
Journal de Théorie des Nombres
de Bordeaux 00 (XXXX), 000–000

Isomorphisms of Algebraic Number Fields

par Mark van Hoeij et Vivek Pal

Résumé. Soient Q(α) et Q(β) des corps de nombres. Nous décrivons
une nouvelle méthode permettant de déterminer (s’il en existe)
tous les isomorphismes Q(β) → Q(α). L’algorithme est partic-
ulièrement efficace lorsqu’il existe un unique isomorphisme.

Abstract. Let Q(α) and Q(β) be algebraic number fields. We
describe a new method to find (if they exist) all isomorphisms,
Q(β) → Q(α). The algorithm is particularly efficient if there is
only one isomorphism.

1. Introduction

Let Q(α) and Q(β) be two number fields, given by the minimal polynomi-
als f(x) =

∑n
i=0 fix

i and g(x) =
∑n

i=0 gix
i of α and β respectively. In this

paper we give an algorithm to compute the isomorphisms Q(β) → Q(α).
Suppose there is an isomorphism, then we have the following diagram of
field extensions:

Q(β)

g(x)

∼= // Q(α)

f(x)

Q Q
To represent such an isomorphism we need to give the image of β in

Q(α), in other words, we need to give a root of g(x) in Q(α).
We now describe two common methods of computing isomorphisms of

number fields.
• Method I. Field Isomorphism Using Polynomial Factorization [11,

Algorithm 4.5.6]
– Find all roots of g in Q(α). Each corresponds to an isomorphism

Q(β)→ Q(α). The roots can be found by factoring g over Q(α).
(1) If done with Trager’s method, one ends up factoring a poly-

nomial in Q[x] of degree n2.
(2) An alternative is Belabas’ algorithm [6] for factoring in Q(α).

The first author was supported by NSF Grant number 1017880.

2 Mark van Hoeij, Vivek Pal

• Method II. Field Isomorphism Using Linear Algebra [11, Algorithm
4.5.1/4.5.5]
(1) Let α1, . . . , αd be the roots of f in Qp (choose p with d > 0).
(2) Let β1, . . . , βd be the roots of g in Qp.
(3) If β 7→ h(α) is an isomorphism, then h(α1) = βi for some i ∈
{1, . . . , d}.

(4) For each i = 1, . . . , d, use LLL[9] techniques to check if there
exists a polynomial h(x) ∈ Q[x]<n for which h(α1) = βi.

Our algorithm is similar to Method II. When Q(β)/Q is Galois our algo-
rithm is the same as Algorithm II. However, if there is only one isomorphism
then we can save roughly a factor d. This is because we can do the LLL
computation for all βi simultaneously.

Main Result 1.1. Given two irreducible polynomials f(x) and g(x) in
Z[x], we present an algorithm to find all isomorphisms between the fields
Q[x]/(f(x)) and Q[x]/(g(x)).

A Maple implementation shows that our algorithm can handle large in-
puts while using only a modest amount of memory. We expect the per-
formance of Method I(b), restricted to finding linear factors, to be similar
to Method II. To properly compare the running times, it would be neces-
sary to reimplement our algorithm to Pari/GP since it has a faster LLL
implementation than Maple.

The performance of our algorithm is in the same ballpark as Method II
(we expect a speedup of a factor between 1 and d. We do not improve the
worst-case complexity, because in the worst case, when Q(β)/Q is Galois,
we end up following Method II). Nevertheless, the algorithm is interesting
because it contains a novel technique that may be useful in other applica-
tions as well: we introduce sub-traces, and use them to design a method
that makes it easy to combine the data obtained from several primes, which
is something one can not do in Methods I and II.

2. Notations

Definition 1. Let Q[x]<n denote the polynomials over Q with degree less
than n. If h(α) ∈ Q(α) then the notation h(x) is the element of Q[x]<n
that corresponds to h(α) under x 7→ α.

Under an isomorphism φ : Q(β) → Q(α), β will map to some h(α) ∈
Q(α),

(2.1) β 7→ h(α) =
n−1∑
i=0

hiα
i.

A polynomial h(x) ∈ Q[x]<n represents an isomorphism if and only if
h(α) is a root of g, i.e. g(h(α)) = 0.

Isomorphisms of Algebraic Number Fields 3

Without loss of generality we can assume that both f and g are in Z[x]. If
Q(β) is isomorphic to Q(α) then g(x) and f(x) have the same factorization
pattern in Qp[x] for every prime p.

Definition 2. A prime p is called a good prime if it does not divide the
leading coefficient of f or g and does not divide the discriminant of either
f or g.

For a good prime p we can factor f in Qp[x] up to any desired p-adic
precision by factoring in Fp[x], followed by Hensel Lifting [11, p. 137].
Likewise we can distinct-degree factor f as:

(2.2) f = F1F2 . . . Fm in Qp[x]

where Fd is the product of all irreducible factors of f in Qp[x] of degree d
[11, Section 3.4.3].

Definition 3. Sub-traces Let p be a prime and d a positive integer. Let
h(x) ∈ Q[x]<n, h(α) ∈ Q(α) and Fd as above. We define the sub-trace of f
as the Q-linear map,

Trdp(f,−) : Q(α)→ Qp Trdp(f, h(α)) :=
∑
γ∈Qp

Fd(γ)=0

h(γ).

We define Trdp(g,−) : Q(β)→ Qp similarly.

Remark 1. The map Trdp does not depend on the choice of the minimal
polynomial f that is used to represent the number field. In particular if
β 7→ h(α) is an isomorphism Q(β)→ Q(α) then

Trdp(g, β) = Trdp(f, h(α)) for every p and d.

Definition 4. We define two bases of Q(α) over Q. The standard basis,
{1, α, α2, . . . , αn−1} and the rational representation basis,
{1/f ′(α), α/f ′(α), . . . , αn−1/f ′(α)}.

The rational representation basis can improve running time and com-
plexity results, see [4]. This basis has also been used under various names,
see [4], and occurs naturally in algebraic number theory as a dual basis
under the trace operator, see [2].

Definition 5. A basis for Q(α) corresponds to a map Qn → Q(α). For
the rational representation basis, we define this map as ρ,

ρ : (a0, a1, . . . , an−1) 7→ 1
f ′(α)

n−1∑
i=0

aiα
i.

4 Mark van Hoeij, Vivek Pal

Definition 6. We define the inverse linear map ρ−1 : Q(α)→ Qn, h(α) 7→
~h as follows. Let h(α) =

∑n−1
i=0 aiα

i ∈ Q(α) and write f ′(α) · h(α) as∑n−1
i=0 biα

i. Then define ~h := (b0, b1, . . . , bn−1) ∈ Qn.

Remark 2. One of the main advantages of using rational representation is
that by using the bi in ~h instead of the ai, we have ~h ∈ Zn for every algebraic
integer h(α), see Lemma 4.1. Moreover, as in [4] this also improves bounds
in Section 4. It is also better to use gn~h than simply using h(α) since gn~h
will have integer components, by Corollary 4.1, which are easier to bound
and are heuristically of smaller size [4, Section 6].

Definition 7. For a polynomial f(x) =
∑n

i=0 fix
i denote

‖f(x)‖ :=

(
n∑
i=0

|fi|2
)1/2

.

Definition 8. Let M(f) be the Mahler measure of f ,

M(f) := fn ·
∏
f(γ)=0

γ∈C

max {1, |γ|}.

3. Overview of the Algorithm

Goal: To find all gn~h ∈ Zn for which β 7→ h(α) defines an isomorphism
Q(β)→ Q(α).
Idea: The aim of the Pre-processing algorithm in Section 5 is to find a
sequence

Zn = L0 ⊇ L1 ⊇ L2 ⊇ · · · ⊇ Lk
such that all gn~h are in each Li. We can then use Lk to speed up the
computation of the isomorphism(s), especially when dim(Lk) is small. The
cost of computing Lk is comparable to one iteration in Method II.

In the algorithm we start with the lattice Zn and then add the restrictions
imposed by the condition that under an isomorphism, sub-traces Q(α) →
Qp must correspond to sub-traces Q(β) → Qp. By doing this for several
primes we are able to narrow down the possible isomorphisms. If dim(Lk) ≤
1, this directly gives the isomorphism or shows that there is no isomorphism.
If dim(Lk) > 1 then we switch to Method II, but starting with Lk. Thus we
end up with d lattice reductions of dimension dim(Lk). In the worst case
dim(Lk) ≈ n, this costs the same as Method II. In the best case, dim(Lk)
≤ 1 and we save a factor d.

4. Bounding the length of gn~h

Lemma 4.1. If a ∈ Q(α) is an algebraic integer and f(x) is the minimal
polynomial for α, then f ′(α) · a ∈ Z[α].

Isomorphisms of Algebraic Number Fields 5

Proof. Denote by (i) the complex embeddings of Q(α). Then define

m(x) :=
n∑
i=1

a(i) f(x)
x− α(i)

.

The coefficients of m(x) are in Q since the polynomial is symmetric in
the α(i). But m(x) is also a sum of polynomials all of whose entries are
algebraic integers. Hence m(x) ∈ Z[x]. Note that for α = α(1) we get
m(α) = af ′(α) ∈ Z[α]. �

Corollary 4.1. Let β 7→ h(α) be an isomorphism of Q(β)→ Q(α). Then
gnh(α) is an algebraic integer and hence gn~h ∈ Zn.

Proof. Apply Lemma 4.1 with a = gnh(α) and recall that gn~h is comprised
of the coefficients of gnf ′(α)h(α) in the standard basis, each of which will
be integers by Lemma 4.1. �

Lemma 4.2. Let P (x) =
∑n

i=1 βi
f(x)
x−αi ∈ Q[x]<n, then P (α) = f ′(α)h(α).

Proof. If we evaluate f ′(x)h(x) at the roots of f(x) and then interpolate
we get:

n∑
i=1

βif
′(αi)

f(x)/(x− αi)
f ′(αi)

=
n∑
i=1

βi
f(x)
x− αi

.

Therefore
∑n

i=1 βi
f(x)
x−αi will be the remainder of f ′(x)h(x) divided by f(x),

because they are of the same degree and coincide on the n roots of f(x).
The lemma then follows from the fact that α is a root of f(x). �

We now bound || f(x)
x−αi || .

Theorem 4.1. If f(x) and f̃(x) are polynomials with complex coefficients,
of degree n and d respectively, such that f̃(x) divides f(x) and |f(0)| =
|f̃(0)| 6= 0, then

(4.1) ‖f̃(x)‖ ≤

n−d∑
j=0

(
d

j

)2
1/2

‖f(x)‖.

Proof. See Granville, [1]. �

Corollary 4.2. If f(x) and f̃(x) have the same leading coefficient and
f(0), f̃(0) 6= 0 and f̃(x) divides f(x) then equation (4.1) holds.

Proof. Apply Theorem 4.1 to the reciprocals of f and f̃ . �

6 Mark van Hoeij, Vivek Pal

Corollary 4.3. Let P (x) be an irreducible polynomial (over Q) of degree
n ≥ 1 and let {γ1, γ2, . . . , γn} be its complex roots. Then∥∥∥∥ P (x)

x− γi

∥∥∥∥ ≤ n‖P (x)‖

Proof. Take f̃(x) = P (x)
x−γi and f(x) = P (x) and apply Corollary 4.2. Then∥∥∥∥ P (x)

x− γi

∥∥∥∥ ≤ (n2 − 2n+ 2)1/2‖P (x)‖ ≤ n‖P (x)‖.

�

Theorem 4.2. Let
Sg(x) :=

∑
g(β)=0

β∈C

|βi|

then:

(4.2) gn‖~h‖ ≤ gnnSg(x)‖f(x)‖.

Remark 3. There are several ways to bound Sg(x):
1) Sg(x) ≤ The degree of g(x) times the rootbound described in [3].
2) Sg(x) ≤M(g)/lc(g)+(n−1), where the Mahler measure can be bounded
by ‖g(x)‖.

Proof. (of Theorem 4.2)

‖~h‖ = ‖P‖ = ‖
n∑
i=1

βi
f(x)
x− αi

‖ ≤ n‖f(x)‖
n∑
i=1

|βi| = n‖f(x)‖Sg(x).

The first equality is by the definition of ~h, the second by Lemma 4.2 and
the inequality by Corollary 4.3. �

5. The Algorithms

The Pre-processing algorithm reduces the lattice of possible isomorphisms
and gives the explicit isomorphism if there is only one. The next algorithm,
FindIsomorphism, calls the Pre-processing algorithm and uses the remain-
ing lattice to check which maps on roots corresponds to an isomorphism.

Algorithm: LLL-with-removals[10]
Input A lattice Λ = Za1 + · · ·+ Zak where ai ∈ Zn given by a n×k matrix
[a1 . . . ak] and a bound b > 0.
Output An LLL reduced basis of row vectors spanning a sublattice Λ′ ⊂ Λ
where Λ′ contains all vectors of Λ of length less than b.

Algorithm: FindSuitablePrime
Input (f(x), g(x),bp, a). Two polynomials f(x), g(x) ∈ Z[x], a lower
bound bp and an integer a.

Isomorphisms of Algebraic Number Fields 7

Output The distinct degree factorization of f , g mod pa, where p > bp,
given by: p, pa,m, [[Fd1 , Gd1], [Fd2 , Gd2], . . . [Fdm , Gdm]] Or “There is no iso-
morphism”
Procedure

(1) p := bp, counter:= 0.
(2) Repeat (until the algorithm stops in Steps 2(d)ii, 2(f) or 2(i)).

(a) p := nextprime(p)
(b) if p | discriminant(f, x) or p|fn then go to Step 2(a)
(c) if p | discriminant(g, x) or p|gn then go to Step 2(a)
(d) Distinct Degree Factor f as f ≡ Fd1Fd2 . . . Fdm mod p.

(i) If m = 1 then counter := counter +1.
(ii) If counter > 25 then print “Appears to be Galois” and return

0,0,0,0.
(iii) Return to Step 2(a).

(e) Distinct Degree Factor g as g ≡ Gd′1Gd′2 . . . Gd′m′ mod p.
(f) If m 6= m′ or if the degrees of Fi and Gi do not match then

return “There is no isomorphism”.
(g) Hensel lift f ≡ Fd1Fd2 . . . Fdm mod pa and likewise for g.
(h) If deg(F1) > 0 (if f has root(s) in Qp) then store p for later use.
(i) Return p, pa,m, [[Fd1 , Gd1], . . . , [Fdm , Gdm]] as output and stop.

Algorithm: Pre-Processing
Input Two polynomials f(x), g(x) ∈ Z[x].
Output Either “No isomorphism exists”, a verified isomorphism, or a Z-
module which contains (gn~h, gn) for every isomorphism h, given as the row
space of a matrix C.
Procedure

(1) Initialize

(a) e := n+ 1.
(b) C := (n+ 1) x (n+ 1) identity matrix.
(c) p := 3.
(d) q := 0.
(e) Let Basei ∈ Q(α)<n (i = 1 . . . n) be ρ(1, . . . , 0), . . . , ρ(0, . . . , 1)

where ρ was defined in Definition 5.

(2) Let S be the minimum of the bounds in Remark 3.
(3) Let b := gnnS‖f(x)‖.
(4) Repeat (until the algorithm stops in 4(b), 4(e) or 4(i)).

(a) q := q + 1.
(b) p, pa,m,Mq := FindSuitablePrime(f, g, x, p,

⌈
be/102e/4

⌉
).

(i) If p = 0 then return C.

8 Mark van Hoeij, Vivek Pal

(c) Compute Trdp(f,Basei) for i = 1 . . . n and Trdp(g, β) for each d
with deg(Fd)> 0. The necessary Fd, Gd are read from Mq.

(d) A :=
[
C CT
0 P

]
, where

P :=

 pa

. . .
pa

 ,

T :=


Trd1p1 (f,Base1) . . . T rdmp1 (f,Base1)
Trd1p1 (f,Base2) . . . T rdmp1 (f,Base2)

... . . .
...

Trd1p1 (f,Basen) . . . T rdmp1 (f,Basen)
Trd1p1 (g, β) . . . T rdmp1 (g, β)


the d1, . . . , dm are as in Step 4(c). (Omitted entries are zero.)

(e) If CT ≡ 0 mod pa then
(i) counter := counter +1.
(ii) If counter < 10 then Go to Step 4(a) else return C and stop.

(f) L := LLL-with-removals(A, b).
(g) Let C be the matrix with the first n+ 1 columns of L and B the

remaining m columns of L, so L = [C B].
(h) if B 6= 0 then

(i) B := 1020 ·B
(ii) A := [C B]
(iii) L := LLL-with-removals(A, b), then go to Step 4(g).

(i) Let e := number of rows of C.
(i) if e = 0 then output “There is no isomorphism.”
(ii) if e = 1 then let C = [v, vn+1] with v ∈ Zn, and let h be the

polynomial corresponding to v/vn+1.

(A) Let iso:= h(α)gn
f ′(α) .

(B) If g(iso) = 0 then output “iso is the only isomorphism.”
(C) If not then output “There is no isomorphism.”

(iii) Else, go to Step 4a.
Algorithm: FindIsomorphism

Input Two polynomials, f, g ∈ Z[x] which are irreducible and of the same
degree.
Output The set of all isomorphisms from Q[x]/(f) to Q[x]/(g).
Procedure

(1) C := Pre-Processing(f(x), g(x), x).

Isomorphisms of Algebraic Number Fields 9

(2) If Step 2(h) in Algorithm FindSuitablePrime (called from Algorithm
Pre-Processing) stored at least one prime, then choose one with small-
est deg(F1). Otherwise keep calling Algorithm FindSuitablePrime un-
til such a prime is found.

(3) Let α1, . . . , αd be the roots of F1 and Hensel lift them to Z/(pa) with a
as in Algorithm FindSuitablePrime. Likewise let β1, . . . , βd ∈ Z/(pa)
be the roots of G1.

(4) For j from 1 to d do:
(a) Apply steps 4(d) through 4(i)ii of Pre-Processing using

T :=


Base1|α=αj

Base2|α=αj
...

Basen|α=αj

β1


(b) If e > 1 then

(i) Hensel Lift the roots of f and g to twice the current p-adic
precision, i.e. p2a.

(ii) Apply Step 4(a) with the more precise roots.

Remark 4. The FindIsomorphism algorithm is described for (linear) roots
of f and g in Qp and can be extended to the roots of Fi and Gi.

Remark 5. It should be noted that even if the Pre-processing Algorithm
does not find the isomorphism(s), the LLL switches it performs will still
contribute to the FindIsomorphism Algorithm. This is true for the same
reason as in [11, pg 175].

5.1. Proofs of Termination and Validity. First we cite a lemma which
shows why we can use LLL with removal in our algorithm.

Lemma 5.1. Let {b1, . . . , bk} be a basis for a lattice, C, and {b∗1, . . . , b∗k}
the corresponding Gram-Schmitt orthogonalized basis for C. If ‖b∗k‖ > B
then a vector in C with norm less than B will be a Z-linear combination of
{b1, . . . , bk−1}.

Proof. This follows from the proof of Proposition 1.11 in [9], it is also stated
as Lemma 2 in [10]. �

Corollary 5.1. Using LLL-with-removals on a lattice containing gn~h with
the bound b computed in Step 3 of Pre-Processing, does not remove gn~h
from the lattice.

Proof. This follows from Lemma 5.1 and Theorem 4.2. �

Lemma 5.2. The Pre-Processing Algorithm terminates.

10 Mark van Hoeij, Vivek Pal

Proof. The only step for which this is not immediate is Step 4(h). Step 4(h)
terminates because each run increases the determinant of the lattice (Step
4(h)i) and any final (see Lemma 5.1) vector with Gram-Schmitt length > b
is removed, thus the number of vectors is monotonically decreasing and
hence it can only be run a finite number of times. �

Lemma 5.3. The FindIsomorphism Algorithm terminates.

Proof. Suppose Step 4 never terminates (i.e. the lattice always has di-
mension > 1) then it contains at least two vectors: (h1, e1) and (h2, e2).
Let H = h1 if e1 = 0 or H = e1h2 − e2h1 otherwise. Then H(α) ≡ 0
mod pa. We get a contradiction when pa is larger than an upper bound
for Resx(H, f). An upper bound for H can be obtained from equation
1.7 in [9] and the fact that the last vector after LLL-with-removals has
Gram-Schmitt length ≤ b. �

6. Heuristic estimate for the rank of C

Let C ⊆ Zn+1 be the output of the Pre-Processing Algorithm.

Observation 6.1. In most (but not all) examples, dim(C) is equal to n−
n/d+ 1.

This means that Pre-Processing is most effective when d = 1. Though
as pointed out in Remark 5 the work done in Pre-Processing reduces the
amount left to do.

Let G be the Galois group of f(x) and let Hi be the stabilizer of αi for
i ∈ {1, 2, . . . , n}, where the αi are the roots of f(x).

Let d be the number of j such that H1 = Hj , then d is the number of
automorphisms of Q(α). If Q(α) and Q(β) are isomorphic then d will also
be the number of isomorphisms from Q(β) to Q(α).

Remark 6. We view G, which as the Galois group acts on {α1, α2, . . . , αn},
as acting on the set {1, 2, . . . , n} in the most natural way. Hence we view
G as a subgroup of Sn, the symmetric group.

We will construct a partition matrix as follows. For each σ ∈ G, group
together the cycles of the same length. Different group elements and cycle
lengths will correspond to different rows. For each element of G and for
each cycle length in σ, construct one row of P as follows: place a 1 in the
ith entry if αi is in a cycle of that length. We call the resulting matrix P .

Isomorphisms of Algebraic Number Fields 11

For example for σ1 = (1)(2)(3)(456) and σ2 = (12)(3456) we would get
the following partition matrix :

P =

σ1 l = 1
σ1 l = 3
σ2 l = 2
σ2 l = 4

...


1 1 1 0 0 0
0 0 0 1 1 1
1 1 0 0 0 0
0 0 1 1 1 1
...

...
...

...
...

...


Since there are d automorphisms the number of distinct columns of P

will be ≤ n/d, hence rank(P) ≤ n/d and thus Nullspace(P) ≥ n− n/d.
This translates into an estimate on the rank of the lattice C since it helps

us bound
V =

⋂
p,d

Ker(Trdp(f,−)).

Nullspace(P) corresponds to elements for which all sub-traces are zero,
so dim(Nullspace(P)) ≤ dim(V).

Since we used LLL-with-removals with cut off point b, if V admits a basis
whose norms are all smaller than b then V ⊆ π1...n(C), where π1...n is the
projection on the first n coordinates.

Therefore under that assumption

dim(π1...n(C)) ≥ dim(Nullspace(P)) ≥ n− n/d.
This leads to our estimate:

(6.1) dim(C) ≈ n− n/d+ 1.

For most polynomials taken from the database [5] our estimate is an
equality. Peter Muller provided an infinite sequence of counter-examples
for the case we were most interested in (d = 1). For the first group in this
sequence, the database [5] provides the following example:
f := x14 + 2x13 − 5x12 − 184x11 − 314x10 + 474x9 + 1760x8 + 1504x7 −
400x6 − 1478x5 − 818x4 + 73x3 + 260x2 + 121x+ 23,
which has one automorphism but the Pre-processing algorithm outputs a
dimension 2 lattice.

7. Computational Efficiency

We compare our algorithm implemented in Maple with other methods
of finding isomorphisms. The best algorithm we know for factoring over
number fields is given by Belabas in [6], which is implemented in Pari/Gp.
We tested them on the field extensions given by the following two degree
25 polynomials:
f1 := 2174026154062500000 x25 − 12927273797812500000 x24 + 44254465332187500000 x23

− 102418940816662500000 x22 + 180537842164766250000 x21 − 249634002590534050000 x20

+ 292282923494920350000 x19 − 384197583430502150000 x18 + 815826517614521346000 x17

12 Mark van Hoeij, Vivek Pal

− 2131245874043847615600 x16 + 4352260622811059705104 x15 − 6463590834754261173232 x14

+ 6920777688226436002712 x13 − 4525061881234027826296 x12 + 528408698276686662696 x11

+ 2762117617850418790424 x10 − 4343360968383689825174 x9 + 4191186502263628451150 x8

− 2802452375464033976482 x7 + 1332292171242725153638 x6 − 161285249796825311495 x5

− 429207332210687640181 x4 + 264147194777000152867 x3 + 6032198632961699729 x2

− 42885793067858008650 x + 13774402803823804220 and
f2 := −42885793067858008650 x− 13774402803823804220− 161285249796825311495 x5

+ 429207332210687640181 x4 + 264147194777000152867 x3 − 6032198632961699729 x2

− 1332292171242725153638 x6 − 2802452375464033976482 x7 − 4191186502263628451150 x8

− 4343360968383689825174 x9 − 2762117617850418790424 x10 + 528408698276686662696 x11

+ 4525061881234027826296 x12 + 6920777688226436002712 x13 + 6463590834754261173232 x14

+ 4352260622811059705104 x15 + 815826517614521346000 x17 + 384197583430502150000 x18

+ 292282923494920350000 x19 + 249634002590534050000 x20 + 180537842164766250000 x21

+ 102418940816662500000 x22 + 44254465332187500000 x23 + 2131245874043847615600 x16

+ 12927273797812500000 x24 + 2174026154062500000 x25.

These are field extensions with one isomorphism between them. Using
Belabas’ method we have a runtime of 11.69 seconds, which includes the
operation of defining the number field, and with our algorithm we have a
runtime of 2.97 seconds.

We also tested them on a larger example, namely the degree 81 example
located at [7], our algorithm found the isomorphism in 2226.051 seconds.
When we tested this is Pari/Gp the command to define the number field did
not finish as it ran out of memory after trying for a few days. Though the
referee pointed out that using the command nfroots(f, g) in Pari/Gp ver-
sion 2.5.0 finishes in 1923.160 seconds (although it uses significantly more
memory). To properly compare the running times, it would be necessary
to reimplement our algorithm since the LLL implementation in Pari/GP is
many times faster than that in Maple.

8. Summary

Method II (from Section 1) can be described by the following procedure:
first pick p such that f and g have roots in Qp. Fix one root β ∈ Qp of
g, take all roots α1, . . . , αd ∈ Qp of f . Then for each αi use LLL to find
hi ∈ Q[x] (if it exists) with hi(αi) = βi.

Our approach is similar, with two differences: (1) we can combine data
from several primes, and (2) we start with LLL reductions (obtained from
sub-traces) that are valid for all αi. This way, a portion of the LLL com-
putation to be done for each αi is now shared. The time saved is then
(d− 1) times the cost of the shared portion. This can be made rigorous by
introducing a progress counter for LLL cost similar to [10].

Isomorphisms of Algebraic Number Fields 13

References
[1] Granville, A. “Bounding the coefficients of a divisor of a given polynomial”, Monatsh.

Math. 109 (1990), 271-277.
[2] Conrad, Kieth. “The different ideal”. Expository papers/Lecture notes. Available at:

http://www.math.uconn.edu/∼kconrad/blurbs/gradnumthy/different.pdf

[3] Monagan, M. B. “A Heuristic Irreducibility Test for Univariate Polynomials”, J. of Sym-
bolic Comp., 13, No. 1, Academic Press (1992) 47-57.

[4] Dahan, X. and Schost, É. 2004. “Sharp estimates for triangular sets”. In Proceedings
of the 2004 international Symposium on Symbolic and Algebraic Computation (Santander,

Spain, July 04 - 07, 2004). ISSAC ’04. ACM, New York, NY, 103-110.

[5] Database by Jürgen Klüners and Gunter Malle , located at:
http://www.math.uni-duesseldorf.de/∼klueners/minimum/minimum.html

[6] Belabas, Karim. “A relative van Hoeij algorithm over number fields”. J. Symbolic Com-

putation, Vol. 37 (2004), no. 5, pp. 641-668.
[7] Website with implementations and Degree 81 examples:

http://www.math.fsu.edu/∼vpal/Iso/
[8] van Hoeij, Mark. “Factoring Polynomials and the Knapsack Problem.” J. Number Th.

95, 167-189, 2002

[9] Lenstra, A. K.; Lenstra, H. W., Jr.; Lovász, L. “Factoring polynomials with rational
coefficients”. Mathematische Annalen 261 (4), 515-534, 1982.

[10] M. van Hoeij and A. Novocin, “ Gradual sub-lattice reduction and a new complexity for

factoring polynomials”, accepted for proceedings of LATIN 2010.
[11] Cohen, Henri A Course in Computational Algebraic Number Theory, Graduate Texts in

Mathematics 138, Springer-Verlag, 1993.

Mark van Hoeij
Florida State University

211 Love Building
Tallahassee, Fl 32306-3027, USA

E-mail : hoeij@math.fsu.edu

URL: http://www.math.fsu.edu/∼hoeij

Vivek Pal

Columbia University

Room 509, MC 4406 2990 Broadway
New York, NY 10027, USA

E-mail : vpal@math.columbia.edu

URL: http://www.math.columbia.edu/∼vpal

