguous cases of moduli fields

A point  $(u_0, v_0) \in C$  defined over some number field  $L \supset \mathbb{Q}$  gives a parametrization  $\lambda : \mathbb{P}^1 \to C$  by the lines passing through  $(u_0, v_0)$ . The composition  $\varphi \circ \lambda$  gives then a realization of  $\varphi$  over L. Formula (6.1) gives one such parametrization. The conic C is isomorphic to the conic given by  $u^2 + 2v^2 + 5 = 0$  as they have the same set of bad primes. A projective isomorphism is  $(u : v : 1) \mapsto (\frac{1}{2}(u - 5) : v : \frac{1}{2}(u + 1))$ . Its computation is explained in [24, §3.5].

The obstructed cases without a cocycle are the following: D45, F6, H13, H14. These are exactly the cases of Table 2 with  $|\mathcal{O}_{\varphi}| > 1$ . In fact,  $|\mathcal{O}_{\varphi}| = 2$  for these Galois orbits<sup>14</sup>. To get explicit realizations for these Belyi functions, we suggest to take their quotients by  $\mathcal{O}_{\varphi}$ . The quotients are C30, F4, H12, H10, respectively. The smaller coverings do have a cocycle and parametrizations by obstruction conics. As shown in [24, §3.2], the realization fields of C30, D45 (and of F4, F6; or H12, H13; or H10, H14) are the same. In particular, each realization  $\varphi \circ \lambda$  of C30 is composed with a quadratic covering (to D45) defined over the same field. The quadratic covering composes with the conic paramaterization  $\lambda$ , not with the conic<sup>15</sup> realization  $\varphi$ .

In the obstructed cases with a cocycle, realization of a Belyi covering as a function on the obstruction conic is a specially compact expression of the Belyi covering, as demonstrated in (6.3). Here are two more examples. For C6, we have

$$\varphi = \frac{(u-5)(u-1)^3(v^4 + 18v^2 + 8v(v-58)(u-4) - 3403)^3}{3456(v(u-4) - 13)^7}$$
(6.4)

on the conic  $u^2 + v^2 + 2 = 0$ . The conic is isomorphic to  $u^2 + v^2 + 1 = 0$  by  $(u, v) \mapsto (u + v, u - v)$ . For F11, we use the expression in [9] and obtain

$$\varphi = -\frac{(u+\sqrt{5}+2)^5 \left(u-2(3-\sqrt{5})v-5\sqrt{5}\right)}{(u-\sqrt{5}-2)^5 \left(u-2(3-\sqrt{5})v+5\sqrt{5}\right)}.$$
(6.5)

on the conic  $u^2 + 2v^2 + \sqrt{5} = 0$ . After the substitution

$$(u,v) \mapsto \left( (\sqrt{5}+2) \, \frac{u+1}{u-1}, \frac{(3\sqrt{5}+1)u + 5\sqrt{5}v - 2\sqrt{5}+1}{(3-\sqrt{5})(u-1)} \right)$$

the expression for F11 becomes  $u^5(1-u-v)/v$ , though the conic equation then becomes complicated.

#### 6.2 Ambiguous moduli fields

The moduli field for the Galois orbit F7 is  $M = \mathbb{Q}(\sqrt{3+6\sqrt{2}})$  by standard definitions. However, the branching pattern [4] + 2 + 1 = 2[3] + 1 = 2[3] + 1 has two symmetric fibers 2[3] + 1. The conjugation of  $M \supset \mathbb{Q}(\sqrt{2})$ 

<sup>&</sup>lt;sup>14</sup> Non-existence of a cocycle defined over  $\mathbb{R}$  can be shown geometrically by using the criterion in [5, Theorem 2]. Each of the dessins for D45, F6, H13, H14 without a reflection symmetry has a tetrahedral carcass (obtained by taking out some cells around 4 exceptional points or cells). A pair of opposite tetrahedron edges e, f relate to the exceptional cells differently than the other tetrahedron edges. If we assume the tetrahedron to have equal straight edges, the dessin symmetry is rotation by  $\pi$  around the axis connecting the midpoints of e, f. The complex conjugation is realized by permutations  $w, w^{-1}$  of half-edges (connecting black vertices and white midpoints) that swap e, f and cyclically permute the other 4 tetrahedron edges. The order of w is thus 4, but we must have  $w^2 = \text{id}$  for a cocycle.

<sup>&</sup>lt;sup>15</sup> In fact [16], a conic defined over a field K without a K-rational point cannot have quadratic coverings defined over K.

permutes the two fibers, so the derivative of a Belyi function for F7 has a compact expression:

$$\varphi'(x) = \frac{\left(2x^2 + x + 3 - 2\sqrt{2}(x+1)\right)^2 \left(8x^2 - 12x + 4 + \sqrt{2}(2x-3)\right)^2}{\sqrt{3+6\sqrt{2}}\left(753 - 531\sqrt{2}\right)x^3(x-1)^2}.$$
(6.6)

The function  $\sqrt{3+6\sqrt{2}}(2\varphi(x)-1)$  is defined over  $\mathbb{Q}(\sqrt{2})$  and branches only above  $z = \infty$  and  $z = \pm\sqrt{3+6\sqrt{2}}$ . Defining a Belyi function by requiring branching in any (at most) 3 fibers, not specifically  $\{0, 1, \infty\}$ , would make no geometrical difference because of Möbius transformations on  $\mathbb{P}_z^1$ . But evidently, there are arithmetic consequences for moduli and realization fields. The number of dessins for F7 is 2 or 4 depending of whether the dessins are counted up to Möbius equivalence on  $\mathbb{P}_z^1$  or not. Figure 3 depicts two of the dessins for F7. The other two are obtained by swapping the color labeling of black and white vertices. If the symmetric fibers are put at z = 0, z = 1, the transformation  $z \mapsto 1 - z$  swaps the two symmetric fibers and changes the sign of  $\sqrt{3+6\sqrt{2}}$ . One conjugation of  $\sqrt{2}$  gives  $\sqrt{3+6\sqrt{2}} \in \mathbb{R}$ , hence one of the dessins is real.

Most remarkably, the Galois orbits F1 and F11 demonstrate a mix of a conic obstruction and ambiguous moduli field. Their realization fields are obstructed by the conics in Table 2 if we insist in having the branching fibers at  $\{0, 1, \infty\}$ . But Möbius transformations on  $\mathbb{P}_z^1$  of their Belyi functions can be expressed over the moduli fields. Reflecting this, the first dessin of F1 in Figure 3 is symmetric if vertex coloring is ignored, but the black and white vertices are interchanged by the complex conjugation. A Belyi function for F1 is

$$\int \frac{8(5+3\sqrt{2})\left(x^4+4x^2+6+\sqrt{2}(14x^2+4)\right)^2}{3\sqrt{-6\sqrt{2}}\left(x^2-2\sqrt{2}x-2-\sqrt{2}\right)^5}\,dx,\tag{6.7}$$

with a proper integration constant setting the branching fibers z = 0, z = 1. But an expression in  $\mathbb{Q}(\sqrt{2})(x)$  is obtained after multiplication by  $\sqrt{-6\sqrt{2}}$  and loosening the integration constant. The dessins for F11 are drawn in Figure 3 in two variations: first compactly, by hiding white vertices of order 2; then assigning the black and white vertices to represent points of order 5 to show the fiber interchanging symmetry. A Belyi function for F11 is

$$\int \frac{\sqrt{-2\sqrt{5}} \left(10 + 8\sqrt{5}\right) \left(x^4 + (72\sqrt{5} - 156)x^2 + 4\right)^4}{25 \left(x^6 - 22x^5 + 306x^4 - 840x^3 - 612x^2 - 88x - 8 + 2\sqrt{5}xP\right)^3} \, dx,\tag{6.8}$$

where  $P = 5x^4 - 68x^3 + 188x^2 + 136x + 20$ . The Galois orbits F11, G47, A19 with the same branching pattern are considered in [9], [31, Example 5.7], though the consequence of auto-duality for F11 is not noticed.

Examples of coverings with this dual interpretation of the moduli field are given in [19]. One example of Pharamond is the branching pattern 4 + 2 + 1 = 4 + 2 + 1 = 4 + 2 + 1 with two Galois orbits. One moduli field is  $\mathbb{Q}(\sqrt{-1-2\sqrt{2}})$ , though rational functions can be expressed over  $\mathbb{Q}(\sqrt{2})$  if the fiber location is not fixed. A function for the other orbit can be similarly written over  $\mathbb{Q}(\sqrt{-6})$ , while the moduli field is of degree 12, obtained by adjoining the roots of the polynomial  $z^3 - z^2 + (3 + \sqrt{-6})z - 3$ .

# A Appendix: Sorting criteria

In §3.1, the minus-4-hyperbolic Belyi functions were grouped into 10 classes A–J. We order the Belyi functions inside those classes by the following criteria:

- (a) the first criterion is the j-invariant;
- (b) the second criterion is the branching fractions<sup>16</sup>;
- (c) the last criterion is the degree of the covering.

The sort of *j*-invariants lexicographically adheres to the following criteria:

<sup>&</sup>lt;sup>16</sup> The first two criteria establish that our list is basically sorted by Heun equations. To identify the Heun equations, invariants describing accessory parameters should be added [28, §D].

- (a1) the *j*-field;
- (a2) the *t*-field;
- (a3) the leading coefficient of the minimal polynomial in  $\mathbb{Z}[x]$  for the *j*-invariant.

The order of j-fields and t-fields is settled by the following criteria:

- (f1) the field degree;
- (f2) if the field is a quadratic extension of  $\mathbb{Q}$  then:
  - (*f1a*) real quadratic fields have precedence over  $\mathbb{Q}(\sqrt{a})$  with a < 0;
  - (*f1b*) the fields  $\mathbb{Q}(\sqrt{a})$  with the same sign of a are ordered by the increasing order of |a|.
- (f3) if the field is of higher degree, then the criterion is the field discriminant.

The integers in (a3) and (f3) are ordered as follows:

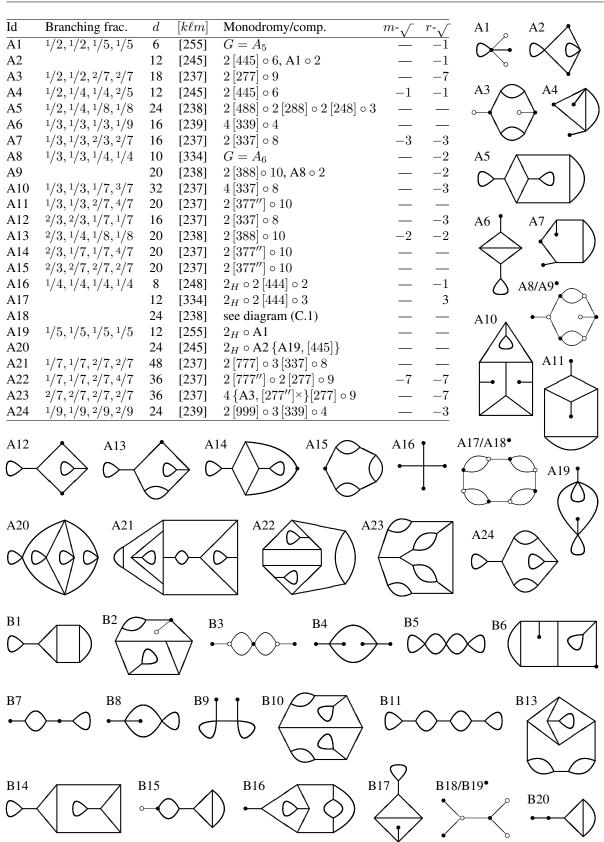
- (*i1*) the product of the primes dividing the integer;
- (i2) the absolute value.

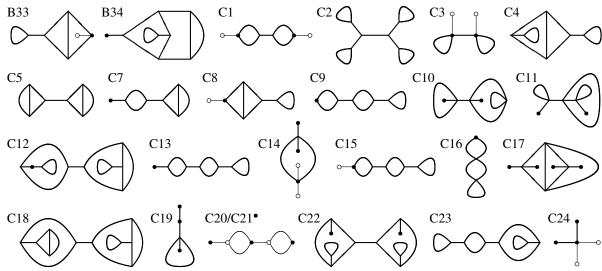
The numbers in (i1), (i2), (f1b) and (c) are ordered in increasing order. The tuples of branching fractions are ordered as follows

- (b1) in each tuple, the four branching fractions are ordered in increasing order of their denominators, then secondarily the numerators.
- (b2) the tuples are compared lexicographically, from their first elements, and the elements are matched first by their denominators then numerators.

These criteria break all ties in our list of Belyi functions. Due to (*i1*), the fields or *t*-values that ramify or degenerate modulo the same set of primes are placed next to each other. The leading coefficient in (*a3*) gives information about the primes where the covering is ramified. In particular, for  $j \in \mathbb{Q}$  the leading coefficient is the denominator of j.

# **B** Appendix: The A-J tables

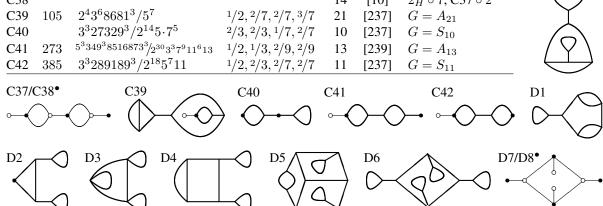

The following pages display tables of Galois orbits of minus-4-hyperbolic Belyi functions, grouped as specified in  $\S3.1$  and ordered by the criteria in  $\SA$ . All tables contain the following columns:


- Id: the label from A1 to J28;
- Branching frac.: the branching fractions of a minus-4-hyperbolic function;
- *d*: the degree of a Belyi function;
- $[k\ell m]$ : the values of  $k, \ell, m$ . For  $k = 2, \ell = 3, m \ge 10$ , only the value of  $m \in [10, 14]$  is given.
- Monodromy/comp. or Mndr/cmp.: The monodromy group  $G = \dots$  is given for indecomposable coverings, and compositions are indicated otherwise. The composition notation is explained in §C.

Other occasional columns:

- *j*-invariant: given if it is in  $\mathbb{Q} \setminus \{1728\}$ , in a factorized form;
- $d_j$ : the degree of the *j*-field (in tables I, J);
- disc Q(j), disc Q(t): the field discriminants. If the extension Q(t) ⊃ Q(j) is of degree 6, the degree of the the *t*-field is indicated in the disc Q(t) column in a small underlined font.
- $\sqrt{}$ : indicates the quadratic extension of either the *t*-field (in Tables C, D) or of the *j*-field (in Tables F, G);

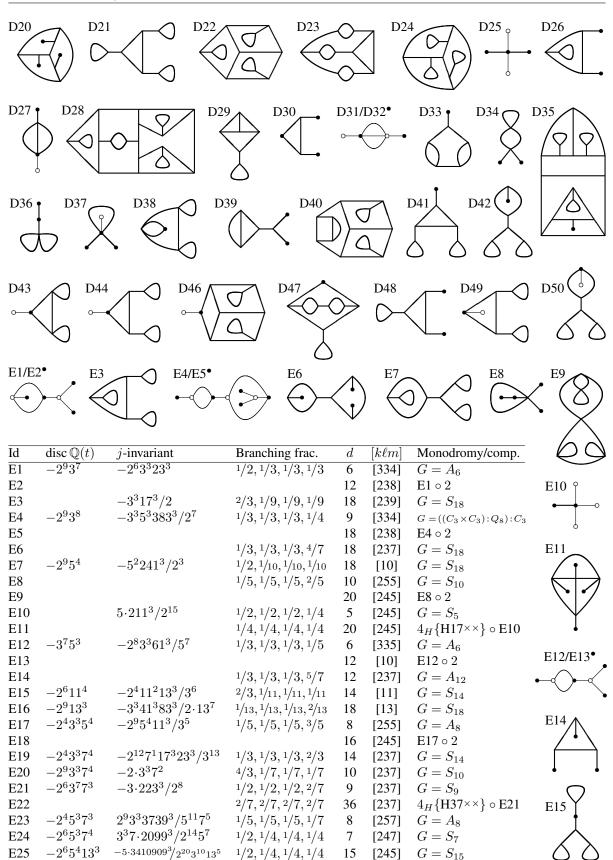
Belyi functions for hyperbolic Heun functions

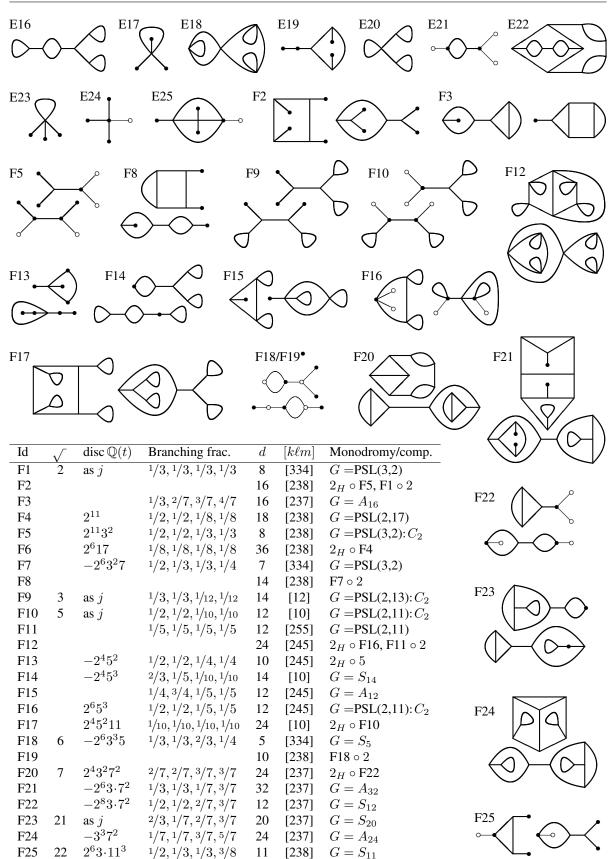





| T 1 |                                             | <b>D</b> 1: 6        | 1              | [1 0 ]      | <u> </u>                              | D01/D00                               |
|-----|---------------------------------------------|----------------------|----------------|-------------|---------------------------------------|---------------------------------------|
| Id  | <i>j</i> -invariant                         | Branching frac.      | $\frac{d}{10}$ | $[k\ell m]$ | Monodromy/comp.                       | B21/B22•                              |
| B1  | $2^4 13^3 / 3^2$                            | 1/2, 1/4, 1/8, 3/8   | 18             | [238]       | $3[288] \circ 2[248] \circ 3$         |                                       |
| B2  |                                             | 1/2, 1/7, 2/7, 3/7   | 27             | [237]       | $3[277] \circ 9$                      | $\sim$                                |
| B3  |                                             | 1/4, 1/4, 1/4, 1/4   | 6              | [344]       | $2_H \circ 3$                         | B23                                   |
| B4  | 0 9 / 4                                     |                      | 12             | [246]       | $4_H$ {D25, P22{B3}, P39} $\circ 3$   | $\sim$                                |
| B5  | $2^2 7 3^3 / 3^4$                           | 1/3, 1/3, 1/6, 1/6   | 12             | [246]       | $6 \{ P16, [366] \} [266] \circ 2$    |                                       |
| B6  |                                             | 1/3, 2/3, 1/7, 2/7   | 24             | [237]       | $3[337] \circ 8$                      | $\sim$                                |
| B7  |                                             | 1/3, 2/3, 1/9, 2/9   | 12             | [239]       | $3[339] \circ 4$                      | B24                                   |
| B8  |                                             | 1/4, 1/4, 1/5, 4/5   | 10             | [245]       | $G = S_{10}$                          | $\rightarrow \rightarrow \rightarrow$ |
| B9  |                                             | 1/4, 1/4, 1/8, 1/8   | 10             | [248]       | $G = A_6 : C_2$                       | $\mathbf{C}$                          |
| B10 |                                             |                      | 30             | [238]       | $3[388] \circ 10, B9 \circ 3$         | B25                                   |
| B11 |                                             | 1/6, 1/6, 1/12, 1/12 | 18             | [12]        | $6 \{ P17, [31212] \} [2612] \circ 3$ | 4                                     |
| B12 |                                             | 1/7, 1/7, 3/7, 3/7   | 36             | [237]       | $4[277] \circ 9$                      |                                       |
| B13 |                                             | 1/7, 2/7, 2/7, 4/7   | 30             | [237]       | $3[377''] \circ 10$                   |                                       |
| B14 |                                             | 1/8, 1/8, 3/8, 3/8   | 24             | [238]       | $8 \{ D9, [288] \} [248] \circ 3$     | B26 ←                                 |
| B15 | $6481^3/3^85^2$                             | 1/2, 1/4, 1/4, 3/8   | 15             | [238]       | $5[248] \circ 3$                      | -                                     |
| B16 | $2^{6}7^{3}97^{3}/3^{6}5^{4}$               | 1/3, 1/7, 2/7, 4/7   | 28             | [237]       | $G = A_{28}$                          | B27                                   |
| B17 |                                             | 1/3, 1/7, 3/7, 5/7   | 16             | [237]       | $G = A_{16}$                          | $\rightarrow$                         |
| B18 | $7^3 127^3 / 2^2 3^6 5^2$                   | 1/3, 1/3, 1/3, 1/3   | 5              | [335]       | $G = A_5$                             | $\bigcirc$                            |
| B19 |                                             |                      | 10             | [10]        | $2_H \circ 5, B18 \circ 2$            | B28                                   |
| B20 | $7^32287^3/2^63^25^6$                       | 1/3, 2/3, 2/7, 3/7   | 12             | [237]       | $G = S_{12}$                          | $\mathcal{V}$                         |
| B21 |                                             | 1/4, 1/4, 1/4, 1/4   | 6              | [344]       | $G = S_5$                             |                                       |
| B22 |                                             |                      | 12             | [246]       | $2_H \circ C24$ , B21 $\circ 2$       | $\square$                             |
| B23 |                                             | 1/5, 1/5, 2/5, 3/5   | 12             | [245]       | $6[255] \circ 2$                      | <sup>B29</sup>                        |
| B24 |                                             | 1/5, 1/5, 1/10, 3/10 | 18             | [10]        | $6 \left[ {}^{2510} \right] \circ 3$  |                                       |
| B25 | $2^{6}7^{3}31^{3}271^{3}/3^{10}11^{4}$      | 1/3, 2/3, 1/7, 4/7   | 12             | [237]       | $G = S_{12}$                          | $\bigvee$                             |
| B26 | $4993^{3}/2^{2}3^{8}7^{4}$                  | 1/4, 3/4, 1/5, 2/5   | 8              | [245]       | $G = S_8$                             | B30                                   |
| B27 | ,                                           | 1/6, 1/6, 1/6, 1/6   | 8              | [266]       | $G = \mathrm{PSL}(3,2) : C_2$         | $\leftarrow$                          |
| B28 |                                             | , , , , , , ,        | 16             | [246]       | $2_H \circ C3$ , B27 $\circ 2$        | $\smile$ $\backslash$                 |
| B29 | $2^4 3^3 7^6 103^3 / 5^6 11^4$              | 2/3, 1/4, 1/8, 3/8   | 14             | [238]       | $G = S_{14}$                          | B31                                   |
| B30 | $2^{4}181^{3}2521^{3}/3^{6}5^{4}13^{4}$     | 1/3, 1/4, 1/8, 5/8   | 16             | [238]       | $G = A_{16}$                          | $4 \wedge 1$                          |
| B31 | $73^{3}193^{3}409^{3}/2^{2}3^{2}5^{4}7^{8}$ | 1/7, 2/7, 3/7, 5/7   | 18             | [237]       | $G = S_{18}$                          |                                       |
| B32 | $49201^{3}/2^{8}3^{6}5^{2}11^{4}$           | 2/3, 1/7, 1/7, 4/7   | 20             | [237]       | $G = S_{20}$                          | B32                                   |
| B33 | $2^{4}106791301^{3}/3^{14}5^{2}7^{8}11^{6}$ | 1/2, 1/7, 3/7, 4/7   | 15             | [237]       | $G = S_{15}$                          |                                       |
| B34 | $829^3 30469^3 / 3^6 5^6 7^8 19^4$          | 1/3, 1/7, 2/7, 5/7   | 22             | [237]       | $G = S_{15}$ $G = S_{22}$             | $\vee$                                |

26


M. van Hoeij and R. Vidūnas




|                 |                      | 51                                                 |                                                      |    |             |                                       |                                                                                                                                                                                                                                        |
|-----------------|----------------------|----------------------------------------------------|------------------------------------------------------|----|-------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Īd              |                      | i invoriant                                        | Bronching froe                                       | d  | $[k\ell m]$ | Monodromy/comp.                       | C25 🔿                                                                                                                                                                                                                                  |
| $\frac{10}{C1}$ | $\frac{\sqrt{2}}{2}$ | j-invariant<br>$2^3 3^3 11^3$                      | Branching frac.                                      |    |             |                                       | $\sim 20$ Y                                                                                                                                                                                                                            |
|                 | 2                    |                                                    | $\frac{1/2, 1/2, 1/4, 1/4}{1/2, 1/2, 1/2, 1/4, 1/4}$ | 12 | [238]       | $2_H \circ 2 [248] \circ 3$           | $\wedge$                                                                                                                                                                                                                               |
| C2              |                      | $5^{3}11^{3}31^{3}/2^{3}7^{6}$                     | 1/14, 1/14, 1/14, 1/14                               | 18 | [14]        | $2_H \circ 9$                         | $\leftrightarrow$                                                                                                                                                                                                                      |
| C3              |                      | $73^3601^3/2 \cdot 3^47^8$                         | $\frac{1}{2}, \frac{1}{2}, \frac{1}{6}, \frac{1}{6}$ | 8  | [246]       | $G = \operatorname{PSL}(3,2): C_2$    | $\sim$                                                                                                                                                                                                                                 |
| C4              | 2                    | 221023 /2                                          | 1/7, 1/7, 3/7, 6/7                                   | 18 | [237]       | $G = S_{18}$                          | $\mathbf{k}$                                                                                                                                                                                                                           |
| C5              | 3                    | $\frac{2^2 193^3}{3}$                              | $\frac{1}{4}, \frac{1}{4}, \frac{3}{8}, \frac{3}{8}$ | 18 | [238]       | $2_H \circ 3 [248] \circ 3$           | $\Box$                                                                                                                                                                                                                                 |
| C6              |                      | $2^{7}53^{3}/3^{3}$                                | $\frac{1}{3}, \frac{1}{3}, \frac{2}{7}, \frac{2}{7}$ | 32 | [237]       | $4[337] \circ 8$                      | $\overset{\text{C26}}{\frown}$                                                                                                                                                                                                         |
| C7              |                      |                                                    | $\frac{1}{3}, \frac{1}{3}, \frac{2}{9}, \frac{2}{9}$ | 16 | [239]       | $4[339] \circ 4$                      | $\langle \rightarrow \rangle$                                                                                                                                                                                                          |
| C8              |                      | $3^3 5^3 157^3 / 2^2 11^6$                         | 1/2, 1/8, 3/8, 3/8                                   | 15 | [238]       | $G = S_{15}$                          | $\sim $                                                                                                                                                                                                                                |
| C9              |                      | $13^{3}541^{3}/3^{3}11^{4}$                        | 2/3, 1/9, 2/9, 2/9                                   | 14 | [239]       | $G = S_{14}$                          | C27                                                                                                                                                                                                                                    |
| C10             |                      | $109^39133^3/2^43^513^4$                           | 1/4, 1/4, 1/5, 3/5                                   | 14 | [245]       | $G = S_{14}$                          | $(\triangle)$                                                                                                                                                                                                                          |
| C11             |                      | - 2 2 2 4 4                                        | 1/4, 1/4, 1/6, 1/6                                   | 14 | [246]       | $G = \operatorname{PSL}(2, 13) : C_2$ | $\sim$                                                                                                                                                                                                                                 |
| C12             |                      | $3^3 37^3 192637^3 / 11^6 17^4$                    | 2/3, 1/7, 1/7, 3/7                                   | 26 | [237]       | $G = S_{26}$                          | 4                                                                                                                                                                                                                                      |
| C13             |                      | $2^{7}5^{3}1301^{3}43889^{3}/3^{17}11^{10}13^{4}$  | 1/3, 1/11, 2/11, 2/11                                | 16 | [11]        | $G = A_{16}$                          | $\mathbf{k}$                                                                                                                                                                                                                           |
| C14             | 5                    | $2^{11}$                                           | 1/2, 1/2, 1/4, 1/4                                   | 10 | [245]       | $2_H \circ 5$                         | $\bigcirc$                                                                                                                                                                                                                             |
| C15             |                      | $2^4 17^3$                                         | 1/2, 1/5, 1/5, 1/10                                  | 15 | [10]        | $5 \left[ {}^{2510}  ight] \circ 3$   | C28                                                                                                                                                                                                                                    |
| C16             |                      |                                                    | 1/2, 1/5, 2/5, 2/5                                   | 10 | [245]       | $5[255] \circ 2$                      | $\leftarrow$ $\mid$ $\succ$                                                                                                                                                                                                            |
| C17             |                      |                                                    | 1/4, 1/4, 1/4, 1/4                                   | 20 | [245]       | $4_H$ {F13×,C14} $\circ 5$            | $\checkmark$                                                                                                                                                                                                                           |
| C18             |                      | $103681^3/3^45$                                    | 1/7, 2/7, 3/7, 3/7                                   | 30 | [237]       | $G = S_{30}$                          | C29                                                                                                                                                                                                                                    |
| C19             | 6                    | $2^{6}971^{3}/3^{5}$                               | 1/2, 1/4, 1/4, 3/5                                   | 8  | [245]       | $G = A_8$                             | $\rightarrow \rightarrow $ |
| C20             |                      | $2^{6}19^{3}467^{3}/3^{7}5^{6}$                    | 1/3, 2/3, 1/4, 1/4                                   | 6  | [334]       | $G = S_6$                             | C31                                                                                                                                                                                                                                    |
| C21             |                      |                                                    |                                                      | 12 | [238]       | $C20 \circ 2$                         | $\cap$ $\cap$                                                                                                                                                                                                                          |
| C22             |                      | $11^3 1259^3 / 2 \cdot 3^3 5^4$                    | 1/3, 1/3, 1/8, 1/8                                   | 26 | [238]       | $G = \operatorname{PSL}(2, 25) : C_2$ | $\rightarrow \prec$                                                                                                                                                                                                                    |
| C23             |                      |                                                    | 1/9, 1/9, 2/9, 5/9                                   | 18 | [239]       | $G = S_{18}$                          | $\cup$ $\cup$                                                                                                                                                                                                                          |
| C24             |                      | $11^3 1979^3 / 2^3 3 \cdot 5^{12}$                 | 1/2, 1/2, 1/4, 1/4                                   | 6  | [246]       | $G = S_5$                             | C32                                                                                                                                                                                                                                    |
| C25             |                      |                                                    | 1/10, 1/10, 3/10, 3/10                               | 18 | [10]        | $2_H \circ 9$                         | $\frown$                                                                                                                                                                                                                               |
| C26             | 7                    | $3^3 5^3 17^3$                                     | 2/3, 2/7, 2/7, 3/7                                   | 14 | [237]       | $G = S_{14}$                          |                                                                                                                                                                                                                                        |
| C27             |                      | $2^4 37^3 271^3 / 3^6 5^4$                         | $^{2}/3, ^{1}/7, ^{1}/7, ^{5}/7$                     | 14 | [237]       | $G = S_{14}$                          | C33 🛧                                                                                                                                                                                                                                  |
| C28             |                      | $2^{2}11^{3}107^{3}/3^{12}7$                       | 1/3, 1/3, 3/8, 3/8                                   | 14 | [238]       | $2_H \circ 7$                         |                                                                                                                                                                                                                                        |
| C29             |                      | $2^{7}5^{6}1607^{3}/3^{16}7^{5}$                   | 1/3, 2/3, 2/3, 1/7                                   | 8  | [237]       | $G = A_8$                             | $\checkmark$                                                                                                                                                                                                                           |
| C30             | 10                   | $7949^3/2^53^{10}$                                 | 1/2, 1/2, 1/4, 1/4                                   | 10 | [245]       | $G = A_6$                             | C34                                                                                                                                                                                                                                    |
| C31             |                      |                                                    | 1/6, 1/6, 1/6, 1/6                                   | 10 | [256]       | $2_H \circ 5$                         | $\wedge$                                                                                                                                                                                                                               |
| C32             |                      | $11^3 13^3 23^3 / 2 \cdot 3^{12} 5$                | 2/3, 2/3, 1/8, 1/8                                   | 10 | [238]       | $2_H \circ 5$                         |                                                                                                                                                                                                                                        |
| C33             | 13                   | $112297^3/2^43^{20}13$                             | 1/2, 1/3, 3/7, 3/7                                   | 13 | [237]       | $G = A_{13}$                          | <b>∨</b>                                                                                                                                                                                                                               |
| C34             | 21                   | $3^{3}127^{3}/5^{6}$                               | 2/3, 1/7, 3/7, 3/7                                   | 14 | [237]       | $G = S_{14}$                          | C35                                                                                                                                                                                                                                    |
| C35             |                      | $3^3 1367^{3} / 2^4 5^2$                           | 1/2, 2/7, 3/7, 3/7                                   | 15 | [237]       | $G = S_{15}$                          | $\leftarrow$                                                                                                                                                                                                                           |
| C36             |                      | $757^311827^3/2^43^717^6$                          | 1/2, 1/7, 3/7, 3/7                                   | 21 | [237]       | $G = A_{21}$                          | $\bigvee$ $\vee$                                                                                                                                                                                                                       |
| C37             |                      | $37^35653^3/2^23^35^{12}7$                         | 1/3, 1/3, 1/5, 1/5                                   | 7  | [335]       | $G = A_7$                             | C36                                                                                                                                                                                                                                    |
| C38             |                      | / ·                                                | , , , , , , , , , , , , , , , , , , , ,              | 14 | [10]        | $2_H \circ 7, C37 \circ 2$            | ( b)                                                                                                                                                                                                                                   |
| C39             | 105                  | $2^4 3^6 8681^3 / 5^7$                             | 1/2, 2/7, 2/7, 3/7                                   | 21 | [237]       | $G = A_{21}$                          | $\mathbf{Y}$                                                                                                                                                                                                                           |
| C40             |                      | $3^{3}27329^{3}/2^{14}5\cdot7^{5}$                 | 2/3, 2/3, 1/7, 2/7                                   | 10 | [237]       | $G = S_{10}$                          | $\wedge$                                                                                                                                                                                                                               |
| C41             | 273                  | $5^{3}349^{3}8516873^{3}/2^{30}3^{3}7^{9}11^{6}13$ | 1/2, 1/3, 2/9, 2/9                                   | 13 | [239]       | $G = A_{13}$                          | $\langle \heartsuit \rangle$                                                                                                                                                                                                           |
| C41<br>C42      | $\frac{215}{385}$    | $3^{3}289189^{3}/2^{18}5^{7}11$                    | 1/2, 2/3, 2/7, 2/7                                   | 11 | [237]       | $G = S_{11}$                          | $( \square )$                                                                                                                                                                                                                          |
| C+2             | 000                  | 0 200100 / 2 0 11                                  | /2, /0, -/1, -/1                                     | 11 | [437]       | $G = D_{11}$                          | $\smile$                                                                                                                                                                                                                               |

Belyi functions for hyperbolic Heun functions

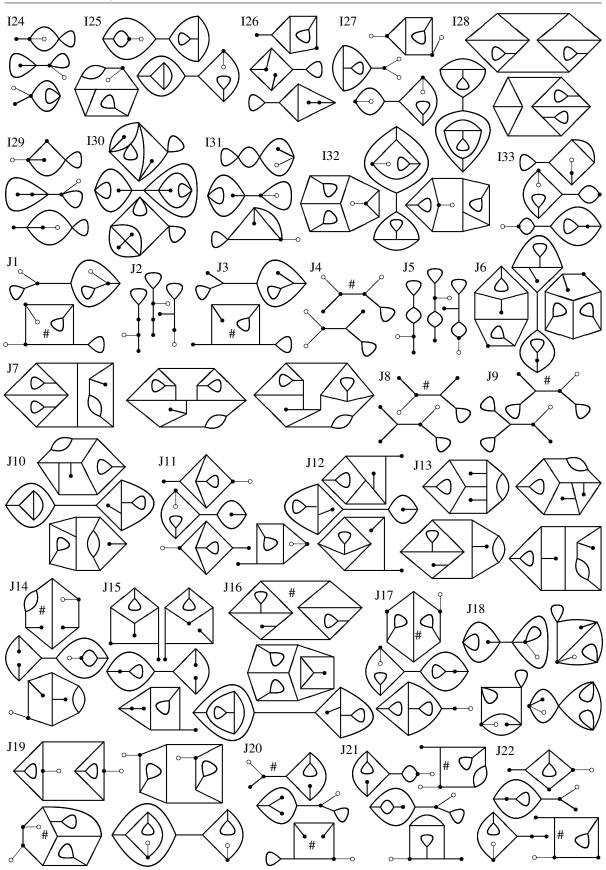

|            |           |                                                                                                            |                                                         |         |             |                                                                                                                          | (            |
|------------|-----------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------|-------------|--------------------------------------------------------------------------------------------------------------------------|--------------|
| Id         |           | <i>j</i> -invariant                                                                                        | Branching frac.                                         | d       | $[k\ell m]$ | Monodromy/comp.                                                                                                          | D9           |
| D1         | -1        | $2^2 3^3 1 3^3 / 5^4$                                                                                      | 1/4, 1/4, 1/8, 5/8                                      | 18      | [238]       | $6[248] \circ 3$                                                                                                         |              |
| D2         |           | $-2^4 109^3 / 5^6$                                                                                         | 1/3, 2/3, 1/9, 1/9                                      | 14      | [239]       | $G = S_{14}$                                                                                                             | <b>f</b>     |
| D3         |           |                                                                                                            | 1/5, 1/5, 1/5, 4/5                                      | 12      | [245]       | $6[255] \circ 2$                                                                                                         | ļ            |
| D4         |           |                                                                                                            | 1/5, 2/5, 1/10, 1/10                                    | 18      | [10]        | $6 [2510] \circ 3$                                                                                                       | D10          |
| D5         |           |                                                                                                            | 1/7, 1/7, 2/7, 5/7                                      | 30      | [237]       | $G = S_{30}$                                                                                                             |              |
| D6         |           |                                                                                                            | 1/10, 1/10, 1/10, 1/10                                  | 24      | [10]        | $4_H$ {G5×, P43} $\circ$ 6                                                                                               | $\bigcirc$   |
| D7         | -2        | $-2^{5}19^{3}/3^{6}$                                                                                       | 1/3, 1/3, 1/3, 1/3                                      | 8       | [334]       | $2_H \circ 4$                                                                                                            | _            |
| D8         |           | - / -                                                                                                      | /-//-//-//-                                             | 16      | [238]       | $4_H$ {G13×, P41{D7}} •4                                                                                                 | _            |
| D9         |           | $2 \cdot 47^3 / 3^8$                                                                                       | 1/2, 1/2, 1/8, 3/8                                      | 12      | [238]       | 4 [248] 0 3                                                                                                              |              |
| D10        |           | - / -                                                                                                      | 1/6, 1/6, 1/6, 1/6                                      | 8       | [266]       | $2_H \circ 4$                                                                                                            | DII          |
| D11        |           |                                                                                                            | /0, /0, /0, /0                                          | 16      | [246]       | $4_H$ {G11×, P23{D10}} •4                                                                                                | 6            |
| D12        |           | $-2^{6}239^{3}/3^{10}$                                                                                     | 1/2, 1/3, 1/4, 1/4                                      | 8       | [246]       | $4[344] \circ 2$                                                                                                         | $\sim$       |
| D12        |           | 2 200 /0                                                                                                   | 1/3, 1/3, 1/3, 2/3                                      | 8       | [238]       | $4[334] \circ 2$                                                                                                         |              |
| D13<br>D14 |           |                                                                                                            | 1/3, 1/6, 1/12, 1/12                                    | 16      | [12]        | $4[3412] \circ 4$                                                                                                        | 7            |
| D14        |           | $-482641^3/2 \cdot 3^2 11^{10}$                                                                            | 1/11, 1/11, 2/11, 3/11                                  | 18      | [12]        | $G = S_{18}$                                                                                                             |              |
|            |           | $-254977^3/2^53^{12}19^4$                                                                                  |                                                         |         |             |                                                                                                                          | D12          |
| D16        |           |                                                                                                            | 1/3, 1/3, 1/8, 3/8                                      | 20      | [238]       | $G = A_{20}$                                                                                                             |              |
| D17        | 2         | $\frac{7607^31753^3}{2^7}3^{20}5^411^4$                                                                    | $\frac{1}{3}, \frac{1}{7}, \frac{1}{7}, \frac{4}{7}$    | 34      | [237]       | $G = S_{34}$                                                                                                             | $\bigcirc$   |
| D18        | -3        | 0                                                                                                          | 1/2, 1/6, 1/6, 1/6                                      | 12      | [246]       | $3[366] \circ 2[266] \circ 2$                                                                                            | D12          |
| D19        |           |                                                                                                            | 1/3, 1/3, 1/3, 1/3                                      | 12      | [239]       | $3[339] \circ 4$                                                                                                         | D13          |
| D20        |           |                                                                                                            | 1/3, 1/3, 1/3, 3/7                                      | 24      | [237]       | $3[337] \circ 8$                                                                                                         | •••          |
| D21        |           |                                                                                                            | 1/4, 1/12, 1/12, 1/12                                   | 18      | [12]        | $3 \begin{bmatrix} 3 & 12 & 12 \\ 0 & 2 \end{bmatrix} \circ 2 \begin{bmatrix} 2 & 6 & 12 \\ 0 & 3 \end{bmatrix} \circ 3$ | D14          |
| D22        |           |                                                                                                            | 1/7, 1/7, 1/7, 6/7                                      | 30      | [237]       | $3[377''] \circ 10$                                                                                                      | D14          |
| D23        |           |                                                                                                            | 2/7, 2/7, 2/7, 3/7                                      | 30      | [237]       | $3[377''] \circ 10$                                                                                                      |              |
| D24        |           |                                                                                                            | 1/8, 1/8, 1/8, 3/8                                      | 30      | [238]       | $3[388] \circ 10$                                                                                                        |              |
| D25        |           | $2^{11}/3$                                                                                                 | 1/2, 1/2, 1/4, 1/4                                      | 6       | [246]       | $2_H \circ 3$                                                                                                            |              |
| D26        |           | $-2^{17}3^37^3/13^4$                                                                                       | 1/3, 1/3, 1/7, 6/7                                      | 14      | [237]       | $G = S_{14}$                                                                                                             | $\circ$      |
| D27        |           | $-23^{3}71^{3}/3 \cdot 7^{8}$                                                                              | 1/2, 1/4, 2/5, 2/5                                      | 9       | [245]       | $G = A_9$                                                                                                                |              |
| D28        |           |                                                                                                            | 1/7, 1/7, 1/7, 2/7                                      | 54      | [237]       | $G = S_{54}$                                                                                                             | $\leftarrow$ |
| D29        |           |                                                                                                            | 1/7, 3/7, 3/7, 4/7                                      | 18      | [237]       | $G = S_{18}$                                                                                                             | D15          |
| D30        | -5        | $-5281^3/3^{16}5$                                                                                          | 1/3, 1/3, 2/3, 3/7                                      | 10      | [237]       | $G = S_{10}$                                                                                                             |              |
| D31        |           | ,                                                                                                          | 1/3, 1/3, 1/4, 1/4                                      | 5       | [344]       | $G = S_5$                                                                                                                | $\triangle$  |
| D32        |           |                                                                                                            | , , , , , , ,                                           | 10      | [246]       | $2_H \circ 5$ , D31 $\circ 2$                                                                                            |              |
| D33        |           | $2^{7}91423^{3}/3^{6}5^{7}7^{8}$                                                                           | 1/3, 2/7, 2/7, 5/7                                      | 16      | [237]       | $G = A_{16}$                                                                                                             | 5            |
| D34        |           | $-11^{3}88811^{3}/2^{6}3^{4}5\cdot7^{12}$                                                                  | 1/4, 1/4, 1/7, 2/7                                      | 10      | [247]       | $G = S_{10}$                                                                                                             | D16          |
| D35        |           | $-11^{3}23830621091^{3}/2^{8}3^{20}5^{3}7^{8}43^{4}$                                                       | 1/3, 1/7, 1/7, 1/7                                      | 52      | [237]       | $G = A_{52}$                                                                                                             |              |
| D36        | -6        | $-2^{3}6359^{3}2999^{3}/3^{7}5^{16}7^{4}$                                                                  | 1/5, 2/5, 1/6, 1/6                                      | 8       | [256]       | $G = S_8$                                                                                                                |              |
| D30        | $-7^{-0}$ | $-5^{3}1637^{3}/2^{18}7$                                                                                   | 1/2, 1/5, 1/5, 2/5                                      | 7       | [255]       | $G = S_8$<br>$G = S_7$                                                                                                   |              |
| D38        |           | 0 1001 /2 1                                                                                                | /2, /0, /0, /0                                          | ,<br>14 | [235]       | $D37 \circ 2$                                                                                                            | D17          |
| D38<br>D39 |           |                                                                                                            | 1/3, 1/3, 1/3, 2/9                                      | 14      | [239]       | $G = S_{14}$                                                                                                             | D17          |
|            |           | $-5^3 37^3 167^3 / 2^8 3^4 11^4$                                                                           |                                                         |         |             |                                                                                                                          | <            |
| D40        |           | $-5^{\circ}37^{\circ}167^{\circ}/2^{\circ}3^{\circ}11^{\circ}$<br>$-2^{6}5^{3}14411^{3}/3^{6}7^{3}11^{10}$ | 1/7, 1/7, 2/7, 4/7                                      | 36      | [237]       | $G = A_{36}$                                                                                                             | $\sum$       |
| D41        |           |                                                                                                            | $\frac{1}{3}, \frac{1}{11}, \frac{1}{11}, \frac{3}{11}$ | 16      | [11]        | $G = A_{16}$                                                                                                             | -            |
| D42        | -14       | $-2^{5}199287631^{3}/3^{26}5^{6}7^{3}$                                                                     | $\frac{1}{3}, \frac{2}{5}, \frac{1}{10}, \frac{1}{10}$  | 16      | [10]        | $G = A_{16}$                                                                                                             |              |
| D43        | -15       | $-269^3/2^{10}3^5$                                                                                         | 1/2, 1/5, 1/5, 3/5                                      | 10      | [245]       | $5[255] \circ 2$                                                                                                         | $\sim$       |
| D44        |           |                                                                                                            | 1/2, 1/10, 1/10, 3/10                                   | 15      | [10]        | $5 \left[ {}^{2510} \right] \circ 3$                                                                                     | D18          |
| D45        |           |                                                                                                            | 1/4, 1/4, 1/4, 1/4                                      | 20      | [245]       | $2_H \circ C30$                                                                                                          |              |
| D46        |           | $-11^3 59^3 / 2^{12} 3 \cdot 5^3$                                                                          | 1/2, 1/7, 1/7, 4/7                                      | 27      | [237]       | $G = S_{27}$                                                                                                             | $\wedge$     |
| D47        |           | $-3^3 335089^3 / 2^{14} 5^7 23^4$                                                                          | $^{2}/3, ^{1}/7, ^{2}/7, ^{2}/7$                        | 26      | [237]       | $G = S_{26}$                                                                                                             | $\cup$       |
| D48        | -35       | $1685104151^3/2^63^{32}5^77 \cdot 13^4$                                                                    | 1/3, 1/3, 1/10, 3/10                                    | 14      | [10]        | $G = S_{14}$                                                                                                             | D19          |
| D49        | -39       | $-17^{3}29^{3}5197^{3}/2^{30}3^{3}5^{2}13^{3}$                                                             | 1/2, 1/9, 1/9, 4/9                                      | 15      | [239]       | $G = S_{15}$                                                                                                             |              |
|            |           |                                                                                                            |                                                         |         |             | - · ·                                                                                                                    |              |

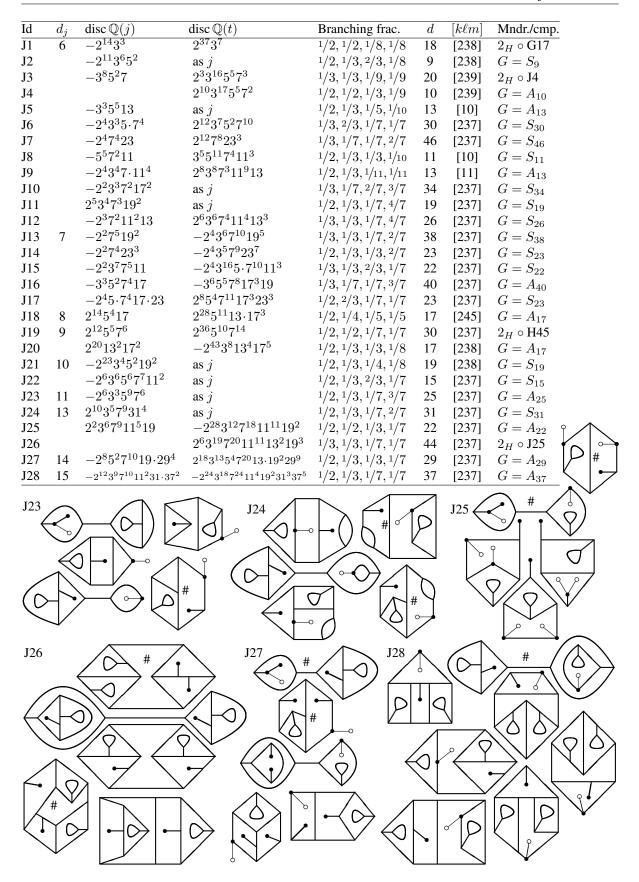




Belyi functions for hyperbolic Heun functions

| Id         |          | $\operatorname{disc} \mathbb{Q}(t)$   | Branching frac.                                                   | d        | $[k\ell m]$    | Monodromy/comp.                                                 | G1                                       |
|------------|----------|---------------------------------------|-------------------------------------------------------------------|----------|----------------|-----------------------------------------------------------------|------------------------------------------|
| G1         | -1       | as j                                  | 1/2, 1/2, 1/4, 1/8                                                | 15       | [238]          | $5[248] \circ 3$                                                |                                          |
| G2         |          |                                       | 1/3, 1/5, 1/10, 3/10                                              | 16       | [10]           | $G = A_{16}$                                                    |                                          |
| G3         |          | $2^{8}$                               | 2/3, 1/4, 1/8, 1/8                                                | 20       | [238]          | $G = S_{20}$                                                    |                                          |
| G4         |          | $2^{6}5$                              | 1/4, 1/4, 1/8, 1/8                                                | 10       | [248]          | $2_H \circ 5$                                                   | G2                                       |
| G5         |          |                                       |                                                                   | 30       | [238]          | $2_H \circ G1: 5: G4 \circ 3$                                   |                                          |
| G6         |          | - 9                                   | 1/2, 1/8, 1/8, 1/8                                                | 27       | [238]          | $G = S_{27}$                                                    | $\vee$ $\succ$                           |
| G7         |          | 2 <sup>8</sup> 5                      | 1/2, 1/2, 1/10, 1/10                                              | 12       | [10]           | $2_H \circ 6$                                                   |                                          |
| G8         |          | $2^{6}13$                             | $\frac{1}{3}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}$              | 28       | [238]          | $G = A_{28}$                                                    | $G_3$                                    |
| G9         | 0        | $2^{4}5.13$                           | 1/2, 1/8, 1/8, 5/8                                                | 15       | [238]          | $G = S_{15}$                                                    | $\langle \circ \rangle$                  |
| G10        | -2       | as $j$<br>$2^{11}$                    | $\frac{1}{3}, \frac{2}{3}, \frac{1}{8}, \frac{3}{8}$              | 12       | [238]          | $G = S_{12}$                                                    |                                          |
| G11<br>G12 |          | $2^{10}$                              | $\frac{1}{2}, \frac{1}{2}, \frac{1}{6}, \frac{1}{6}$              | 8<br>19  | [246]          | $2_H \circ 4$<br>C - S                                          | $\smile$                                 |
| G12<br>G13 |          | $2^{11}3$                             | $\frac{1}{3}, \frac{2}{3}, \frac{1}{8}, \frac{1}{8}$              | 18<br>°  | [238]          | $G = S_{18}$                                                    | G4                                       |
| G13<br>G14 |          | 23                                    | 1/2, 1/2, 1/3, 1/3<br>1/2, 1/2, 1/8, 3/8                          | 8<br>12  | [238]<br>[238] | $2_H \circ 4 \\ G = S_{12}$                                     | $\bullet \frown \bullet \bullet$         |
| G14        |          | $2^{6}3 \cdot 11$                     | 1/2, 1/2, 1/8, 0/8<br>1/8, 1/8, 3/8, 3/8                          | 24       | [238]          | $G = S_{12}$<br>$2_H \circ G14$                                 | $\bigcirc$                               |
| G16        |          | $2^{6}3.11$                           | 1/2, 1/8, 1/8, 3/8                                                | 24<br>21 | [238]          | $G = A_{21}$                                                    |                                          |
| G17        |          | $\frac{12}{12}2^{33}3^{7}$            | 1/2, 1/2, 1/2, 1/2, 1/8                                           | 9        | [238]          | $G = A_{21}$<br>$G = (((C_3)^2 : Q_8) : C_3) : C_2$             | G5                                       |
| G17        |          | -2 5                                  | 1/8, 1/8, 1/8, 1/8                                                | 36       | [238]          | $4_H \{J1 \times \times\} \circ G17$                            | $\langle \cdots \rangle$                 |
| G19        | -3       | as j                                  | 1/3, 1/7, 2/7, 6/7                                                | 16       | [237]          | $G = A_{16}$                                                    | $\setminus 0 /$                          |
| G20        | 0        | $2^{4}3^{3}$                          | 1/4, 3/4, 1/6, 1/6                                                | 8        | [246]          | $G = S_8$                                                       | $\nabla \neg$                            |
| G21        |          | $\frac{2}{3^{3}7}$                    | 1/3, 1/3, 1/9, 4/9                                                | 14       | [239]          | $G = S_{14}$                                                    |                                          |
| G22        |          | $2^{4}3^{2}7$                         | 1/3, 3/4, 1/8, 1/8                                                | 16       | [238]          | $\widetilde{G} = \widetilde{A}_{16}$                            | G6                                       |
| G23        |          |                                       | 1/3, 1/3, 1/12, 1/12                                              | 14       | [12]           | $2_H \circ 7$                                                   | $ \lor \leftrightarrow \diamond \rangle$ |
| G24        |          |                                       | 1/3, 1/6, 1/12, 1/12                                              | 16       | [12]           | $G = A_{16}$                                                    |                                          |
| G25        |          | $3^{3}7.13$                           | 1/2, 1/7, 1/7, 6/7                                                | 15       | [237]          | $G = S_{15}^{10}$                                               | V                                        |
| G26        |          | $\frac{12}{3}$ $3^{21}$ $7^{3}$       | 1/2, 1/3, 1/3, 1/3                                                | 9        | [239]          | $G = PSL(2,8): C_3$                                             | G7_ γ                                    |
| G27        |          | $\frac{12}{2}2^{12}3^{13}13^3$        | 1/2, 1/12, 1/12, 1/12                                             | 15       | [12]           | $G = S_{15}$                                                    | $\bigcirc + + \bigcirc$                  |
| G28        |          | $\frac{12:}{397^313^7}$               | 1/3, 1/13, 1/13, 1/13                                             | 16       | [13]           | $G = A_{16}$                                                    | 6                                        |
| G29        | -5       | $2^4 3 \cdot 5^3 7$                   | 1/2, 3/4, 1/5, 1/5                                                | 7        | [245]          | $G = S_7$                                                       | G8                                       |
| G30        | -7       | as $j$                                | $^{1}/2, ^{1}/7, ^{2}/7, ^{4}/7$                                  | 21       | [237]          | $G = A_{21}$                                                    |                                          |
| G31        |          |                                       | 2/3, 1/7, 2/7, 4/7                                                | 14       | [237]          | $G = S_{14}$                                                    |                                          |
| G32        |          |                                       | $^{2}/3, ^{1}/7, ^{1}/7, ^{2}/7$                                  | 32       | [237]          | $G = S_{32}$                                                    | •                                        |
| G33        |          | $2^{3}7^{2}$                          | 1/7, 1/7, 1/7, 4/7                                                | 42       | [237]          | $G = S_{42}$                                                    | G9 👝 🔹                                   |
| G34        |          | $2^{4}7^{2}$                          | 1/3, 1/7, 2/7, 2/7                                                | 40       | [237]          | $G = A_{40}$                                                    |                                          |
| G35        |          | $2^{2}7^{3}$                          | 1/2, 1/2, 1/2, 1/3                                                | 7        | [237]          | G = PSL(3,2)                                                    |                                          |
| G36        |          | - 5 - 9                               | $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}$ | 28       | [237]          | $4_H\{I3\times,G39\}\circ G35$                                  | $\sim$ 0                                 |
| G37        |          | $2^57^2$                              | 1/2, 1/4, 1/4, 1/7                                                | 8        | [247]          | $G = (C_2)^3 : \text{PSL}(3,2)$                                 | G10 🖊 🗖                                  |
| G38        |          | $a^{2}a^{2}\pi^{3}$                   | 1/2, 1/2, 1/7, 4/7                                                | 12       | [237]          | $G = S_{12}$                                                    |                                          |
| G39        |          | $2^{2}3^{2}7^{3}$                     | $\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}$              | 14       | [237]          | $2_H \circ G35$                                                 |                                          |
| G40        |          | $2^27^211$                            | $\frac{1}{7}, \frac{1}{7}, \frac{4}{7}, \frac{4}{7}$              | 24       | [237]          | $2_H \circ G38$                                                 | $\sim$                                   |
| G41<br>G42 |          |                                       | $\frac{1}{2}, \frac{1}{7}, \frac{2}{7}, \frac{2}{7}$              | 33       | [237]          | $G = A_{33}$                                                    | G11 👝                                    |
| G42<br>G43 |          | $7^{2}37$                             | $\frac{1}{3}, \frac{2}{7}, \frac{2}{7}, \frac{4}{7}$              | 22       | [237]<br>[237] | $G = S_{22}$                                                    | $\nabla$                                 |
| G43<br>G44 |          | $\frac{12}{12}2^{6}7^{10}43^{3}$      | 1/2, 1/7, 1/7, 2/7<br>1/2, 1/7, 1/7, 1/7                          | 39<br>45 |                | $G = S_{39}$ $G = A_{45}$                                       |                                          |
| G44<br>G45 | -11      | $\frac{12}{12} 3^7 11^9$              | 1/2, 1/7, 1/7, 1/7<br>1/3, 1/3, 1/3, 1/11                         |          | [237]          | $G = A_{45}$ $G = M_{12}$                                       | 0                                        |
| G45<br>G46 | -11 - 15 | $2^{3}3^{3}5^{2}$                     | 1/3, 1/3, 1/3, 1/3, 1/11<br>1/2, 1/2, 1/2, 1/5                    | 12<br>6  | [11]<br>[245]  | $G = M_{12}$ $G = A_6$                                          | G12                                      |
| G40<br>G47 | -10      | 200                                   | 1/2, 1/2, 1/2, 1/3<br>1/5, 1/5, 1/5, 1/5                          | 12       | [245]          | $G = A_6$<br>$2_H \circ G49$                                    |                                          |
| G47<br>G48 |          |                                       | / 0, -/ 0, -/ 0, -/ 0                                             | 24       | [235]          | $2_H \circ 049$<br>$4_H \{111^{\times}, G50\{G47\}\} \circ G46$ | $\langle \neg \neg \rangle$              |
| G48<br>G49 |          | $2^2 3^3 5^3$                         | 1/2, 1/2, 1/5, 1/5                                                | 6        | [245]          | $G = A_6$                                                       | $\searrow \bigcirc$                      |
| G50        |          | 200                                   | /2, /2, /0, /0                                                    | 12       | [235]          | $G = A_6$<br>$2_H \circ G46, G49 \circ 2$                       | G13                                      |
| G51        |          | $2^5 3^3 5^2$                         | 1/4, 1/4, 1/5, 2/5                                                | 12       | [245]          | $G = S_{18}$                                                    | $\sim$ $^{\circ}$                        |
| G51        |          | $\frac{12}{12}$ $2^9 3^{18} 5^9 19^3$ |                                                                   | 21       | [239]          | $G = S_{18}$ $G = A_{21}$                                       |                                          |
|            |          |                                       | , =, , =, , 0, , 0                                                |          | r=2/1          |                                                                 | 0                                        |





Belyi functions for hyperbolic Heun functions

| Id         | disc $\mathbb{Q}(j)$  | disc $\mathbb{Q}(t)$                              | Branching frac.                                        | d       | $[k\ell m]$ | Monodromy/comp.                       | $^{\rm H43}$                                                                                                                                                                                                                     |
|------------|-----------------------|---------------------------------------------------|--------------------------------------------------------|---------|-------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H1         | $\frac{3^4}{3^4}$     | $\frac{\operatorname{as} j}{\operatorname{as} j}$ | $\frac{1/3, 1/3, 1/9, 1/9}{1/3, 1/9, 1/9}$             | 20      | [239]       | G = PSL(2,19)                         |                                                                                                                                                                                                                                  |
| H2         | $-3^{5}$              | as $j$                                            | 1/3, 2/3, 1/9, 2/9                                     | 12      | [239]       | $G = S_{12}$                          | $\land \land $                                                                                                             |
| H3         | 0                     | $-2^2 3^{10} 5$                                   | 1/3, 1/3, 2/3, 1/9                                     | 10      | [239]       | $G = S_{12}$ $G = S_{10}$             |                                                                                                                                                                                                                                  |
| H4         | $-2^2 3^3$            |                                                   | 1/2, 1/3, 1/9, 2/9                                     | 15      | [239]       | $G = S_{10}$ $G = S_{15}$             |                                                                                                                                                                                                                                  |
| н4<br>Н5   | -2 3                  | as $j = -2^8 3^6 5$                               | 1 1 1 1 1 1                                            |         |             |                                       |                                                                                                                                                                                                                                  |
|            | $-2^{3}3^{3}$         |                                                   | $\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}$   | 10      | [246]       | $G = (A_6 : C_2) : C_2$               | H44 /                                                                                                                                                                                                                            |
| H6         |                       | as $j$                                            | 1/3, 1/9, 2/9, 4/9                                     | 16      | [239]       | $G = A_{16}$                          |                                                                                                                                                                                                                                  |
| H7         | $-2^{2}3^{4}$         | $-2^{8}3^{9}$                                     | 1/2, 1/2, 1/9, 2/9                                     | 12      | [239]       | $G = S_{12}$                          |                                                                                                                                                                                                                                  |
| H8         |                       | $2^7 3^8 11$                                      | 1/9, 1/9, 2/9, 2/9                                     | 24      | [239]       | $2_H \circ H7$                        | $(0) \leq (0)$                                                                                                                                                                                                                   |
| H9         | -9                    | $-2^{8}3^{8}11$                                   | 1/3, 1/9, 1/9, 2/9                                     | 22      | [239]       | $G = S_{22}$                          |                                                                                                                                                                                                                                  |
| H10        | $7^{2}$               | $2^{6}7^{5}$                                      | 1/2, 1/2, 1/7, 1/7                                     | 30      | [237]       | G = PSL(2,29)                         | $\mathbf{v}$                                                                                                                                                                                                                     |
| H11        |                       | $3^{3}7^{5}$                                      | 1/3, 1/3, 1/7, 1/7                                     | 44      | [237]       | G = PSL(2,43)                         | H45                                                                                                                                                                                                                              |
| H12        |                       | $2^{6}3^{3}7^{4}$                                 | 1/2, 1/2, 1/3, 1/3                                     | 14      | [237]       | G = PSL(2,13)                         | $\leftarrow$                                                                                                                                                                                                                     |
| H13        |                       | $7^{4}13$                                         | 1/3, 1/3, 1/3, 1/3                                     | 28      | [237]       | $2_H \circ H12$                       |                                                                                                                                                                                                                                  |
| H14        |                       | $7^{4}29$                                         | 1/7, 1/7, 1/7, 1/7                                     | 60      | [237]       | $2_H \circ H10$                       | $(\Delta)$                                                                                                                                                                                                                       |
| H15        | $-2^{3}5^{2}$         | as $j$                                            | 1/5, 1/5, 2/5, 2/5                                     | 8       | [255]       | $G = S_8$                             | \°∕ ∕°                                                                                                                                                                                                                           |
| H16        |                       |                                                   |                                                        | 16      | [245]       | $2_H \circ H19, H15 \circ 2$          | V ,                                                                                                                                                                                                                              |
| H17        |                       | $2^{11}5^4$                                       | 1/2, 1/2, 1/4, 1/4                                     | 10      | [245]       | $2_H \circ E10$                       | H47 $( \rightarrow $ |
| H18        |                       | $2^{12}5^4$                                       | 1/2, 1/4, 1/4, 1/5                                     | 16      | [245]       | $G = ((C_2)^4 : A_5) : C_2$           | $\sim$                                                                                                                                                                                                                           |
| H19        |                       | $-2^{14}5^4$                                      | 1/2, 1/2, 1/5, 2/5                                     | 8       | [245]       | $G = S_8$                             |                                                                                                                                                                                                                                  |
| H20        |                       | $-2^{14}5^5$                                      | 1/2, 1/2, 1/3, 1/4                                     | 10      | [238]       | $G = A_{10}$                          | H48 🔨                                                                                                                                                                                                                            |
| H21        |                       | $2^{9}3^{3}5^{5}$                                 | 1/3, 1/3, 1/4, 1/4                                     | 10      | [334]       | $G = A_{10}$                          |                                                                                                                                                                                                                                  |
| H22        |                       |                                                   | / 0, / 0, / 1, / 1                                     | 20      | [238]       | $2_H \circ H20, H21 \circ 2$          | $\langle \gamma \rangle \langle \gamma \rangle$                                                                                                                                                                                  |
| H23        |                       | $-2^{8}3^{3}5^{4}7$                               | 1/3, 1/3, 1/8, 5/8                                     | 14      | [238]       | $G = S_{14}$                          |                                                                                                                                                                                                                                  |
| H24        | $-3^{3}5$             | $-3^{6}5^{3}7$                                    | 1/2, 1/5, 1/5, 1/6                                     | 7       | [256]       | $G = S_{14}$<br>$G = S_7$             | $\bigcup \neg \neg ( \lor \neg )$                                                                                                                                                                                                |
| H25        | 5.5                   | 001                                               | 1/3, 1/9, 1/9, 5/9                                     | ,<br>16 | [230]       | $G = S_7$ $G = A_{16}$                | $\smile$                                                                                                                                                                                                                         |
| H26        | $-2^{2}11$            | $-2^4 11^3 13$                                    | 1/2, 1/11, 1/11, 2/11                                  | 15      | [11]        | $G = A_{16}$ $G = S_{15}$             | H49 N                                                                                                                                                                                                                            |
| H27        | -2 11                 | $-2^{4}3^{3}7 \cdot 11^{3}$                       |                                                        |         |             |                                       |                                                                                                                                                                                                                                  |
|            |                       | $-2.5^{\circ}(\cdot)11^{\circ}$                   | $\frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{4}{7}$   | 11      | [237]       | $G = S_{11}$                          |                                                                                                                                                                                                                                  |
| H28        | $-2^{3}13$            | · · ·                                             | $\frac{1}{3}, \frac{1}{3}, \frac{1}{11}, \frac{2}{11}$ | 14      | [11]        | $G = S_{14}$                          | $\leftarrow \rightarrow \checkmark \bullet$                                                                                                                                                                                      |
| H29        |                       | as $j$                                            | $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{3}{8}$   | 13      | [238]       | $G = A_{13}$                          | $\checkmark$ $\forall$                                                                                                                                                                                                           |
| H30        | $-2^2 3 \cdot 5^2$    | $-2^{6}3^{3}5^{5}$                                | $\frac{1}{3}, \frac{2}{3}, \frac{1}{10}, \frac{1}{10}$ | 12      | [10]        | $G = S_{12}$                          | H50 •                                                                                                                                                                                                                            |
| H31        | $-2^{2}3^{4}5$        | $-2^{4}3^{8}5^{3}11$                              | 1/2, 2/3, 1/9, 1/9                                     | 11      | [239]       | $G = S_{11}$                          |                                                                                                                                                                                                                                  |
| H32        | $-3^{4}11$            | $-3^{8}11^{3}$                                    | 1/2, 1/3, 1/3, 2/9                                     | 11      | [239]       | $G = S_{11}$                          |                                                                                                                                                                                                                                  |
| H33        | $-5^{2}7$             | $5^57^2$                                          | 1/3, 1/3, 3/7, 3/7                                     | 20      | [237]       | $2_H \circ H34$                       | $\langle \bullet \rangle \rightarrow \rangle \rightarrow \sim$                                                                                                                                                                   |
| H34        |                       | $-2^{6}5^{5}7^{2}$                                | 1/2, 1/2, 1/3, 3/7                                     | 10      | [237]       | $G = A_{10}$                          | $\bigcirc$ $\bigcirc$                                                                                                                                                                                                            |
| H35        | $-2^2 3 \cdot 7^2$    | $-2^4 3^3 5 \cdot 7^4$                            | $^{1}/2, ^{1}/3, ^{1}/3, ^{2}/3$                       | 7       | [237]       | $G = S_7$                             |                                                                                                                                                                                                                                  |
| H36        | $-2^2 3^3 7$          | $2^8 3^6 7^2$                                     | 1/3, 1/7, 1/7, 6/7                                     | 22      | [237]       | $G = S_{22}$                          | H51                                                                                                                                                                                                                              |
| H37        |                       | $2^8 3^7 7^3$                                     | 1/2, 1/2, 2/7, 2/7                                     | 18      | [237]       | $2_H \circ E21$                       |                                                                                                                                                                                                                                  |
| H38        | $-2^{3}3 \cdot 7^{2}$ | $-2^{8}3^{3}7^{4}$                                | 1/3, 1/3, 2/3, 2/7                                     | 16      | [237]       | $G = S_{16}$                          | <u> </u>                                                                                                                                                                                                                         |
| H39        | $-2^{2}5.7$           | as j                                              | 1/2, 1/2, 1/4, 2/5                                     | 7       | [245]       | $G = S_7$                             | $\setminus$ $\leftarrow$                                                                                                                                                                                                         |
| H40        |                       | -                                                 | 1/2, 1/7, 2/7, 5/7                                     | 15      | [237]       | $G = S_{15}$                          | $\bigwedge \bigcirc \land \land$                                                                                                                                                                                                 |
| H41        |                       | $2^8 5^2 7^3$                                     | 1/4, 1/4, 2/5, 2/5                                     | 14      | [245]       | $2_H \circ H39$                       | $(\langle   \rangle) \rightarrow (\langle   \rangle)$                                                                                                                                                                            |
| H42        |                       | $-2^4 3^3 5^3 7^2$                                | 1/3, 1/3, 1/7, 5/7                                     | 20      | [237]       | $G = A_{20}$                          | $\bigvee$ $\bigvee$                                                                                                                                                                                                              |
| H43        |                       | $-2^{4}5^{3}7^{2}19$                              | 1/2, 1/3, 2/7, 2/7                                     | 25      | [237]       | $G = A_{25}$                          | 1150                                                                                                                                                                                                                             |
| H44        |                       | $2^4 5^3 7^3 19$                                  | 1/2, 1/7, 1/7, 5/7                                     | 21      | [237]       | $G = A_{21}$                          | H52                                                                                                                                                                                                                              |
| H45        | $-2^{2}5 \cdot 7^{2}$ | $\frac{18}{18} - 2^{30} 5^{10} 7^{12}$            | 1/2, 1/2, 1/2, 1/7                                     | 15      | [237]       | $G = A_{15}$                          | $\langle A \rangle$                                                                                                                                                                                                              |
| H46        | - • •                 |                                                   | 1/7, 1/7, 1/7, 1/7                                     | 60      | [237]       | $4_H \{J19 \times \times\} \circ H45$ | $\sim$                                                                                                                                                                                                                           |
| H47        | $-2^{3}5 \cdot 7^{2}$ | $-2^{13}3 \cdot 5^27^4$                           | 1/2, 1/2, 2/3, 1/7                                     | 8       | [237]       | $G = S_8$                             |                                                                                                                                                                                                                                  |
| H48        | 2 0.1                 | $2^{8}3.5^{3}7^{5}$                               | 2/3, 2/3, 1/7, 1/7                                     | 16      | [237]       | C = 58<br>$2_H \circ H47$             | (-)                                                                                                                                                                                                                              |
| H49        | $-7.17^{2}$           | $-3.5.7^{2}17^{5}$                                | 1/2, 1/3, 1/3, 3/7                                     | 17      | [237]       | $G = A_{17}$                          | $\bigvee \lor \lor$                                                                                                                                                                                                              |
| н49<br>H50 | -7.17<br>$-2^27.13$   |                                                   |                                                        |         |             |                                       | Ц52                                                                                                                                                                                                                              |
|            | -2 1.19               | as $j - 2^4 3 \cdot 7^2 13^3$                     | $\frac{1}{2}, \frac{1}{3}, \frac{2}{7}, \frac{4}{7}$   | 13      | [237]       | $G = A_{13}$                          | H53                                                                                                                                                                                                                              |
| H51        | 0 17 11               |                                                   | $\frac{1}{3}, \frac{1}{3}, \frac{2}{7}, \frac{3}{7}$   | 26      | [237]       | $G = S_{26}$                          | $\langle   \rangle \rightarrow \langle \rangle$                                                                                                                                                                                  |
| H52        | -3.7.11               | as $j$                                            | $\frac{1}{3}, \frac{1}{7}, \frac{3}{7}, \frac{4}{7}$   | 22      | [237]       | $G = S_{22}$                          |                                                                                                                                                                                                                                  |
| H53        | $-2^2 3 \cdot 7^2 11$ | as j                                              | 1/2, 2/3, 1/7, 3/7                                     | 11      | [237]       | $G = S_{11}$                          | $\overline{}$                                                                                                                                                                                                                    |
|            |                       |                                                   |                                                        |         |             |                                       |                                                                                                                                                                                                                                  |

|              |              |                                    |                                                     |                                                                     |           |                             |                         |                          | •                                          |
|--------------|--------------|------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------|-----------|-----------------------------|-------------------------|--------------------------|--------------------------------------------|
| Id           | $d_j$        | disc $\mathbb{Q}(j)$               | disc $\mathbb{Q}(t)$                                | Branching frac.                                                     | d         | $[k\ell m]$                 | Mndr./cmp.              |                          | $\infty$                                   |
| I1           | 4            | $2^{6}3^{4}$                       | as j                                                | 1/2, 1/3, 1/4, 1/6                                                  | 9         | [246]                       | $G = A_9$               | $( \Rightarrow$          |                                            |
| I2           |              | $2^{2}7^{3}$                       | as $j$                                              | 1/3, 2/3, 1/7, 2/7                                                  | 24        | [237]                       | $G = S_{24}$            | Ŭ                        | $\sim$                                     |
| I3           |              |                                    | $2^{12}3^27^6$                                      | 1/2, 1/2, 1/3, 1/3                                                  | 14        | [237]                       | $2_H \circ G35$         | I2                       | $\wedge \checkmark$                        |
| I4           |              | $2^{3}7^{3}$                       | $2^{13}7^{6}$                                       | 1/2, 1/2, 1/7, 2/7                                                  | 24        | [237]                       | $G = S_{24}$            | 12                       | $\longleftrightarrow$                      |
| I5           |              |                                    | $2^{10}7^{6}23$                                     | 1/7, 1/7, 2/7, 2/7                                                  | 48        | [237]                       | $2_H \circ I4$          | $\square$                | $\langle A \rangle$                        |
| I6           |              |                                    | $\frac{24}{2}2^{37}5^{6}7^{22}$                     | 2/3, 1/7, 1/7, 1/7                                                  | 38        | [237]                       | $G = S_{38}$            | (DH                      |                                            |
| I7           |              | $2^{6}7^{2}$                       | $2^{12}3 \cdot 5 \cdot 7^5$                         | 1/2, 1/4, 1/7, 1/7                                                  | 9         | [247]                       | $G = A_9$               |                          |                                            |
| I8           |              | $3^{3}7$                           | $3^{6}5^{2}7^{2}13$                                 | 1/3, 1/7, 1/7, 5/7                                                  | 28        | [237]                       | $G = A_{28}$            | 13                       | $^{\prime}$                                |
| I9           |              |                                    | $\frac{24}{3}3^{30}7^{17}19^{3}$                    | 1/2, 1/3, 1/3, 1/3                                                  | 21        | [237]                       | $G = A_{21}$            | •                        | $\langle \cdot \rangle \rightarrow 0$      |
| I10          |              | $-2^{8}11$                         | as $j$                                              | 1/2, 2/3, 1/4, 1/8                                                  | 11        | [238]                       | $G = S_{11}$            |                          |                                            |
| I11          |              | $2^3 3^3 5^2$                      | $2^{17}3^{6}5^{5}$                                  | 1/2, 1/2, 1/5, 1/5                                                  | 12        | [245]                       | $2_H \circ G46$         | $\leftarrow$             | $\rightarrow$                              |
| I12          |              | $2^4 3^3 7$                        | as $j$                                              | 1/2, 1/2, 1/4, 1/6                                                  | 7         | [246]                       | $G = S_7$               | $\sim$                   |                                            |
| I13          |              |                                    | $2^{12}3^{7}7^{3}$                                  | 1/4, 1/4, 1/6, 1/6                                                  | 14        | [246]                       | $2_H \circ I12$         | I4 🔨                     | •••                                        |
| I14          |              | $2^2 3^3 7^3$                      | $\frac{24}{2}2^{18}3^{33}7^{18}13^3$                | 1/3, 1/3, 1/3, 1/7                                                  | 36        | [237]                       | $G = A_{36}$            | 4                        |                                            |
| I15          |              | $-2^2 3^5 7^2$                     | as $j$                                              | 1/2, 1/3, 2/3, 2/7                                                  | 9         | [237]                       | $G = S_9$               |                          | $/ () \frown$                              |
| I16          |              | $2^{6}3 \cdot 11$                  | as $j$                                              | 1/3, 1/4, 1/8, 3/8                                                  | 22        | [238]                       | $G = S_{22}$            |                          |                                            |
| I17          |              | $2^{2}3^{4}13$                     | as $j$                                              | 1/2, 1/3, 1/3, 1/9                                                  | 13        | [239]                       | $G = A_{13}$            | $\langle Q \rangle$      |                                            |
| I18          |              | $2^5 3^3 13$                       | as $j$                                              | 1/2, 1/2, 1/3, 1/8                                                  | 13        | [238]                       | $G = A_{13}$            | $\mathbf{V}$             | $\bigcirc$                                 |
| I19          |              |                                    | $2^{14}3^{6}13^{3}$                                 | 1/3, 1/3, 1/8, 1/8                                                  | 26        | [238]                       | $2_H \circ I18$         | 15                       |                                            |
| I20          |              | $7^2 19^2$                         | as $j$                                              | 1/2, 1/3, 2/7, 3/7                                                  | 19        | [237]                       | $G = S_{19}$            | $\leftarrow$             | $\rightarrow ^{\sim}$                      |
| I21          |              | $2^2 3^3 5 \cdot 7 \cdot 13$       | as $j$                                              | 1/2, 1/3, 1/7, 5/7                                                  | 13        | [237]                       | $G = A_{13}$            | $\sim$                   | $\checkmark \setminus \bigcirc \checkmark$ |
| I22          | 5            | $2^{11}7^3$                        | $-2^{31}7^{6}$                                      | 1/2, 1/2, 1/3, 2/7                                                  | 16        | [237]                       | $G = S_{16}$            |                          |                                            |
| I23          |              |                                    | $2^{26}3^37^613$                                    | 1/3, 1/3, 2/7, 2/7                                                  | 32        | [237]                       | $2_H \circ I22$         | $\wedge$                 | $\wedge$                                   |
| I24          |              | $2^{6}3^{4}5^{2}$                  | as $j$                                              | 1/2, 1/4, 1/5, 3/5                                                  | 9         | [245]                       | $G = A_9$               | $\langle Y \rangle$      | $\rightarrow$ $\langle Y \rangle$          |
| I25          |              | $2^{4}3^{5}7$                      | as $j$                                              | 1/2, 1/7, 2/7, 3/7                                                  | 27        | [237]                       | $G = S_{27}$            |                          | O                                          |
| I26          |              | $2^2 3^5 7^2$                      | as $j$                                              | 1/3, 2/3, 1/7, 3/7                                                  | 18        | [237]                       | $G = S_{18}$            |                          | > d                                        |
| I27          |              | $3^{3}5 \cdot 7^{3}$               | $-2^{10}3^{6}5^{2}7^{6}$                            | 1/2, 1/2, 1/7, 3/7                                                  | 18        | [237]                       | $G = A_{18}$            | I6 🔨                     |                                            |
| I28          |              |                                    | $3^8 5^3 7^6 17$                                    | 1/7, 1/7, 3/7, 3/7                                                  | 36        | [237]                       | $2_H \circ I27$         |                          | $\langle A \rangle$                        |
| I29          |              | $2^4 5^3 11^2$                     | as $j$                                              | 1/2, 1/2, 1/4, 1/5                                                  | 11        | [245]                       | $G = S_{11}$            | $\longleftrightarrow$    | $\rightarrow \overleftarrow{\frown}$       |
| I30          |              |                                    | $2^{15}3 \cdot 5^611^5$                             | 1/4, 1/4, 1/5, 1/5                                                  | 22        | [245]                       | $2_H \circ I29$         |                          |                                            |
| I31          |              | $2^{6}5^{3}13^{2}$                 | as $j$                                              | 1/2, 1/4, 1/5, 2/5                                                  | 13        | [245]                       | $G = S_{13}$            | _                        |                                            |
| I32          |              | $2^4 3^2 7^3 11$                   | $-2^8 3^6 5^2 7^6 11^2 31$                          | 1/2, 1/7, 1/7, 3/7                                                  | 33        | [237]                       | $G = A_{33}$            |                          |                                            |
| <u>I33</u>   |              | $2^2 3 \cdot 7^3 17^2$             | as j                                                | 1/2, 2/3, 1/7, 2/7                                                  | 17        | [237]                       | $G = S_{17}$            | $\square$                | $\overline{\nabla}$                        |
|              |              | •                                  |                                                     |                                                                     |           |                             |                         |                          |                                            |
| I7           | Ť            | 18                                 | 19                                                  |                                                                     | 0 °       | ₀ I1                        | $11 \longrightarrow$    | I12                      | I13                                        |
| ţ            |              | $\leftarrow$                       | $\rightarrow \succ$ .                               |                                                                     | • (*      | <b>`</b>                    | $\leftarrow$ /          | † Ť                      | • <del>•</del>                             |
| K            | )            |                                    |                                                     |                                                                     | YС        | $\mathbf{\dot{\mathbf{A}}}$ | $\nabla$                |                          | $\mathbb{Q}_{\wedge}$                      |
|              | $\bigcirc$   | $\bigwedge$                        |                                                     | $\bigvee$ $\sim$ $\sim$                                             | ŢŢ        | Ŷ                           |                         | Υ K)                     | $\Box$                                     |
| 4            | -            | $\nabla$                           | $\searrow$                                          | $\square$                                                           | ΥŻ        | ン人                          |                         | 6                        |                                            |
| 9            |              | $\sim$                             | $\bigvee$ $\bigvee$                                 |                                                                     |           | $\bigcirc$                  |                         |                          | $\bigcirc$                                 |
| I14          |              |                                    | $\frown$ $\land$                                    | <u> </u>                                                            | ٥         | I16 /                       | I17                     | 0                        | 118. 📿                                     |
|              |              | -                                  |                                                     | $ \rightarrow                                   $                   | ~         | $\leftarrow$                | ८()                     | $\sim$                   |                                            |
|              | $\sum$       | $\downarrow / \backslash \Box$     | $\sqrt{1}$                                          | $\gamma \rightarrow \gamma$                                         | •<br>0    | AL                          |                         | 12                       | \ <u>q</u> /                               |
| $\leftarrow$ | U/           | $\prec$ $\rightarrow$ $\checkmark$ | $\checkmark$ $\lor$                                 |                                                                     |           | $( \bigtriangleup )$        | $\rightarrow$ () $\sub$ | ~/                       | $\nabla^{\vee}$                            |
|              | $\checkmark$ | • <b>-</b> \                       |                                                     | $\leftarrow \bigcirc \rightarrow$                                   | -0        |                             | $\lor$                  | $\sim$                   |                                            |
| I19          |              | $\wedge$                           | [20                                                 | I21 O I22                                                           | o—        | • <u>•</u>                  |                         | V                        | $\cup$                                     |
| 119          | 6            |                                    | $\wedge$                                            | $\stackrel{121}{\circ}$ $\bigtriangledown$ $\stackrel{122}{\frown}$ | <b></b> 0 | $ \downarrow\rangle$        | 123                     | $\sim$                   | $\neg \land$                               |
| •            | (4           |                                    | $\langle \langle \rangle \rangle \langle   \rangle$ |                                                                     | _]        | $\downarrow$                |                         | $\mathcal{A}\mathcal{P}$ | $(\land \land \dot{\land} \land )$         |
| $\wedge$     | $\backslash$ | $\lambda$                          | $\searrow\_$ $\lor$                                 | $\lambda / $                                                        |           | $\frown$                    |                         |                          | $\neg arphi $                              |
| ( (          | , کر<br>ا    | <u>•</u> ( مَ )                    |                                                     | $\sum_{i=1}^{n}$                                                    |           | $\sim$                      |                         | $\neg \neg$              |                                            |
| $\mathbf{V}$ | /            | $\mathbf{V}$                       |                                                     | ~ V ~                                                               |           | $\checkmark$                | $\checkmark$            |                          | $\bigtriangleup \bigtriangledown$          |
| •            |              | -                                  |                                                     |                                                                     |           |                             |                         |                          |                                            |

34





- m- $\sqrt{}$ : the quadratic extension for the moduli field (only in table A);
- $r_{-\sqrt{r}}$ : the quadratic extension for the *r*-field (only in table A).

The tables are supplemented by pictures of respective minus-4-hyperbolic dessins d'enfants. Some thinly drawn<sup>17</sup> dessins represent also the composition  $4\varphi(1-\varphi)$  giving a clean dessin. The composition label is then marked by •. The J-pictures marked by the symbol # represent 4 dessins<sup>18</sup> each, obtainable by reflecting (with respect to a horizontal axis) their left and right parts independently. The dessins of B12, C6, C30, D45, F1, F4, F6, F7, F11, H1, H10–H14, H46 are displayed in Figure 1, 2, 3 earlier.

# C Appendix: Composite Belyi functions

Decomposition of a Belyi function  $\varphi(x)$  into smaller degree rational functions can be decided from the function field lattice between  $\mathbb{C}(x)$  and  $\mathbb{C}(\varphi)$ , as described in [14, § 1.7.2]. The subfield lattices are listed in our online table [23, Decomposition\_or\_GaloisGroup].

On the other hand, composite minus-4-hyperbolic Belyi functions induce composite hypergeometric-to-Heun transformations. Thereby special cases of the parametric transformations P1–P61 of [28, §2.2] and the Heun-to-Heun transformations  $2_H$ ,  $4_H$  of [28, §4.3] often occur as composition parts. The quadratic transformation  $2_H$  acts on the exponent differences as  $(1/2, 1/2, \alpha, \beta) \leftarrow (\alpha, \alpha, \beta, \beta)$  and changes the *j*-invariant to a 2-isogenous *j*-invariant. The transformation  $4_H = 2_H \circ 2_H$  transforms  $(1/2, 1/2, \alpha) \leftarrow (\alpha, \alpha, \alpha, \alpha)$  and does not change the *j*-invariant. The composite transformations could be figured out by a careful consideration of possible compositions of hypergeometric-to-hypergeometric, indecomposable hypergeometric-to-Heun (parametric or some newly implied), and Heun-to-Heun transformations. That would constitute yet another check<sup>19</sup> of our list of Belyi functions. The most complicated decomposition lattice is for A18:

$$[4444] \qquad P12:[2244] \qquad [444]:P9 \qquad [248] \times A16 \\ [248]:P10 \qquad [238] \\ [334]:A17 \qquad [C1:[2244] \times P4:[2224] \qquad [C.1]$$

In the square brackets, we see the  $[k\ell m]$  triples of intermediate hypergeometric equations, or similar indication of intermediate Heun equations. The transformation from [238] to the Heun equations is indicated before their square brackets. Similarly, the  $[k\ell m]$  triples are followed by the indication of transformations from them to the final [4444]. The ×-power indicates two copies of that intermediate function field. The diagram includes P10 and P12, the most complicated parametric compositions [28, §C]. The components [238] – [248] and [334] – [444] are cubic transformations, while the other lines represent quadratic ones (possibly  $2_H$ ).

In Tables of §B, we indicate the components either by an A-J label from our list (if applicable), or by the degree otherwise. In the latter case, we give intermediate hypergeometric equations in the  $[k\ell m]$  notation. Intermediate Heun equations are clear, hence no extras to  $2_H$ . Deeper branching is indicated by {}. The A-J, P labels inside

<sup>&</sup>lt;sup>17</sup> Our policy of drawing dessins is the following. White vertices of order 2 are not shown, but the edges going through them are drawn thick. Other white vertices are shown, but the incident edges are drawn thin. A black vertex of degree  $\geq 2$  is not drawn (as it is a clear branching point), unless it is incident to a thin edge. The dessins were drawn from the combinatorial representations  $(g_0, g_1, g_\infty)$  first by hand, then by using a developed script language that was translated to LaTeX using Maple.

<sup>&</sup>lt;sup>18</sup> Apart from the #-labeling and Figure 1, all other pictures represent either one dessin (if there is a reflection symmetry) or two dessins related by a complex conjugation (otherwise). In the cases like B13, F12, a reflection symmetry should be imagined on the Riemann sphere, along a "circular" equator.

<sup>&</sup>lt;sup>19</sup> For example, any transformation to Heun's equation with 2 (or 3) exponent differences equal to 1/2 can be composed with  $2_H$  (or  $4_H$ , respectively). Further, any Belyi function of the  $[k\ell m]$ -type [344] or [266] gives rise to a type-[246] composition (with the degree doubled), while all [334], [248]-type functions give type-[238] compositions, with the degree 2 or 3 times larger. In the same way, the [335], [255] Belyi functions give type [2 3 10], [245] (respectively) compositions. Quadratic transformation P1 of [28] can be composed to C1 and all compositions in Table A of §B, as its *j*-invariant 1728 is 2-isogenous to itself and the *j*-value of C1.

them either mean a transformation from a starting  $[k\ell m]$  to an intermediate Heun equation (after  $4_H$ ) or to the target Heun equation (otherwise). The ××-power indicates three copies of an intermediate function field. A label inside nested {} refers to a composition string avoiding the merging point of the outer {}. These hints should be enough to recover the composition lattices.

#### **D** Appendix: Coxeter decompositions

If a minus-4-hyperbolic Belyi function in a canonical form (of Definition 2.2) is defined over  $\mathbb{R}$ , the Schwarz maps<sup>20</sup> of the related hypergeometric and Heun equations fit together nicely. Particularly, the quadrangle of Heun's equation is then tessellated into congruent (in the hyperbolic metric) triangles of the hypergeometric equation. The degree formula in Lemma 3.1(*ii*) can be interpreted as the area ratio between the hyperbolic quadrangle and the triangles, if we multiply both the numerator and the denominator by  $\pi$ . Subdivisions of hyperbolic quadrangles (or triangles) into congruent hyperbolic triangles are called *Coxeter decompositions* in [8]. The list of Coxeter decompositions can be compared with our list of Belyi maps with the *r*-field  $\subset \mathbb{R}$ , providing a mutual check of completeness.

The Belyi functions of Tables D, E, G (of Appendix B) give no Coxeter decompositions, as their *r*-fields certainly have no real embeddings. The obstructed Belyi functions of  $\S6$  give no Coxeter decompositions either (except F7 of  $\S6.2$ ). Here is the count of Coxeter decompositions induced by our Belyi functions:

- Table A gives 10 Coxeter decompositions. The last column shows that the other 14 Belyi functions have imaginary quadratic *r*-fields.
- Tables B, C give 23 + 34 decompositions. The cases<sup>21</sup> with an imaginary quadratic extension  $\mathbb{Q}(t) \supset \mathbb{Q}(j)$  are B2, B6, B9, B10, B12, B18, B19, B21, B22, B27, B28 and C2, C3, C6, C11, C22, C24, C30, C31.
- Each entry of the F-table with discrim  $\mathbb{Q}(t) < 0$  gives one Coxeter decomposition; 10 in total.
- The entries F3, F23 with Q(t) = Q(j) give pairs of Coxeter decompositions. F20 gives another pair with the t-field Q(√7, √3), but F25 gives none with the t-field Q(√4√22 22).
- Each entry of the H-table with discrim  $\mathbb{Q}(j) < 0$  and either  $\mathbb{Q}(t) = \mathbb{Q}(j)$  or discrim  $\mathbb{Q}(t) > 0$  gives a Coxeter decomposition; 11+11 in total.
- Similarly, the odd degree I, J-orbits with  $\mathbb{Q}(t) = \mathbb{Q}(j)$  or discrim  $\mathbb{Q}(t) > 0$  give single Coxeter decompositions; 6 + 3 among I22–I33 and 2 + 3 in the J-table.
- 110, 115, J11 have pairs of real dessins and  $\mathbb{Q}(t) = \mathbb{Q}(j)$ . They give pairs of Coxeter decompositions.

In total, we have 125 decompositions, just as listed in [8, Figures 10 (5)–(11), 12, 13, 15–18]. There is a caveat, however. The decompositions 24 and 36 in [8, Figure 18] coincide, while one triangulated quadrangle with the angles  $\pi/3$ ,  $2\pi/3$ ,  $\pi/7$ ,  $3\pi/7$  is missing. We identify the repeated decomposition as C4, and the missing one as I26. All Coxeter decompositions from our Belyi functions can be discerned in Figure 4. The similar pictures for Coxeter decompositions from parametric hypergeometric-to-Heun transformations are given in [27, Figure 2].

Belyi functions (with the *r*-field in  $\mathbb{R}$ ) and Coxeter decompositions are identified<sup>22</sup> by multiplying the branching fractions by  $\pi$  and looking for quadrangles in [8] with the same angles. Pictures (*a*), (*b*) in Figure 4 show the Coxeter decompositions 7, 6 in [8, Figure 15]. They represent the Belyi functions B11 and C13,

<sup>&</sup>lt;sup>20</sup> We already considered Schwarz maps in the paragraph after Remark 4.1. If a hypergeometric equation has real local exponent differences  $\alpha, \beta, \gamma$  in the interval [0, 1], the image of the upper half plane  $\subset \mathbb{C}$  under its Schwarz map is a curvilinear triangle with the angles  $\pi\alpha, \pi\beta, \pi\gamma$ . A nice illustration can be found in [3, pg. 38]. Analytic continuation of Schwarz maps follows the Schwarz reflection principle. Hodgkinson [11] first observed that pull-back transformations of hypergeometric equations induce tessellations of Schwarz triangles into smaller congruent Schwarz triangles. Similarly, if a Heun equation has real local exponent differences  $\alpha, \beta, \gamma, \delta$  in the interval [0, 1], the image of its Schwarz map is a curvilinear quadrangle with the angles  $\pi\alpha, \pi\beta, \pi\gamma, \pi\delta$ .

<sup>&</sup>lt;sup>21</sup> Details of the *r*-extensions can be found in [23, j-t\_and\_r\_Field\_MinPoly]. The list of cases with additional extensions for the *r*-field correlates well with the list of Belyi coverings with interesting monodromy groups (such as PSL in tables of  $\SB$ ) and the list of multiple Galois orbits with the same branching pattern (as one can inspect empty entries in the first columns in tables of  $\S3.1$ ).

<sup>&</sup>lt;sup>22</sup> Dessins d'enfants and Coxeter decompositions are different geometric representations of a Belyi covering. The difference is twofold: the decompositions represent only a half of the Riemann sphere, and their vertices are the points not just above  $z \in \{0, 1\}$  but above  $z = \infty$ as well. To get a corresponding (real) dessin, two parallel copies of a Coxeter decomposition have to be glued along the edges to a topological sphere, and the vertices above  $z = \infty$  with the incident edges, triangles have to be removed.

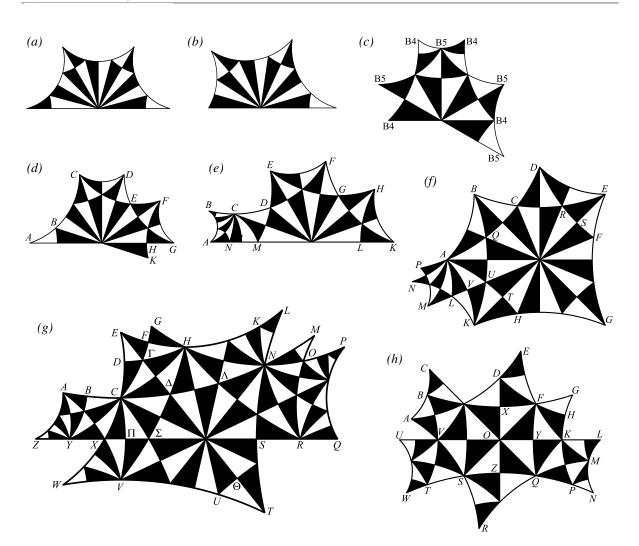



Fig. 4 The Coxeter decompositions of Felikson

respectively. Picture (c) contains two hyperbolic quadrangles subdivided into twelve  $(\pi/2, \pi/4, \pi/6)$ -triangles. They represent the Belyi functions B4 and B5, and coincide with the triangulations 4, 3 in [8, Figure 12], respectively. Picture (d) contains the first five triangulations in [8, Figure 15], into  $(\pi/2, \pi/3, \pi/10)$ -triangles. Here are the labels of Belyi maps and the quadrangles, in the same sequence as in [8]:

C38: *BCFK*, F14: *ACEG*, C15: *ACFH*, C25: *ACDG*, B24: *ACFG*. Picture (*e*) contains the 10  $(\pi/2, \pi/3, \pi/9)$ -triangulations in [8, Figure 16]: H2: *DFKM*, B7: *EGKM*, C41: *EHLM*, C7: *EHKM*, C9: *CFKM*,

H4: CFKN, H6: CFKP, A6: EFKM, C23: ACFK, H8: ABFK.

There is initial ambiguity for assigning B7 and H2 because of the same branching fractions. But B7 is a composition  $3[339] \circ 4$  as shown in the B-table, and its Coxeter decomposition splits<sup>23</sup> into 3 triangles with the angles  $\pi/3, \pi/3, \pi/9$  (each formed by 4 smaller triangles). Picture (*f*) contains the 19 ( $\pi/2, \pi/3, \pi/8$ )-triangulations in [8, Figure 17]:

<sup>&</sup>lt;sup>23</sup> Coxeter decompositions do not always split according to (all) compositions of their Belyi functions, because smaller degree components do not necessarily have Coxeter decompositions. For example, consider A18 = A16  $\circ$  3, A19 = 2<sub>H</sub>  $\circ$  A1, B4 = 2<sub>H</sub>  $\circ$  D25, B14 = 2<sub>H</sub>  $\circ$  D9, J19 = 2<sub>H</sub>  $\circ$  H45, J26 = 2<sub>H</sub>  $\circ$  J25, etc.

| B1: <i>ABEK</i> ,<br>110: <i>FGKS</i> ,<br>H29: <i>ADFV</i> ,                                                             | A18: <i>BEGK</i> ,<br>I10: <i>ACET</i> ,<br>C28: <i>ABRH</i> , | B14: <i>BEKN</i> ,<br>C32: <i>CEKQ</i> ,<br>B29: <i>ACEK</i> , | A5: <i>BGKN</i> ,<br>F19: <i>DFUQ</i> ,<br>B15: <i>ADSK</i> , | C1: <i>ADST,</i><br>C21: <i>ADFU,</i><br>F8: <i>ADFL,</i> |                         |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|-------------------------|--|--|--|
| B30: ADFM,                                                                                                                | C8: <i>ABET</i> ,                                              | H22: PDFM,                                                     | C5: ADEK.                                                     |                                                           |                         |  |  |  |
| Picture (g) contains the 58 $(\pi/2, \pi/3, \pi/7)$ -triangulations in [8, Figure 18]. Here is the respective sequence of |                                                                |                                                                |                                                               |                                                           |                         |  |  |  |
| Belyi maps and the quadrangles, with the repeated decomposition 36 replaced by the one for I26:                           |                                                                |                                                                |                                                               |                                                           |                         |  |  |  |
| C34: <i>CHR</i> Σ,                                                                                                        | F3: <i>HMR</i> Σ,                                              | A15: <i>MTV</i> Δ,                                             | A11: <i>HKR</i> Σ,                                            | H33: <i>HOR</i> Σ,                                        | A14: $A\Delta TV$ ,     |  |  |  |
| A21: <i>ELTW</i> ,                                                                                                        | C29: $R\Sigma\Delta\Lambda$ ,                                  | I15: $MS\Sigma\Delta$ ,                                        | C42: <i>CMS</i> Σ,                                            | F22: <i>CMS</i> П,                                        | I15: $UV\Delta\Theta$ , |  |  |  |
| В33: <i>СНR</i> П,                                                                                                        | C40: $C\Lambda R\Sigma$ ,                                      | Н53: <i>СЛП</i> П,                                             | B20: $MR\Sigma\Delta$ ,                                       | B17: CHRX,                                                | B25: $C\Lambda RX$ ,    |  |  |  |
| H50: CMSX,                                                                                                                | С33: <i>НМS</i> Σ,                                             | C26: <i>CMR</i> Σ,                                             | С35: <i>СМ</i> П,                                             | C27: СЛ <i>RY</i> ,                                       | C4: CHRY,               |  |  |  |
| H48: <i>Α</i> Λ <i>RX</i> ,                                                                                               | F3: <i>CMRX</i> ,                                              | H40: <i>CMSY</i> ,                                             | I33: AMSX,                                                    | H37: <i>BMSY</i> ,                                        | B32: <i>HRY</i> Г,      |  |  |  |
| B31: CMRY,                                                                                                                | B34: EHRX,                                                     | F23: AMRX,                                                     | C39: <i>BMRY</i> ,                                            | F20: AMRY,                                                | I26: $NR\Sigma\Delta$ , |  |  |  |
| F23: $CNR\Sigma$ ,                                                                                                        | С36: <i>СNR</i> П,                                             | H52: CNRX,                                                     | F24: CNRY,                                                    | F20: CMTV,                                                | B13: <i>CMTW</i> ,      |  |  |  |
| I23: EKRX,                                                                                                                | J11: <i>DHRX</i> ,                                             | J11: $HLS\Sigma$ ,                                             | H44: <i>EHRX</i> ,                                            | 125: BNRY,                                                | J24: <i>FKRY</i> ,      |  |  |  |
| J19: FLSY,                                                                                                                | H36: <i>GHRY</i> ,                                             | C12: ANRX,                                                     | J26: GMSY,                                                    | B16: <i>GMRY</i> ,                                        | C18: ANRY,              |  |  |  |
| J17: <i>E⊖UW</i> ,                                                                                                        | J23: <i>GPQY</i> ,                                             | I28: ANRZ,                                                     | F21: GORY.                                                    |                                                           |                         |  |  |  |
| The ambiguity between A14 and B32 (due to the same branching fractions) is resolved by the reflection symmetry            |                                                                |                                                                |                                                               |                                                           |                         |  |  |  |
| of A14 = 2 $\circ$ 10. Picture ( <i>h</i> ) contains the 20 ( $\pi/2, \pi/4, \pi/5$ )-triangulations in [8, Figure 13]    |                                                                |                                                                |                                                               |                                                           |                         |  |  |  |
| B26: FKPS,                                                                                                                | H39: VYQT,                                                     | C19: VKQT,                                                     | C16: ACOS,                                                    | B23: ACQS,                                                |                         |  |  |  |
| H16: ACQR,                                                                                                                | I24: FHPS,                                                     | H17: DHPZ,                                                     | F13: VKPT,                                                    | C14: <i>BXZT</i> ,                                        |                         |  |  |  |
| B8: <i>BFST</i> ,                                                                                                         | H41: <i>BFQT</i> ,                                             | I29: OLNZ,                                                     | F15: OLNS,                                                    | C10: VLNS,                                                |                         |  |  |  |

C17: *BGPT*, The is ambiguity between C14 and H17 is resolved by the composition  $C17 = 2_H \circ C14$ . The non-parametric decompositions (5)–(11) of [8, Figure 10] and the decompositions (1), (2) of [8, Figure 12] represent the Galois orbits F18, B3, C20, C37, F7, H21, A17, H15, A19, respectively. They can be obtained from our listed quadrangles of (respectively) F19, B4, C21, C38, F8, H22, A18, H16, A20 by pairing their triangles to larger triangles with the requisite angles  $(\pi/3, \pi/3, \pi/4), (\pi/3, \pi/4, \pi/4), (\pi/3, \pi/3, \pi/5)$  or  $(\pi/2, \pi/5, \pi/5)$ .

A20: AEMR,

130: WULN.

#### Е **Appendix:** Arithmetic observations

As observed in [28,  $\S2.3$ ], the t-parameters of Heun equations reducible to hypergeometric equations by a pull-back transformation are arithmetically interesting. The whole orbit (2.1) of t-values can be encoded by an arithmetic identity A + B = C with algebraic integers A, B, C (as "co-prime" as possible), as the set  $\{A/C, B/C, C/A, C/B, -A/B, -B/A\}$ . Here are these identities for a few t-orbits in  $\mathbb{Q}$ :

B25: 
$$1 + 2 \cdot 11^2 = 3^5$$
,B29:  $2^2 + 11^2 = 5^3$ ,B30:  $1 + 3^3 5^2 = 2^2 13^2$ ,B31:  $1 + 2^5 3 \cdot 5^2 = 7^4$ ,B33:  $11^3 + 2^2 7^4 = 3^7 5$ ,B34:  $7^4 + 3^3 5^3 = 2^4 19^2$ .

The terms in these identities involve only small primes, usually in some power. Correspondingly, the t-values factorize nicely in  $\mathbb{Q}$ . These identities are interesting in the context of the ABC conjecture [30] and S-unit equations [30]. The "factorization" pattern holds for the t-values in algebraic extensions of  $\mathbb{Q}$  as well, though arithmetic quality is then measured more technically [18] by the prime places and arithmetic height in  $\mathbb{P}^2(\overline{\mathbb{Q}})$ . The underlying reason is that the Belyi coverings (of pull-back transformations) tend to degenerate only modulo a few small primes [2]. Hence the t-orbit (2.1) degenerates only modulo those bad primes.

Amidst the encountered examples, we find the following well-known identities A + B = C in quadratic fields:

C18: 
$$\left(\frac{\sqrt{5}-1}{2}\right)^{12} + 2^4 3^2 \sqrt{5} = \left(\frac{\sqrt{5}+1}{2}\right)^{12}$$
, D37/D39:  $\left(\frac{1+\sqrt{-7}}{2}\right)^{13} + \sqrt{-7} = \left(\frac{1-\sqrt{-7}}{2}\right)^{13}$ .

They are among top 12 known examples of remarkable ABC identities [18] in algebraic number fields. Their ABC-quality is  $\approx 1.697794, 1.707222$ , respectively, while Nitaj's table [18] includes examples with the quality > 1.5. The Belyi function D42 gives a new example in  $\mathbb{Q}(\sqrt{-14})$  with the quality  $\log(3^{13}5^3)/\log(56\cdot 2\cdot 7\cdot 3^2\cdot$ 

I31: WUYQ,

H18: WUKP,

 $5^2$ )  $\approx 1.581910$ . However, the class number of  $\mathbb{Q}(\sqrt{-14})$  is equal to 4, hence an explicit arithmetic identity is less impressive, without 13th powers:

$$(5-2\sqrt{-14})(11+\sqrt{-14})^3 + (\sqrt{-14})^3 = (5+2\sqrt{-14})(11-\sqrt{-14})^3.$$
 (E.1)

Less symmetric quadratic identities arise from the F, G-cases with  $\mathbb{Q}(t) = \mathbb{Q}(j)$ . For example, G30 gives

$$\left(\frac{1+\sqrt{-7}}{2}\right)^{10} + \left(\frac{1-\sqrt{-7}}{2}\right)^5 + \left(2+\sqrt{-7}\right)^3 = 0.$$
(E.2)

The Belyi coverings E10/E11 give the following A + B = C example in a number field of degree 6. Let  $\zeta$  denote a root of  $z^6 + 4z^4 - 3z^2 + 2$ . Then

$$\begin{split} \zeta^{23} + \left(\frac{\zeta + \zeta^2}{2} - \frac{5\zeta^3 + \zeta^5}{4}\right)^{23} \left(\frac{1-\zeta}{2} - \frac{3\zeta^2 - 3\zeta^3 + \zeta^4 - \zeta^5}{4}\right)^{-6} \\ &= \left(\frac{-\zeta + \zeta^2}{2} + \frac{5\zeta^3 + \zeta^5}{4}\right)^{23} \left(\frac{1+\zeta}{2} - \frac{3\zeta^2 + 3\zeta^3 + \zeta^4 + \zeta^5}{4}\right)^{-6}. \end{split}$$

The numbers under the 23rd power have the norm 2, while the numbers in the (-6)th power are units.

#### References

- N.M. Adrianov, N.Y. Amburg, V.A. Dremov, Y.Y. Kochetkov, E.M. Kreines, Y. A. Levitskaya, V.F. Nasretdinova, and G. B. Shabat. Catalog of dessins d'enfant with no more than 4 edges. J. Math. Sciences, 158:22–80, 2009.
- [2] S. Beckmann. Ramified primes in the field of moduli of branched coverings of curves. J. Algebra, 125:236–255, 1989.
- [3] F. Beukers. Gauss' hypergeometric function. In R.-P. Holzapfel et al, editor, *Arithmetic and Geometry Around Hypergeometric Functions*, volume 260 of *Progress in Mathematics*, pages 23–42. Birkhauser, Basel, 2007.
- [4] F. Beukers and H. Montanus. Explicit calculation of elliptic fibrations of K3-surfaces and their Belyi maps. In *Number theory and polynomials*, pages 33–51. Cambridge University Press, 2008.
- [5] J.-M. Couveignes and L. Granboulan. Dessins from a geometric point of view. In *The Grothendieck theory of dessins d'enfant*, pages 79–113. Cambridge Univ. Press, 1994.
- [6] C. Cummins and S. Pauli. Congruence subgroups of PSL(2,Z). Website http://www.mathstat.concordia.ca/faculty/cummins/congruence/congruence.html.
- [7] N.D. Elkies. Shimura curves for level-3 subgroups of the (2,3,7) triangle group, and some other examples. In Algorithmic Number Theory, volume 4076 of Lecture Notes in Comput. Sci., pages 302–316. Springer, Berlin, 2006.
- [8] A. A. Felikson. Coxeter decompositions of hyperbolic polygons. Europ. J. Combinatorics, 19:801–817, 1998.
- [9] V. Filimonenkov and G. Shabat. Fields of definition of rational functions of one variable with three critical values. *Fundamentalnaya i Prikladnaya Matematika*, 1:781–799, 1995.
- [10] A. Grothendieck Esquisse d'un Programme (1984). In L. Schneps and P. Lochak, editors, *Geometric Galois Actions*, volume 242 of *London Math. Soc. Lecture Notes*, pages 5–48; English transl. 243–283. Cambridge University Press, 1997.
- [11] J. Hodgkinson. An application of conformal representation to certain hypergeometric series. *Proc. London Math. Soc.*(2), 17:17–24, 1918.
- [12] F. Klein. Uber lineare differentialgleichungen II. Math. Annalen, 12:167–179, 1878.
- [13] E. Kreines. On families of geometric parasitic solutions for Belyi systems of genus zero. *Fundamentalnaya i Priklandaya Matematika*, 9(1):103–111, 2003.
- [14] S.K. Lando and A.K. Zvonkin. Graphs on Surfaces and their Applications, volume 141 of Encyclopedia of Mathematical Sciences. Springer-Verlag, 2004.
- [15] L.G. Luttmer. Using dessins d'enfant to understand the absolute Galois group. 2012. www.math.ucdavis.edu/~luttmer/Luttmer\_Final.pdf
- [16] R. E. Macrae. On rational points on conics. Proc. AMS, 67(1):38-40, 1977.
- [17] N. Magot and A. Zvonkin. Belyi functions for archimedean solids. Disc. Math., 217:249-271, 2000.
- [18] A. Nitaj. The ABC conjecture home page. www.math.unicaen.fr/nitaj/abc.html.
- [19] L. Pharamond dit d'Costa. Comparaison de deux notions de rationalité d'un dessin d'enfant. Journal de Théorie des Nombres de Bordeaux, 13(2):529–538, 2001.
- [20] J.-P. Serre. Local fields, volume 67 of Graduate Texts in Mathematics. Springer-Verlag, 1979.
- [21] K. Takeuchi. Arithmetic triangle groups. J. Math. Soc. Jap., 29:91–106, 1977.

- [22] F.-T. Tu and Y. Yang. Algebraic transformations of hypergeometric functions and automorphic forms on shimura curves. *Trans. Amer. Math. Soc.*, 365:6697–6729, 2013.
- [23] M. van Hoeij and R. Vidūnas. Online data for "Belyi functions for hyperbolic hypergeometric-to-Heun transformations". http://www.math.fsu.edu/~hoeij/Heun.
- [24] M. van Hoeij and R. Vidūnas. Algorithms and differential relations for Belyi functions. arxiv:1305.7218, 2013.
- [25] M. van Hoeij and J.-A. Weil. Solving second order linear differential equations with Klein's theorem. Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation (ISSAC), 2005.
- [26] R. Vidūnas. Algebraic transformations of Gauss hypergeometric functions. Funkcialaj Ekvacioj, 52(2):139-180, 2009.
- [27] R. Vidūnas and G. Filipuk. A classification of coverings yielding Heun-to-hypergeometric reductions. Osaka J. Math. Vol. 51, No. 4, 867–905, 2014.
- [28] R. Vidūnas and G. Filipuk. Parametric transformations between the Heun and Gauss hypergeometric functions. *Funkcialaj Ekvacioj*, 56:271–321, 2013.
- [29] J. Voight. Shimura curves of genus at most two. Math. Comp., 78:1155-1172, 2009.
- [30] Wikipedia. Dessin d'enfant, Möbius transformation, Fuchsian equation, Liuovillian extension, Elliptic curve, jinvariant, Cross-ratio, ABC conjecture, S-units equation, Chebotarev's density theorem. http://en.wikipedia.org/.
- [31] A. Zvonkin. Functional composition is a generalized symmetry. Symmetry: Culture and Science, 21:333–368, 2010.