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1. INTRODUCTION

The prospect of realizing realistic particle physics (such as the Standard Model) in a
regime of string theory coined ‘F-theory’ by its originator Cumrun Vafa [I][2] has provided
a source of attraction for string theorists and their mathematician counterparts to the
study of elliptic fibrations, i.e., a proper surjective morphism ¢ : Y — B such that the
generic fiber is an elliptic curve. F-theory was first formulated as a non-perturbative
description of Type-IIB string theory with D-branes on a complex n-fold B endowed with
a multi-valued complex scalar field

(1.1) T=Cy+1i/gs

known to physicists as the axio-dilaton field (g5 is the string coupling constant). The
multi-valued images of 7 differ by elements of SLs(Z), thus forming a striking resemblance
with the complex structure modulus of a torus E, : C/(Z + 7Z). Exercising a string
theorist’s natural penchant for algebro-geometric descriptions of nature, Vafa formulated
a geometrization of the SL,(Z) symmetry of the axio-dilaton via a Calabi-Yau elliptic
fibration over the type-1IB n-fold B (which describes a physical theory in 10-2n real
space-time dimensions), identifying the axio-dilaton with the complex structure modulus
of the elliptic fiber. Not only is this formulation of non-perturbative type-IIB string
theory aesthetically pleasing from a purely geometric perspective, the physical theory
has attractive features such as providing promising avenues for moduli-stabilization and
potential realization of GUT gauge groups which project by definition to the Standard
Model gauge group at lower non-supersymmetric energy levels. To realize the elliptic
fibration explicitly, physicists have primarily focused on a Weierstrass fibration, i.e., a
hypersurface in a P2-bundle over the Type-IIB base B which in its reduced form is defined
as the zero-scheme associated with the locus

(1.2) vz =1’ + fo® + g2,

where f and g are sections of appropriate tensor powers of the anti-canonical bundle
O(—Kp) — B. As in the theory of curves, every smooth elliptic fibration admitting
a section is birational to a (possibly singular) fibration in Weierstrass form [3], often
referred to in the physics literature as an ‘Ey’ elliptic fibration. But crucial to the physical
theory associated with an elliptic fibration are the singular fibers of the fibration, as the
singular fibers encode the structure of gauge theories associated with D-branes wrapping
components of the discriminant locusg’ over which they appear [4][5][6]. And since singular
fibers of a fibration are in general not preserved under a birational transformation, elliptic
fibrations not in Weierstrass form enjoy their own physical relevance.

Motivated by tadpole cancellation in F-theory, in [7] Sethi,Vafa and Witten derived
a formula for the Euler characteristic of an elliptically fibered Calabi-Yau fourfold in

2The discriminant of a Weierstrass fibration is a hypersurface in the base determined by the locus
A4 +274% = 0.
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Weierstrass form solely in terms of the Chern classes of the base of the fibration. Similar
formulas for fibrations not in Weierstrass form were derived by Klemm, Lian, Roan and
Yau in [§]. It was later shown by Aluffi and Esole in [9][10] that these formulas are all
numerical avatars of more general Chern class identities which hold not only without any
Calabi-Yau hypothesis but over a base of arbitrary dimension. In this note we consider
four families of fibrations ¢ : Y — B which are known to the physics community as Ds,
FEs, E7 and Eg elliptic fibrations from a purely mathematical perspective (i.e., with no
Calabi-Yau hypothesis or restrictions on the dimension of the base), and pursue similar
formulas not for the Chern classes of a given fibration Y but for its Hirzebruch invariants
(or arithmetic genera)

(13) W) i= [ @),

where ch(€{.) denotes the Chern character of the gth exterior power of the cotangent
bundle of Y and td(Y) := td(TY) N [Y], i.e., the Todd class of the tangent bundle of YV
acting on the fundamental class of Y.

As integrals are invariant under proper pushforwards of the integrand, we relate x,(Y")
to invariants of the base by pushing forward ch(Q{.)td(Y) via ¢, (the pushforward map
associated with ¢ : Y — B). By the celebrated Hirzebruch-Riemann-Roch theorem (later
generalized by Grothendieck),

(1.4) oY) = 3 (1) dimH (Y, Q%) = ht0 — pot 4 - g (1) B padin()
thus Hirzebruch invariants yield linear relations among the Hodge numbers of Y. For a

general smooth complex projective variety X of fixed dimension, the standard approach
to computing Hirzebruch invariants of X is to encode them in a generating series

dim

(X)
Y Ai
(1.5) x(y) :Zquq:/ H (14 ye Al)ﬁa
q X =1

where the \;s are the Chern roots of the tangent bundle of X. Given an elliptic fibration
v :Y — Boftype D5, Eg, E; or Eg over a base B of arbitrary dimension, what we achieve
in this note is a single generating series x(t,y) for each family where the coefficient of
t*y? encodes x,, for the given family of elliptic fibrations over a base of dimension k, solely
in terms of Chern classes of the base and the first Chern class of a line bundle . — B
(i.e., one can see the Hirzebruch invariants of the fibration as functions of invariants of
the base).

Let B be a smooth compact complex projective variety of arbitrary dimension endowed
with a line bundle .Z — B. The elliptic fibrations we consider will all be subvarieties
of an ambient projective bundle P(&) — B (each fibration will be precisely defined in
42)), where & is a vector bundle over B that is constructed by taking direct sums of
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tensor powers of .Z. Before stating the main result of this note, let us make the following
definitions:
Let X be a smooth variety. We define the Hirzebruch series of X to be

(1.6) H(X) = H(X) + AA(X )y + (X )y + -

where (X)) = ch(Q%)td(X) is the qth Hirzebruch characteristic class of X. Then
given a proper morphism ¢ : X — B we define ¢,.7,(X) in the obvious way:

(1.7) 0y (X) = 0 (X)) + 0. IO (X )y + 0 H6(X)y* + -+,

where ¢, is the proper pushforward associated with the morphism ¢. Our main result is
the following

Theorem 1.1. Let ¢ : Y — B be an elliptic fibration of type Dy, Eg, E7 or Eg and let
U=e L) Then

(1.8) oY) = Q- Hy(B),

where
4oyt (“J&‘nyg Y- Gk forY aDs fibration

o o0 3yt % for'Y an FEg ﬁbmtz.0n
92—y + % for'Y an E; fibration
1—y+ % for'Y an Ey fibration

The proof of this result is considerably streamlined via the use of Chern-ext characters,
which we first introduce and define in §4 We note that the numbers 4, 3, 2 and 1 in the
expressions for () coincide with the number of sections of the given fibration. Reading off
the coefficient of y? in @) - 77,(B) immediately yields

(1.10) oY) = /B (Podty(B) + PuAor(B) + -+ + Pyd(B))

where the P;s are polynomials in U = e~(*) (we list all P;s in . Furthermore, from
Theorem we derive generating series x(t,y) for each family of fibrations, where the
coefficient of t*y? encodes y, for the given family of fibrations over a base of dimension
k. Before unveiling the x(t,y) we need the following definitions:

Let R be a commutative ring with unity. For two series f(t) = ag + ait + ast® + - - -
and g(t) = by + bt + bat®> + - -+ in R[[t]], we recall the Hadamard product of f and g is
defined to be



(111) f@g = a0b0+a1b1t+a2b2t2+... .

Furthermore, let [t¢] : R[[t]] — R denote the map given by [t?][f] := aq . Now let X be a
smooth projective variety of dimension d, let g = (1 4+ ye™) 1—i—t and let f =1In(g). As a
consequence of Lemma [5.1| we show

(1.12) H,(X) = (1+y)* - [t"]exp (f © (—1C"/C)),

where C' =1 — ¢1t + cot? — c3t3 + - - - € R[[t]] with R = Z[ey, ca, . . ., ] E| As p (A, (Y)) =
Q - H,(B) by Theorem [I.1] the generating series x(¢,y) is constructed by replacing U =
e~ &) by U, = e~ in ) and then constructing a series in R[[t]] with R = Z[cy, ¢z, . . .]
such that the coefficient of t? is precisely (1 + y)? - [td]exp (f ® (—tC"/C)), which we
interpret as the Hirzebruch series for a base of dimension d. All Hirzebruch invariants x,
for D5, Eg, E7 and Eg fibrations of all dimensions are then contained in the following

Corollary 1.2. Let Q, = Q(e~ X)) where Q is defined as in Theorem and let

~ t —tC’
(1.13) X(t,y) = Q- exp (ln ((1 +ye ) —t) © = ) )
where C'=1— et + cot* — - -+ € R[[t]] with R = Z[c1,c2,...] and C' = LC. Then
(1.14) X(t,y) = X(t(1+y).y)

is a generating series for Hirzebruch invariants of Ds, Eg, E7 and Ey fibrations as the
definition of () varies according to Theorem i.e., the integral of the coefficient of t*y?
over a base of dimension k is precisely x, for the given family of fibrations.

As an illustration, the coefficient of ¢*y* in x(¢,y) in the Eg case is —&(1729L% —
524ci L* + (—17¢3 + 193¢y) L + 5eicy — 66¢3), thus xo of an Ej fibration over a base B of
dimension four is (a computer implementation is located at the file ‘findQ’ at [15])

(1.15)
/ —%(172%3 — 524¢,(B)L? + (—17¢1(B)? 4 193¢5(B)) L + 5¢1(B)ca( B) — 66¢5(B)).

3As f ® (—tC’"/C) is independent of d, the ¢;s appearing in the definition of C' are countably many
formal variables which acquire their familiar meaning as Chern classes of the tangent bundle of X in
concrete examples.



2. THE FIBRATIONS UNDER CONSIDERATION

We now formally define the objects under consideration, namely Ds, Fg, E7 and FEg
elliptic fibrations (the names and definitions we use are all lifted from the physics literature
[8]). We work over C though everything we say is equally valid over an algebraically closed
field of characteristic zero. All fibrations are constructed by taking equations of classical
elliptic curves and promoting their coefficients from scalars (or sections of line bundles over
a point) to sections of line bundles over some smooth positive dimensional base variety B.
As such, let B be some smooth compact complex projective variety of arbitrary dimension
endowed with (a suitably ample) line bundle .2 — B. This will be the base assumption
in each of the D5, Eg, F7 and Eg cases.

Nowlet & = O LS LDL. A Dj elliptic fibration Yp, is defined to be a smooth com-
plete intersection in P(&’) (here we take the projective bundle of lines in P(&)) associated
with the locus

(2.1)

2?2 —y?* — z(az + cw) =0
Yps i o o _
w® —x? — z(dz + ex + fy) =0,

where z is a section of &(1) (the dual of the tautological line bundle on P(&)), and z, y
and w are sections of 0(1) @ 7*.Z, where 7 is the projection 7 : P(&) — B. Then we take
a, ¢, d, e and f to be suitably generic sections of (minimal) appropriate tensor powers of
7% such that Yp, is a smooth complete intersection in P(&") and each of the defining
equations for Yp. is a well defined section of a line bundle on P(&’). Taking a and d to be
sections of 7*.£2 and ¢, e and f to be sections of 7*.Z then defines Yp, as a variety of class
(2H + 2L)* € A*P(&), where H := ¢1(0(1)) and L := ¢;(7*%). Such a locus naturally
determines an elliptic fibration ¢ : Yp, — B, with generic fiber an elliptic curve in P3.
Such fibrations contain fibers not on the list of Kodaird] and were studied extensively
in [II] from both a mathematical and physical perspective. We note that as our results
are topological in nature, they depend only on the class [Y] € A*P(&) of the given
fibration, i.e., the explicit equations which define the fibration are essentially irrelevant.
The equations are included for concreteness and to not completely sever ourselves from
the physical theories with which they are associated. The definitions of Fg, F7 and FEg
fibrations are summarized in Table 1.

As in the Dy case, the coefficients of Fg, F; and FEjy fibration are chosen to be suitably
generic sections of tensor powers of 7*.% such that the total space of the fibration is
a smooth divisor of the indicated class in A*P(&). We point out that the total space
of an FE; fibration is defined as a hypersurface in a weighted projective bundle, which
is isomorphic to a bundle of quadric cones. To avoid dealing with any singularities of
the ambient projective bundle while performing intersection theoretic computations, we
embed Py 5(&) in a P3-bundle and then realize the total space of the E; fibration as a

“More precisely, over the locus a = ¢ = d = e = f = 0 in the base the fibers consist of four P's meeting
at a point.



equation ambient projective bundle | class in A*P(&)
Fg | 23 + 9% = doyz + ex2® + fyz® + g2° P(O®rL ®r %) 3H + 3L
E; y? =zt +ex?2® + fazd + g2t Py 12(0 ® ¥ ® n*L?) 4H +4L
Fy Y2z = a® + fa2? + g2 P(O @ m* L2 @ n*L3) 3H + 6L

TABLE 1. A summary of the pertinent data defining the smooth fibrations
under consideration.

complete intersection of the image of Py (&) via its embedding in the P*-bundle with
another hypersurface.

3. A MOTIVATING EXAMPLE

Let B be a non-singular compact complex algebraic variety of arbitrary dimension
endowed with a (suitably ample) line bundle .. We recall the definition of an Fjg elliptic
fibration, i.e., a surjective proper morphism ¢ : Y — B, whose total space Y is realized
as a hypersurface of class 3H +6L in the the Chow ring of a projective bundle P(&) = B,
where & = 0 & £* @ £?, H .= ¢1(0(1)) and L we non-reluctantly use to denote both
c1(Z) and 7*¢i(£). As one can show that p.c(Y) = 11+2—6LL - ¢(B) [9], we exploit the
fact that [, c(Y) = [ ¢.c(Y) and compute the topological Euler characteristic x(Y") by
integrating the coefficient of t4(5) in the formal series x*™B)(t), where we define x™(t)
for general N € N to be []

1214
1 Ny = 2
(3.1) X = e

As the series " (t) and x™"*!(¢) are identical up to order n (for any n), we notice that the
formal series
12L¢t

(3:2) X = 1 6Lt

serves as a generating series for the topological Euler characteristic for Y of all possible
dimensions (i.e., the coefficient of t* encodes the Euler characteristic of Y over a base of
dimension k, solely in terms of L and Chern classes of B). The ¢;s are then temporarily
formal objects (as their subscripts tend towards infinity), acquiring their familiar meaning
whence integrated upon. For example, over a base of dimension 3 the coefficient of #* in
x5 (t) is 12L(co — 6Lcy + 36L2), so x(Y') over a base B of dimension 3 is

(T4 et + eat? + -+ ent™).

c(I4ct gt + - ept™+ 1)

(3.3) / 12L(cy(B) — 6Lc;1 (B) + 36L2).
B
Though admittedly these observations are all rather trivial, what is striking is that the
pushforward ¢,c(Y) is manifestly independent of the base of the fibration, i.e., over a base

1210t
1+6Lt

SHere and throughout, terms not expanded in a series such as in the series above are a shorthand

for their associated series expansions about ¢.
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of dimension k the actual class in A*B associated with ,c(Y') is obtained by truncating
a formal powers eries at order k. As such, we deem this a ‘motivating example’ as it
exhibits general features which can be abstracted to cases of other invariants of elliptic
fibrations of the form [ «. In particular, the first step at arriving at such base independent
expressions for ¢.c(Y') is deriving a factorization of ¢(Y’) (which plays the role of « in
our more general considerations) as g(L, H) - 7*¢(B), where ¢ is a rational expression
depending only on L and H (as defined above). Once we have such a factorization, we
get that

12L

(3.4) puelV) = (gL H))e(B) = T=—c—c(B),

an expression which depends in no way on the dimension of B. Essential to the base
independence of the formula above is a pushforward formula which computes 7, (g(L, H))
in terms of a rational expression in L whose associated series is truncated at the dimension
of the base to obtain the given class. Such a pushforward formula was recently obtained in
[14]. More generally, for a given invariant of the form Iy = [ « for some subvariety Y of a
projective bundle, we seek an analogous factorization o = g(L, H)7*(I), where the class
associated with g is obtained by truncating a formal series in L and H at the dimension of
Y. Then by applying the pushforward formula of [14] to g(L, H) we immediately arrive at
a base independent expression for the pushforward of «, which lends itself naturally to a
generating series which encodes the invariant Iy for Y over bases of arbitrary dimension.
In what follows we successfully carry out this program for Hirzebruch invariants of Ds,
Egs, E; and Ejy elliptic fibrations.

4. THE CHERN-EXT CHARACTER

We now define a series which plays a key role in our analysis:

Definition 4.1. Let & be a vector bundle, then we define the Chern-ext character of &
to be

(4.1) Chegt(€) := 14 ch(&)y + ch(A?E)y* +--- .

We note that for any commutative ring R with unity, any element of the form f(y) =
1+ a1y + agy® + - -+ is a unit in R[[y]], thus + is well defined. If & is of rank 7 with

)
Chern roots (A1, Az, -+, A\;), then ch., (&) is a polynomial in y of degree r which factors
as
(4.2) cheat(6) = [ [ (1 +y - exp(X)).

i=1
However, due to the dimension-independent nature of our results we prefer to think of ch,,;
as a series, which also makes more evident the invertability of the Chern-ext character.
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Furthermore, given a smooth projective variety X we note that the Hirzebruch series of

X is simply

(43) H(X) = chyry(Q)R(X).
Armed with such a series, we now prove the following

Lemma 4.2. Let
(4.4) 0> >HB—%—0

be an exact sequence of vector bundles. Then

(45) Chewt(=@> = Chert(ﬂ) . Chext<cg)
Proof. From the A-ring identity ([12], pg.2)

(4.6) (x +vy) Z () AP

along with nice properties of the Chern character ([13], example 3.2.3), we get

(4.7) h(AP) Zch (Al - ch(AP7'F).

The lemma immediately follows. 0

5. THE PROOF

5.1. Proof of main result. Let ¢ : Y — B be a D5, Fg, E; or Eg elliptic fibration as
defined in §2{ and let N denote both the normal bundle of Y in P(&") and the bundle on
P(&) which restricts to it. Using the exact sequences (we use a superscript ‘V’ to denote
duals)

0= NY =i Qpey = Qy =0
0—>7TQB—>QP —)Q /B_>O
O-)Q]p(g)/B—)(’ﬂ' (go®ﬁ( )) ﬁﬁ]}”(&’ 0,

along with Lemma we get

Chext( \/) .
chert (NV)(1 +y)

(5.1) ix (Chegt (Qy)td(Y)) = ( a) 7" (chegt (Qp)td(B)) ,

where . we use to denote 7*& ® O(1), a = % N[Y],i:Y < P(&) is the inclusion
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and we use the fact that chey(Ops)) = 14 y. Furthermore, 7* (and 7,) act on Chern-ext
characters in the obvious manner. Now we apply 7, to the equation above yielding

cheg(FY)
chert(NV)(1 + )

(5.2) Vi (Chege (U )td(Y)) = 7 ( : a) che,t (Qp)td(B)

by the projection formula. Thus computing ¢, (che.(€y)td(Y')) amounts to computing

> W*angﬁiflw'“)‘

We spell out the details of this computation in the case of Dj only, as the other cases
differ inasmuch as the Chern roots of .# and N vary from case to case. For D5 the Chern
roots of % and N are (H,H + L,H + L,H + L) and (2H + 2L,2H + 2L) respectively,
where H := ¢;(0(1)) and L we will use to denote both ¢;(.Z) and 7*¢;(.Z). Putting this
all together we get

(5.4) cheg (FVY) o (14y- e—H)(l +y- e—H—L)3 . H(H + L)3(1 _ 6—2H—2L>2
. Chext(NV)(1+y) (1+y'672H*2L)2(1—|—y) (1_67}1)(1 _e,H,L);g >

where we have cancelled a factor of (2H + 2L)? from the numerator and denominator of

a. Now let D = 4tye D)ltye © 07 H(H+L)3(1_672H72)Ls)2. By the pushforward formula of

4] (rye 2202 (1gy) (e )(1—e AT
we get
) = 4 C%%%+mﬂ+wmv
’ 2 dH? H He 1
— 4y (y+1HU-=3) Uly+1)°
(yU?2+1) (yU? +1)%’

where U = e~! and the a;s are expressions in L and y obtained by expanding D as
a series in H. Identifying ch.:(Qy)td(Y') and che,(Qp)td(B) with JZ,(Y') and 77, (B)
respectively yields the conclusion of Theorem [I.I We note that reading off the coefficient
of y? in the series ¢, 74, (Y) gives us

(5.5) %%M=Z&wwx

where we recall that 7, (X) := ch(Q%)td(X) denotes the gth Hirzebruch characteristic
class of a smooth variety X and the P;s are polynomials in U = e~%. We list the explicit
form of the P;s for each case below:

The fact that F, is the same in all cases is a consequence of the fact that Ky =
©*(c1(Z) — ¢1(B)) for all the fibrations considered (see the appendix of [11]). With the
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Py P P, forn>1
Ds [1-U| 208+30-U—-4 |-U((n+1)U—-n+2)(U-1)(U+ 1)2( 2=
FEe |1-U|U*+20°+U*-U -3 —UX(U? = 1)(U + 1)*(=U%)"
E,|[1-U| U +U"+U*-U -2 ~U3U - 1)(U*+ U + 1)(-UH)"~
Ey [1-U U'+U°-U-1 (U - 1) (UZ+1)(— 6)"2

TABLE 2. Polynomial coefficients of ¢,.7(Y)

exception of the Dj case, all roots of P, for n > 1 lie on (S' U0) C C (for the Dj case
an ‘anomalous’ root of Z—ﬁ appears). We note that the length of our original proof was
substantially greater, as we computed each x, individually and then proved a recursive
relation between them. As it turned out, it was much easier to compute all of the y,s
at once, which we were easily able to do once armed with the Chern-ext character and a

computer implementation of . [I5].

5.2. Proof of the corollary. We first need some definitions. Let R be a commutative
ring with 1, let f = ag + art + agt® + - -- € R[[t]] and let [t7] : R[[]] = R be defined as in
If \i,...,A\q € R, we use the notation p; := A} + - -- A\, and we let

d
Co=JJA-Nt)=1—crt+eot® — st + -+

=1

Then ¢; is the ith symmetric polynomial, and p; is the ith power polynomial of \1, ..., Ag.

Lemma 5.1. Let f(t) = ap+ a1t +--- € R[[t]]. Then

Zf(&t) =fO(d+pit+pt’+---)=dag+ f © (—tC"/C),

where ® denotes the Hadamard product as defined in §1]

Proof. The first equality follows from the definition of the p;. For the second, note that
—tC"/C' is well defined because the polynomial C' has a constant term of 1. The equation
—tC"/C = pyt + pat® + -+ - is obvious for d = 1 (geometric series). For d > 1, recall that
logarithmic derivatives turn products into sums: (CD)'/(CD)=C"/C + D'/D. O

Now let Y be a D5, Fg, E7 or Ey elliptic fibration over a base B of some fixed dimension
d. Then by Theorem and equation (1.5)) in ,

(5.6) p A (Y)=Q - H(B)=Q- Hg

where the \;s are the Chern roots of the tangent bundle of B and g = (1 + ye t)%
Now let f =1In(g) = ap + a1t + - -+ (note that ag = In(1+y)) . Lemma [5.1] then yields
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d d

A,(B) =119\ = 9 Lo

= [t] [eXp(Z F(Ait))]

= [t"exp(dag + f ® (—tC"/C))]
= (1+y* [texp (f © (—tC"/O))].

The conclusion of Theorem [[.1] then states that over a base B of dimension d we have

(5.7) pdty(Y) = Q- (L+1)" - [t]fexp (f © (—tC"/C))].

But the right hand side of (5.7) is just [t9|X(t,y) li=t(144), With X(t,y) as defined in
Corollary [I.2] The corollary then follows.

6. DIsSCUSSION

After going through the proof of the main result, one immediately notices that the only
data needed from the elliptic fibrations under consideration were the Chern roots of its
normal bundle in P(&") along with the Chern roots of the relative tangent bundle Tp(s), 5
of the ambient projective bundle P(&"). As such, our program can be carried out verbatim
for any smooth subvariety of P(&’), long as & is a direct summand of tensor powers of a
fixed line bundle on the base (this assumption is needed to apply the pushforward formula
from [14]). More precisely, take any smooth complete intersection X in some projective
space P™ given by equations X : (F} = Fy, = --- = F,,, = 0), promote the coefficients of
the F; to appropriate sections of tensor powers of a fixed line bundle on some smooth base
variety B and we will have then constructed a fibration ¢ : Y — B such that the generic
fiber is a complete intersection which is rationally equivalent to X. Then substituting the
n+1 Chern roots of the relative tangent bundle of the ambient P"-bundle where Y resides
along with the m Chern roots of the normal bundle to Y into our calculations above will
yield analogous results for the ‘X fibration’ ¢ : Y — B. Our results are thus genuinely
more general than the title of this note suggests (see [15] for more details).

We conclude by noting that a true culmination of these results will not be achieved
without a Lefschetz hyperplane type theorem for varieties in projective bundles, as hy-
persurfaces in projective bundles are almost never ample divisors (which is the key as-
sumption of the Lefschetz hyperplane theorem). Once such a theorem is unveiled, only
the middle cohomology will be unique to a hypersurface in a projective bundle thus ren-
dering only [4] of its Hodge numbers as non-trivial (where d is the dimension of the
hypersurface). The Hirzebruch invariants could then be used for the determination of the
non-trivial Hodge numbers. As the cohomology of a projective bundle can be related to
its base via the projective bundle theorem, a Lefschetz hyperplane type theorem along
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with the results in this paper would then relate all Hodge numbers of a hypersurface (and
so complete intersections) in a projective bundle to invariants of the base.
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