
A Reduction Algorithm for Algebraic Function

Fields

Mark van Hoeij, Andrew Novocin

Department of Mathematics

Florida State University

Tallahassee, FL 32306, USA.

e–mail: {hoeij,anovocin}@math.fsu.edu

January 21, 2005

Abstract

Computer algebra systems often produce large expressions involving

complicated algebraic numbers. In this paper we study variations of the

polred algorithm that can often be used to find better representations

for algebraic numbers. The main new algorithm presented here is an

algorithm that treats the same problem for the function field case.

1 Introduction

Consider the following problem: Given a finite extension K of Q find a β ∈ K
with Q(β) = K for which the minimal polynomial mβ has “small” integer
coefficients. Here “small” means not much larger than optimal.

A good and practical solution to this problem is the polred algorithm, by
Cohen and Diaz y Diaz [1]. This algorithm involves integer factorization (for
computing the ring of algebraic integers OK), floating point arithmetic (except
in the totally real case) as well as the LLL ([8]) algorithm. The topics of this
paper are the following

• Topic 1. Can integer factorization be avoided?

• Topic 2. Can floating point arithmetic be avoided in general?

• Topic 3. How to generalize polred to the function field case, where K is
a finite extension of Q(x)?

We will start by explaining the polred algorithm in section 2.1. Topics 1
and 2 and an example will be discussed in section 2.2. The remainder of the
paper will be devoted to topic 3.

1



2 The number field case

2.1 The polred algorithm

Suppose K, a finite extension of Q, has r1 real embeddings σ1, . . . , σr1 and r2
pairs of complex embeddings σr1+1, σr1+1, . . . , σr1+r2 , σr1+r2 . Combined there
are n := [K : Q] = r1 + 2r2 embeddings K → C. Then we have a Q-linear map

(σ1, . . . , σr1+r2) : K → Rr1 ⊕ Cr2 .

We can identify Rr1 ⊕ Cr2 with Rn by splitting real and imaginary parts.
Denote the resulting map as

ψ : K → Rn. (1)

We can now define two bilinear forms K×K → R as follows < a, b >1:= Tr(ab)
and < a, b >2:= ψ(a) · ψ(b) where Tr denotes the trace over K/Q and · is the
usual dot product in Rn. Note that < , >1=< , >2 if and only if K is totally
real (i.e. r2 = 0), if and only if the bilinear form < , >1 is positive definite.

The polred algorithm, by Cohen and Diaz y Diaz [1], works as follows.
First, compute a basis b1, . . . , bn of OK as Z-module. This way we can represent
elements of OK by elements of Zn. Then compute floating point approximations
for ψ(b1), . . . , ψ(bn). These approximations give us a bilinear form close to
< , >2. Now compute an LLL reduced basis of OK with respect to this bilinear
form. This way LLL finds elements in OK whose images under ψ are “small”,
i.e. not much larger than optimal (LLL finds vectors that are no more than 2n/2

times longer than optimal). Now select the first β 6∈ Q found by LLL.

Remark 1 A potential difficulty is that β generates a non-trivial subfield of K.
This problem is easily avoided by taking a small linear combination of elements
of the LLL basis. However, one might not want to actively avoid finding useful
information (a non-trivial subfield). Instead of avoiding this situation, it would
be better to make use of this subfield. However, for simplicity we will assume
that β does generate K (using a small linear combination if necessary).

Given that the image of β ∈ OK under ψ is “small”, one concludes that
the complex roots of the minimal polynomial mβ are small, after all, the real
and imaginary parts of these roots are exactly the entries of ψ(β). This in
turn implies that the coefficients of mβ are “small” (meaning that they can be
bounded in terms of the size of an optimal minimal polynomial). This algorithm
is not guaranteed to find an optimal minimal polynomial (optimal in terms of
bitsize or in terms of coefficient size) but like LLL it works very well in practice.

The polred algorithm is very useful for computer algebra systems in order to
simplify expressions containing large complicated algebraic numbers. However,
popular computer algebra systems such as Maple and Mathematica do not use
these techniques. A possible explanation may be the use of integer factorization
that is involved in the computation of OK . Factoring a large integer may take
too long. However, in almost all examples this potential bottleneck can be easily
avoided, see subsection 2.2 below. Topic 2 (avoiding floating point arithmetic)
will be discussed as well in subsection 2.2 as well.

2



2.2 Topics 1 and 2, and an example

Consider the system of equations given in [6]. A computer algebra system pro-
duced the following solution (this solution can easily be found using standard
Gröbner basis techniques since the system of equations in [6] was not compli-
cated).

y =
582483877536562478229177673229

15974159158723631332001909574
−
4583573815816690393633870284023

5814593933775401804848695084936
α

+
119532100283469028894215401

15974159158723631332001909574
α2 −

211625248935690502697605

5324719719574543777333969858
α3

+
939747984163203177097

7987079579361815666000954787
α4 −

2403470531291923165

15974159158723631332001909574
α5,

z =
α

728
,

x = −
554100881976373365591535043891

15974159158723631332001909574
+
4360115737681067598970904726867

5814593933775401804848695084936
α

−
111409542439749934294396505

15974159158723631332001909574
α2 +

193496497879991531164401

5324719719574543777333969858
α3

−
838972747013492420704

7987079579361815666000954787
α4 +

2077032365296943155

15974159158723631332001909574
α5

where α has minimal polynomialmα(x) = x6−967x5+409231x4−98821664x3+
14505901608x2 − 1221461035503x+ 45330846457297.

The first problem is to avoid factoring integers, which is used in the algorithm
for computing a basis of OK . Note that the polred algorithm could also be
applied to a subring R ⊆ OK instead of OK itself. Experiments show that the
smaller the index of R in OK is (i.e. the larger R is), the better the result will
be. In the example, the index of Z[α] in OK is large; the ring Z[α] is too small to
find an generator ofK with a nice minimal polynomial. The key idea in avoiding
integer factorization is now the following: instead of using just the information
stored in α and mα, we should use the information stored in all of x, y, z. We
first multiply x, y, z, 1/x, 1/y, 1/z by rational numbers q1, . . . , q6 chosen so that
the products a1, . . . , a6 := q1x, q2y, . . . , q6 · 1/z are algebraic integers. So we
have six elements a1, . . . , a6 ∈ OK . Then we compute R = Z[a1, . . . , a6] to
obtain a subring of OK that is much larger than Z[α]. This R is found with no
integer factorization.

For polred to work well we need to use either OK or a large subring of
OK (i.e. a subring with small index in OK). The above construction for R
usually leads to a large subring ofOK provided that more than one independently
constructed elements (x, y, z in the example) of K were given. In the example
R is equal to OK .

By computing such ring R instead of OK we can use polred without having
to factor integers, except in examples where only one element of K is given.
However, given an expression (such as the solution of a system of equations)

3



that involves only one element of K, there is less motivation to simplify this
expression than in situations where several elements of K occur.

If r2 = 0 (all embeddings are real) then polred does not need any floating
point computations because in this case the two bilinear forms <,>1 and <,>2

are the same (recall that the definition of <,>1 does not involve R). If r2 > 0
then <,>1 is no longer positive definite, and since the LLL algorithm works for
positive definite bilinear forms, polred will apply LLL with the bilinear form
<,>2 which involves computing in R.

There exist variations of the LLL algorithm that do allow bilinear forms that
are not positive definite, see [7] and [10]. Because of this, one can write a mod-
ification of polred that never needs floating point arithmetic. We implemented
this modification, and found that it has an advantage as well as a disadvantage.
The advantage is that it makes the algorithm faster. The disadvantage is that
<,>1 is less closely related to the size of mβ as <,>2. So one saves compu-
tation time, at the cost of finding a less good mβ . In the example we found
mβ(x) = x6 − 2x5 + 3x4 − 7849x3 + 85730x2 − 481151x+ 5038077 which is less
good than the mβ (given below) that one would otherwise find.

One possible strategy may be to first use the above variation of polred that
avoids floating point arithmetic, obtaining a partial improvement, and then
follow up on that by additional reduction using floating point arithmetic. This
gives the same result as the standard polred. Unfortunately, it does so in
almost the same amount of CPU time; in experiments there was little gain in
this hybrid approach. We find mβ(x) = x6 − x+ 1.

Using this mβ, while keeping track of the relation between α and β during
the computation of mβ , one can rewrite the expressions for x, y, z in terms of β
and we arrive at the improved solution:

z =
107 β5

728
+

107 β4

728
+

69 β3

728
+

17 β2

364
+

9

91
,

y =
165 β5

728
+

165 β4

728
+

103 β3

728
−

β2

364
+

15

182
,

x = −
209 β5

728
−

209 β4

728
−

179 β3

728
−

23 β2

364
+

163

182

3 The function field case

We will now consider the function field case. Given a finite extension K of Q(x),
we want to find a generator β of K whose minimal polynomial over Q(x) has
“small” coefficients, both in terms of the degrees with respect to x, as well as
in terms of the sizes of the coefficients in Q.

Denote R∞ as the ring of all a ∈ Q(x) that have no pole at x = ∞ (the
set of rational functions a for which the numerator does not have higher degree
than the denominator). Then Q[x]

⋂
R∞ = Q since the constants are the only

functions a ∈ Q(x) with no poles in Q
⋃
{∞}. A function a ∈ Q(x) has a pole

at x = ∞ of order d if and only if d is the smallest integer for which a ∈ xdR∞.

4



Let f ∈ Q[x, y] be irreducible and let K = Q(x)[y]/(f). Let n = [K :
Q(x)] = degy(f). We will assume that n > 1. We can write K = Q(x, α) where
α denotes y mod f , the image of y in K. Denote OK as the integral closure
of Q[x] in K, and denote O∞ as the integral closure of R∞ in K. One can
compute a basis b1, . . . , bn of OK as a Q[x]-module. Available implementations
for this are based on the round two or round four algorithm (see [3]) or on
Puiseux expansions (see [4]). These implementations also allow to compute a
basis b′1, . . . , b

′

n of O∞ as R∞-module. A convenient way to do this is to do
a change of variable x 7→ 1/t, compute a local integral basis at t = 0 (most
implementations have this feature), and then to change back t 7→ 1/x.

A place is a discrete valuation on K over Q. Every non-singular point on
the algebraic curve defined by f is a place, while a singular point corresponds
to one or more (but finitely many) places. One can effectively compute with
places by using Puiseux expansions. The ring of functions with no poles at the
finite places (the places where x has no pole) is OK . The ring of functions with
no poles at the infinite places (the places where x has a pole) is O∞. So the
intersection OK

⋂
O∞ is the set of functions with no poles on the curve; the

set of locally constant functions. The dimension of this set is the number of
components, i.e., the number of irreducible factors of f in Q[x, y], see [9]. We
will assume that f remains irreducible over Q, in other words we assume that
OK

⋂
O∞ = Q.

Given f and K, the goal is now the following: Find some β ∈ K that
generates K over Q(x) whose minimal polynomial

mβ = Y n + an−1Y
n−1 + · · ·+ a0 ∈ Q(x)[Y ] (2)

has “small” coefficients. Here we will define “small” in the following way:

• Condition 1: The coefficients ai in equation (2) are in Q[x].

• Condition 2: The total degree of mβ as a bivariate polynomial is n. In
other words degx(ai) ≤ n− i.

• Condition 3: If there is a β satisfying the previous assumptions for which
the degree of mβ as a polynomial in x is less than n, then we should
find such β. Moreover, the coefficients of the ai in Q should be “small”,
meaning that their numerators and denominators are not much larger than
optimal under the previous requirements.

In this section we will focus on the first two conditions, which can be reformu-
lated as

1. β ∈ OK

2. β ∈ xO∞

(to see the equivalence of condition 2, note that β ∈ xO∞ iff β/x ∈ O∞ iff
mβ/x = Y n + an−1

x Y n−1 + · · · a0

xn ∈ R∞[Y ] iff degx(ai) ≤ n− i for all i).
There need not be any β that generates K over Q(x) and that satisfies these

two conditions. For simplicity we will assume that such β does exist.

5



Remark 2 If such β does not exist, this would not complicate matters much.
We could simply replace the second condition by a weaker condition, namely
require that degx(ai) ≤ 2(n− i) for all i ∈ {0, . . . , n − 1}, or equivalently, that
β is in x2O∞. If that fails as well, we could weaken the condition further to
β ∈ x3O∞, etc.

For conditions 1 and 2 we need β ∈ OK

⋂
xO∞. For condition 3 see subsec-

tion 3.2. An algorithm to compute OK

⋂
xO∞ for a special case was given in

Section 3.2 in [5]. The next subsection presents an efficient method to compute
OK

⋂
xO∞ in general.

3.1 Normalize an integral basis at infinity

The process of normalizing an integral basis at infinity was introduced in [11]
as one of the steps in the integration of algebraic functions. For completeness
we will give a description of this process.

Algorithm: A basis of OK that is normal at infinity.

1. Let b1, . . . , bn be a basis of OK as Q[x]-module.

2. Let b′1, . . . , b
′

n be a basis of O∞ as R∞-module.

3. Write bi =
∑n

j=1
rijb

′

i with rij ∈ Q(x).

4. Let D ∈ Q[x] be a non-zero polynomial for which aij := Drij ∈ Q[x] for
all i, j. Now Dbi =

∑n
j=1

aijb
′

i.

5. For each i ∈ {1, . . . , n}, letmi be the maximum of the degrees of ai,1, . . . , ai,n.
Now let Vi ∈ Qn be the vector whose j’th entry is the xmi -coefficient of
aij . Let di := mi − degx(D).

6. If V1, . . . , Vn are linearly independent, then return b1, . . . , bn and stop.
Otherwise, take c1, . . . , cn ∈ Q, not all 0, for which c1V1 + · · · cnVn = 0.

7. Among those i ∈ {1, . . . , n} for which ci 6= 0, choose one for which di is
maximal. For this i, do the following

(a) Replace bi by
∑n

k=1
ckx

di−dkbk.

(b) Replace aij by
∑n

k=1
ckx

di−dkakj for all j ∈ {1, . . . , n}.

8. Go back to step 5.

The b1, . . . , bn remain a basis of OK throughout the algorithm because the new
bi in step 7a can be written as a nonzero rational number times the old bi plus
a Q[x]-linear combination of the bj , j 6= i. When we go back to step 5 the
non-negative integer di decreases while the dj , j 6= i stay the same. Hence the
algorithm must terminate.

Let b1, . . . , bn be the output of the algorithm. By construction, the number
di in the algorithm is the smallest integer for which bi ∈ xdiO∞. If β ∈ OK

6



with β 6= 0 then we can write β = c1b1 + · · · cnbn for some c1, . . . , cn ∈ Q[x].
Denote dβ as the maximum of degx(cj) + dj taken over all j for which cj 6= 0.
Then β ∈ xdβOK by construction. Since the vectors V1, . . . , Vn in the algorithm
are linearly independent when the algorithm terminates, there can not be any
cancelation, which means that dβ is the smallest integer for which β ∈ xdβOK .
Because of this, we get the following:

Let b1, . . . , bn be the output of the above algorithm. If d is a positive integer,
then the set Bd := {xjbi | 0 ≤ j ≤ d− di} is a basis of OK

⋂
xdOK as Q-vector

space.

We may assume that B1 contains the elements 1 and x since both are in
OK

⋂
xOK . We will assume that B1 contains a generator of K over Q(x),

otherwise the first two conditions in the previous section can not be met. In
particular this assumption implies that B1 should have more than two elements
(of course one could weaken condition 2 by taking Bd instead of B1 where d is
the smallest positive integer for which OK

⋂
xdOK contains a generator of K

over Q(x), see also the remark at the end of the previous section).

3.2 Condition 3

Let V denote the vector space OK

⋂
xOK . The previous section described

how to compute a basis B1 of V . Assume that V contains a generator of K
over Q(x). Experiments show that taking a random β ∈ V (or taking some
β ∈ B1 that generate K) almost always leads to a minimal polynomial mβ =
Y n + an−1Y

n−1 + · · · a0 whose bitsize is very much larger than optimal (the
coefficients of the ai are much larger than optimal).

This can be remedied in much the same way as in the polred algorithm.
By evaluating functions at places P1, . . . , Ps on the curve, we get a maps φi :
V → KPi

, where KPi
is the residue field at Pi, which is an algebraic number

field. Combining these maps we get a map σ : V → ⊕s
i=1KPi

. If N := [KP1
:

Q]+· · ·+[KPs
: Q] is large enough (N ≥ n certainly suffices) then σ must be one

to one. By mapping each KPi
to Rni where ni = [KPi

: Q] as in equation (1)
in section 2.1, we get a map Ψ : V → RN .

Now let Ri be OKPi
or a large subring of OKPi

if we want to avoid factoring
integers, like in section 2.2. The set of all β ∈ V whose image in KPi

ends up
in Ri for all i is a lattice L ⊂ V (i.e. a Z-module in V of rank dim(V )). The
map Ψ induces a dot-product on L (and on V ), coming from the dot-product
on RN . This dot-product takes values in R. One can now compute an LLL
reduced basis of L with respect to this dot-product and select the first element
(see also Remark 1) that generates K over Q(x).

The heuristic justification behind this approach is the following. We find
with LLL some β ∈ L ⊂ V whose evaluations are reasonably nice, i.e., not
much worse than optimal (remember that LLL does not necessarily find the
shortest vectors, but it does find vectors that are at most be some bounded
factor larger than the shortest vectors). In addition, if there is some β ∈ L

7



that generates K over Q(x) for which mβ is nice, then the evaluations of β
will also be reasonable nice. If we use enough places P1, . . . , Ps then we would
expect that only those β ∈ L with nice mβ could correspond to short vectors
in the lattice. This (by no means precise) argument makes it plausible that
this approach leads to some β ∈ V for which the expression mβ is not very
much larger than optimal. Like polred, this approach gives very good results
in practice.

The places we propose to use are the infinite places as well as the places
above x = 0 (in the unlikely event that the map σ above is not one to one, we
can add the places above x = 1, x = −1, etc.). For finite places Pi, one maps
β ∈ V to the value of β at Pi (i.e. the image of β in the residue field at Pi).
The places Pi at infinity are treated slightly differently; to get a map V → KPi

when Pi is a place at infinity, we need to send β ∈ V to the value at Pi of of
β/x instead of β. This is because we allowed β (but not β/x ∈ O∞) to have a
poles at infinite places Pi.

So far we have not yet discussed the part of condition 3 that discusses the
degree of mβ viewed as polynomial in x. This issue is handled as follows.
Suppose Pi is a place at infinity, and consider the map V → KPi

where β maps
to the value of β/x at Pi. Let Vi be the kernel of this map. If Vi 6= V but Vi
still contains a generator of K, then we will replace V by Vi. We repeat this
as long as we can still find a place at infinity for which “evaluation, and taking
the kernel” leads to a new V of lower dimension that still contains a generator.
Each time such a step is possible, the maximal possible degx(mβ) decreases by
ni = [KPi

: Q].
We give an example where K is the extension of Q(x) given by the minimal

polynomial

mα(y) = x3y5 − (16x − 5)x3y4 + 2(43x2 − 37x + 13)x3y3 + 2(40x5 − 180x4 +
232x3 − 135x2 + 50x− 8)x2y2 + (−80x9 − 160x8 + 868x7 − 1648x6 + 1516x5 −
834x4 + 255x3 − 30x2 − 8x+ 2)y + 32x11 − 592x8 + 80x9 − 2100x6 + 1709x5 +
1608x7 − 845x4 + 215x3 − 4x2 + 64x10 − 13x+ 3.

In general, a generator of K better than the given one (namely α) need not ex-
ist, in which case our algorithm can not do much. In this example, however, the
field K does have a much better generator over Q(x) than α, so the algorithm
is useful here. In this example, it finds β ∈ K with mβ(y) = y5 + 2xy + x2.
A partial implementation, including this example and a few other examples, is
available at http://www.math.fsu.edu/~hoeij/files/NormalBasis/

References

[1] H. Cohen, A Course in Computational Algebraic Number Theory, Springer-
Verlag, (1993).

[2] H. Cohen and F. Diaz y Diaz, A polynomial reduction algorithm, Séminaire
de Théorie des Nombres Bordeaux 3, 351-360 (1991).

8



[3] D. Ford and P. Letard, Implementing the Round Four Maximal Order Al-
gorithm, Journal de Théorie des Nombres de Bordeaux 6, 39-80 (1994).

[4] M. van Hoeij, An algorithm for computing an integral basis in an algebraic
function field., J. Symb. Comput., 18, 353-363 (1994).

[5] M. van Hoeij, Rational Parametrizations of Algebraic Curves using a
Canonical Divisor. J. Symb. Comput., 23, 209–227 (1997).

[6] M. van Hoeij, A. Novocin, Equations for the Example,
http://www.math.fsu.edu/∼anovocin/ISSAC2005.txt (2005).

[7] G. Ivanyos, Á. Szántó, Lattice basis reduction for indefinite forms and an
application, Discrete Mathematics 153, 177-188 (1996).

[8] Lenstra, Lenstra, Lovász, Factoring Polnomials with Rational Coefficients,
Math. Ann. 261, 515-534 (1982).

[9] J.-F. Ragot, Sur la factorisation absolue des polynômes. Université de Limo-
ges, (1997).

[10] Denis Simon, Solving quadratic equations using reduced unimodular
quadratic forms, to appear in Math. Comp.

[11] B. Trager, Integration of algebraic functions, Ph.D. thesis, Dept. of EECS,
MIT, (1984).

9


