Closed Form Solutions of Linear Difference Equations

Yongjae Cha

Florida State University

Object of the Thesis: Algorithm solver that solves difference operators.
(1) Transformations
(2) Invariant Data
(3) Table of base equations

Outline

(1) Difference Operator
(2) Example
(3) Transformations
4. Main Idea
(5) Invariant Local Data

- Finite Singularity
- Generalized Exponent
(6) Liouvillian
(7) Special Functions

Linear Difference Equation

- Difference Equation:

Let $D E: \mathbb{C}^{n+2} \rightarrow \mathbb{C}$. Then a difference equation is an equation of the form

$$
D E(f(x), f(x+1), \ldots, f(x+n), x)=0(n \geq 1)
$$

- A recurrence relation

Let $R: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$. Then a recurrence relation is an
equation of the form

Linear Difference Equation

- Difference Equation:

Let $D E: \mathbb{C}^{n+2} \rightarrow \mathbb{C}$. Then a difference equation is an equation of the form

$$
D E(f(x), f(x+1), \ldots, f(x+n), x)=0(n \geq 1)
$$

- A recurrence relation

Let $R: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$. Then a recurrence relation is an equation of the form

$$
f(x+n)=R(f(x), f(x+1), \ldots, f(x+n-1), x)(n \geq 1)
$$

Linear Difference Equation

A difference equation is called linear, if it is in the form of
$a_{n}(x) f(x+n)+a_{n-1}(x) f(x+n-1)+\cdots+a_{0}(x) f(x)+a(x)=0$
where $a, a_{i}: \mathbb{C} \rightarrow \mathbb{C}$ for $i=0, \ldots, n$.
Then it naturally defines a recurrence relation by

A difference equation is called homogeneous if $a(x)=0$.

In this talk we will only consider homogeneous linear difference equations with coefficients in $\mathbb{C}(x)$.

Linear Difference Equation

A difference equation is called linear, if it is in the form of
$a_{n}(x) f(x+n)+a_{n-1}(x) f(x+n-1)+\cdots+a_{0}(x) f(x)+a(x)=0$
where $a, a_{i}: \mathbb{C} \rightarrow \mathbb{C}$ for $i=0, \ldots, n$.
Then it naturally defines a recurrence relation by

$$
f(x+n)=-\frac{a_{n-1}(x)}{a_{n}(x)} f(x+n-1)-\cdots-\frac{a_{0}(x)}{a_{n}(x)} f(x)-\frac{a(x)}{a_{n}(x)}
$$

A difference equation is called homogeneous if $a(x)=0$.

In this talk we will only consider homogeneous linear difference equations with coefficients in $\mathbb{C}(x)$.

Linear Difference Equation

A difference equation is called linear, if it is in the form of
$a_{n}(x) f(x+n)+a_{n-1}(x) f(x+n-1)+\cdots+a_{0}(x) f(x)+a(x)=0$
where $a, a_{i}: \mathbb{C} \rightarrow \mathbb{C}$ for $i=0, \ldots, n$.
Then it naturally defines a recurrence relation by

$$
f(x+n)=-\frac{a_{n-1}(x)}{a_{n}(x)} f(x+n-1)-\cdots-\frac{a_{0}(x)}{a_{n}(x)} f(x)-\frac{a(x)}{a_{n}(x)}
$$

A difference equation is called homogeneous if $a(x)=0$.

In this talk we will only consider homogeneous linear difference equations with coefficients in $\mathbb{C}(x)$.

Linear Difference Operator

Let τ be the shift operator: $\tau(u(x))=u(x+1)$
Then a Linear Difference Operator L is

$$
L=a_{n} \tau^{n}+a_{n-1} \tau^{n-1}+\cdots+a_{0} \tau^{0} \text { where } a_{i} \in \mathbb{C}(x)
$$

L corresponds to a difference equation

$$
a_{n}(x) f(x+n)+a_{n-1}(x) f(x+n-1)+\cdots+a_{0}(x) f(x)=0
$$

Example:

- If $L=\tau-x$ then the equation $L(f(x))=0$ is $f(x+1)-x f(x)=0$ and $\Gamma(x)$ is a solution of L.

We will see some examples of what solver can do. (with Maple worksheet)

GT-Transformation

Notation:

- $V(L)=$ solution space of L.
(1) Term Product: L_{2} is a term product of L_{1} when $V\left(L_{2}\right)$ can be written as $V\left(L_{1}\right)$ multiplied by a hypergeometric term.
(2) Gauge Equivalence: L_{2} is gauge equivalent to L_{1} if there exists $G \in \mathbb{C}(x)[\tau]$ that bijectively maps $V\left(L_{1}\right)$ to $V\left(L_{2}\right)$.
(3) GT-Equivalence: $L_{2} \sim_{q t} L_{1}$ if a combination of (1) and (2) can map $V\left(L_{1}\right)$ to $V\left(L_{2}\right)$. Such map is called GT-Transformation.

We can find GT-Transformation.

GT-Transformation

Notation:

- $V(L)=$ solution space of L.
(1) Term Product: L_{2} is a term product of L_{1} when $V\left(L_{2}\right)$ can be written as $V\left(L_{1}\right)$ multiplied by a hypergeometric term.
(2) Gauge Equivalence: L_{2} is gauge equivalent to L_{1} if there exists $G \in \mathbb{C}(x)[\tau]$ that bijectively maps $V\left(L_{1}\right)$ to $V\left(L_{2}\right)$.
(8) GT-Equivalence: $L_{2} \sim g t L_{1}$ if a combination of (1) and (2) can map $V\left(L_{1}\right)$ to $V\left(L_{2}\right)$. Such map is called GT-Transformation.

We can find GT-Transformation.

GT-Transformation

Notation:

- $V(L)=$ solution space of L.
(1) Term Product: L_{2} is a term product of L_{1} when $V\left(L_{2}\right)$ can be written as $V\left(L_{1}\right)$ multiplied by a hypergeometric term.
(2) Gauge Equivalence: L_{2} is gauge equivalent to L_{1} if there exists $G \in \mathbb{C}(x)[\tau]$ that bijectively maps $V\left(L_{1}\right)$ to $V\left(L_{2}\right)$.
(3) GT-Equivalence: $L_{2} \sim_{g t} L_{1}$ if a combination of (1) and (2) can map $V\left(L_{1}\right)$ to $V\left(L_{2}\right)$. Such map is called GT-Transformation.

We can find GT-Transformation.

Main Idea

Observation:

If two operators are gt-equivalent and if one of them has closed form solutions, then so does the other.

Idea:

- Find base equations: Find parameterized families of equations with known solutions.
- Solve every equation $\sim g t$ to a base equation.

Main Idea

Observation:

If two operators are gt-equivalent and if one of them has closed form solutions, then so does the other.

Idea:

- Find base equations: Find parameterized families of equations with known solutions.
- Solve every equation $\sim_{g t}$ to a base equation.

Main Idea

Questions

(1) Can we construct such table?

Main Idea

Questions

(1) Can we construct such table?

Yes

- LbIK $=z \tau^{2}+(2+2 v+2 x) \tau-z$

Solutions: Modified Bessel functions of the first and second kind, $I_{v+x}(z)$ and $K_{v+x}(-z)$

- $L b J Y=z \tau^{2}-(2+2 v+2 x) \tau+z$

Solutions: Bessel functions of the first and second kind, $J_{v+x}(z)$ and $Y_{v+x}(z)$

- $L W W=\tau^{2}+(z-2 v-2 x-2) \tau-v-x-\frac{1}{4}-v^{2}-2 v x-x^{2}+n^{2}$

Solution: Whittaker function $W_{x, n}(z)$

- $L W M=\tau^{2}(2 n+2 v+3+2 x)+(2 z-4 v-4 x-4) \tau-2 n+1+2 v+2 x$

Solution: Whittaker function $M_{x, n}(z)$

- $L 2 F 1=(z-1)(a+x+1) \tau^{2}+(-z+2-z a-z x+2 a+2 x+z b-c) \tau-a+c-1-x$

Solution: Hypergeometric function ${ }_{2} F_{1}(a+x, b ; c ; z)$

- $L j c=\tau^{2}-\frac{1}{2} \frac{(2 x+3+a+b)\left(a^{2}-b^{2}+(2 x+a+b+2)(2 x+4+a+b) z\right)}{(x+2)(x+2+a+b)(2 x+a+b+2)} \tau+\frac{(x+1+a)(x+1+b)(2 x+4+a+b)}{(x+2)(x+2+a+b)(2 x+a+b+2)}$

Solution: Jacobian polynomial $P_{x}^{a, b}(z)$

- $\operatorname{Lgd}=\tau^{2}-\frac{(2 x+3) z}{x+2} \tau+\frac{x+1}{x+2}$

Solution: Legendre functions $P_{X}(z)$ and $Q_{X}(z)$

- $\operatorname{Lgr}=\tau^{2}-\frac{2 x+3+\alpha-z}{x+2} \tau+\frac{x+1+\alpha}{x+2}$

Solution: Laguerre polynomial $L_{x}^{(\alpha)}(z)$

- $L g b=\tau^{2}-\frac{2 z(m+x+1)}{x+2} \tau-\frac{2 m+x}{x+2}$

Solution: Gegenbauer polynomial $C_{x}^{m}(z)$

- $\operatorname{Lgr} 1=(x+2) \tau^{2}+(x+z-b+1) \tau+z$

Solution: Laguerre polynomial $L_{x}^{(b-x)}(z)$

- $L k m=(a+x+1) \tau^{2}+(-2 a-2 x-2+b-c) \tau+a+x+1-b$ Solution: Kummer's function $M(a+x, b, c)$
- $L 2 F 0=\tau^{2}+(-z b+z x+z+z a-1) \tau+z(b-x-1)$

Solution: Hypergeometric function ${ }_{2} F_{0}(a, b-x ; ; z)$

- Lge $=(x+2) \tau^{2}+(-a b-d+(a+1)(1+x)) \tau+a x-a(b+d)$

Solution: Sequences whose ordinary generating function is $(1+a x)^{b}(1+b x)^{d}$

Questions

(1) Can we construct such table?

Yes
(2) How can we find the right base equation and the parameter values?

Local data

Questions

- Can we construct such table?

Yes
(2) How can we find the right base equation and the parameter values?

Local data

Main Algorithm

(1) Compute local data of L.
(2) Compare the data with those in the table and find a base equation that matches the data. If there is no such base equation then return \emptyset.
(1) Compute candidate values for each parameters.
(2) Construct a set cdd by plugging values found in step 1 to corresponding parameters.
(3) For each $L_{C} \in$ cold check if $L \sim_{g t} L_{C}$ and if so
(1) Generate a basis of solutions or a solution of L_{c} by plugging in corresponding parameters.
(3) Apply the term transformation and the gauge transformation to the result from 1.
(3) Return the result of step 2 as output and stop the algorithm.

Main Algorithm

(1) Compute local data of L.
(2) Compare the data with those in the table and find a base equation that matches the data. If there is no such base equation then return \emptyset.
(1) Compute candidate values for each parameters.
(2) Construct a set cdd by plugging values found in step 1 to corresponding parameters.
(3) For each $L_{c} \in$ cold check if $L \sim g t L_{c}$ and if so
(1) Generate a basis of solutions or a solution of L_{c} by plugging in corresponding parameters.
2) Apply the term transformation and the gauge transformation to the result from 1
(Return the result of sten 2 as outnut and stop the algorithm

Main Algorithm

(1) Compute local data of L.
(2) Compare the data with those in the table and find a base equation that matches the data. If there is no such base equation then return \emptyset.
(1) Compute candidate values for each parameters.
(2) Construct a set cdd by plugging values found in step 1 to corresponding parameters.
(3) For each $L_{c} \in c d d$ check if $L \sim_{g t} L_{c}$ and if so
(1) Generate a basis of solutions or a solution of L_{c} by plugging in corresponding parameters.
(2) Apply the term transformation and the gauge transformation to the result from 1.
(3) Return the result of step 2 as output and stop the algorithm.

Algorithm

TryBessel:

Input: $L \in \mathbb{C}(x)[\tau]$
(1) Compute the local data of $L_{v, z}=z \tau^{2}+(2+2 v+2 x) \tau-z$ (Bessel recurrence).
(3) Compute local data of L that is invariant under $\sim g t$.
(0) Compare the local data of $L_{v, z}$ with that of L.

- If compatible, compute v, z from this comparison.
© Check if $L \sim_{g t} L_{v, z}$, and if so, return solution(s).
Note: Step 1 is done only once, and then stored in a table.
Remark: Checking $L \sim_{g_{t}} I_{v, z}$ and computing the gt-transformation can only be done after we have found the values of the parameter v, z.

Algorithm

TryBessel:

Input: $L \in \mathbb{C}(x)[\tau]$
(1) Compute the local data of $L_{v, z}=z \tau^{2}+(2+2 v+2 x) \tau-z$ (Bessel recurrence).
(2) Compute local data of L that is invariant under $\sim g t$.
(0) Compare the local data of $L_{v, z}$ with that of L.
(1f compatible, compute v, z from this comparison.
(Check if $L \sim_{g t} L_{v, z}$, and if so, return solution(s).
Note: Step 1 is done only once, and then stored in a table.
Remark: Checking $L \sim \sim_{g t} L_{v, z}$ and computing the
gt-transformation can only be done after we have found the values of the parameter v, z.

Algorithm

TryBessel:

Input: $L \in \mathbb{C}(x)[\tau]$
(1) Compute the local data of $L_{v, z}=z \tau^{2}+(2+2 v+2 x) \tau-z$ (Bessel recurrence).
(2) Compute local data of L that is invariant under $\sim g t$.
(3) Compare the local data of $L_{v, z}$ with that of L.

- If compatible, compute v, z from this comparison.
(Check if $L \sim_{g t} L_{v, z}$, and if so, return solution(s).
Note: Step 1 is done only once, and then stored in a table.
Remark: Checking $L \sim \sim_{t} L_{v, z}$ and computing the
gt-transformation can only be done after we have found the
values of the parameter v, z.

Algorithm

TryBessel:

Input: $L \in \mathbb{C}(x)[\tau]$
(1) Compute the local data of $L_{v, z}=z \tau^{2}+(2+2 v+2 x) \tau-z$ (Bessel recurrence).
(2) Compute local data of L that is invariant under $\sim g t$.
(3) Compare the local data of $L_{v, z}$ with that of L.
(1) If compatible, compute v, z from this comparison.
© Check if $L \sim_{g t} L_{v, z}$, and if so, return solution(s).
Note: Step 1 is done only once, and then stored in a table.
Remark: Checking $L \sim_{g_{t} t} L_{v, z}$ and computing the
gt-transformation can only be done after we have found the
values of the parameter v, z.

Algorithm

TryBessel:

Input: $L \in \mathbb{C}(x)[\tau]$
(1) Compute the local data of $L_{v, z}=z \tau^{2}+(2+2 v+2 x) \tau-z$ (Bessel recurrence).
(2) Compute local data of L that is invariant under $\sim_{g t}$.
(3) Compare the local data of $L_{v, z}$ with that of L.
(4) If compatible, compute v, z from this comparison.
(5) Check if $L \sim_{g t} L_{v, z}$, and if so, return solution(s).

Note: Step 1 is done only once, and then stored in a table.
Remark: Checking $L \sim_{g t} L_{v, z}$ and computing the
gt-transformation can only be done after we have found the
values of the parameter v, z.

Algorithm

TryBessel:

Input: $L \in \mathbb{C}(x)[\tau]$
(1) Compute the local data of $L_{v, z}=z \tau^{2}+(2+2 v+2 x) \tau-z$ (Bessel recurrence).
(2) Compute local data of L that is invariant under $\sim_{g t}$.
(3) Compare the local data of $L_{v, z}$ with that of L.
(4) If compatible, compute v, z from this comparison.
(5) Check if $L \sim_{g t} L_{v, z}$, and if so, return solution(s).

Note: Step 1 is done only once, and then stored in a table.
Remark: Checking $L \sim_{g t} L_{v, z}$ and computing the gt-transformation can only be done after we have found the values of the parameter v, z.

Outline

Difference Operator

ExampleTransformationsMain Idea(5) Invariant Local Data

- Finite Singularity
- Generalized Exponent

6 LiouvillianSpecial Functions

Invariant Local Data

Question: If $L \sim_{g t} L_{v, z}$, how to find v, z from L ?
Need data that is invariant under $\sim_{g t}$
Two sources
(0) Finite Singularities (valuation growths)
(2) Singularity at ∞ (generalized exponents)

Invariant Local Data

Question: If $L \sim_{g t} L_{v, z}$, how to find v, z from L ?
Need data that is invariant under $\sim_{g t}$
Two sources
(C) Finite Singularities (valuation growths)
(2) Singularity at ∞ (generalized exponents)

Invariant Local Data

Question: If $L \sim_{g t} L_{v, z}$, how to find v, z from L ?
Need data that is invariant under $\sim g t$

Two sources

(1) Finite Singularities (valuation growths)
(2) Singularity at ∞ (generalized exponents)

Finite Singularity: Valuation Growth

Suppose $L_{1} \sim_{g} L_{2}$ and $G=r_{k}(x) \tau^{k}+\cdots+r_{0}(x), r_{i}(x) \in \mathbb{C}(x)$
Let $u(x)=\Gamma(x) \in V\left(L_{1}\right)$ and $v(x)=G(u(x))$ is a non-zero element in $V\left(L_{2}\right)$.

Finite Singularity: Valuation Growth

Suppose $L_{1} \sim_{g} L_{2}$ and $G=r_{k}(x) \tau^{k}+\cdots+r_{0}(x), r_{i}(x) \in \mathbb{C}(x)$ Let $u(x)=\Gamma(x) \in V\left(L_{1}\right)$ and $v(x)=G(u(x))$ is a non-zero element in $V\left(L_{2}\right)$.

Finite Singularity: Valuation Growth

Suppose $L_{1} \sim_{g} L_{2}$ and $G=r_{k}(x) \tau^{k}+\cdots+r_{0}(x), r_{i}(x) \in \mathbb{C}(x)$ Let $u(x)=\Gamma(x) \in V\left(L_{1}\right)$ and $v(x)=G(u(x))$ is a non-zero element in $V\left(L_{2}\right)$.

Finite Singularity: Valuation Growth

Suppose we have a difference equation

$$
a_{n}(x) f(x+n)+a_{n-1}(x) f(x+n-1)+\cdots+a_{0}(x) f(x)+a(x)=0 \quad a_{i}(x) \in \mathbb{C}[x] .
$$

To calculate $f(s+n)$ with values of $f(s), \ldots, f(s+n-1), s \in \mathbb{C}$,

To calculate $f(s)$ with values of $f(s+1)$,

Definition
Let $L=a_{n} \tau^{n}+\cdots+a_{0} \tau^{0}$ with $a_{i} \in \mathbb{C}[x] . q \in \mathbb{C}$ is called a problem
point of L if q is a root of the polynomial $a_{0}(x) a_{n}(x-n) . p \in \mathbb{C} / \mathbb{Z}$ is
called a finite singularity of L if it contains a problem point.

Finite Singularity: Valuation Growth

Suppose we have a difference equation

$$
a_{n}(x) f(x+n)+a_{n-1}(x) f(x+n-1)+\cdots+a_{0}(x) f(x)+a(x)=0 \quad a_{i}(x) \in \mathbb{C}[x]
$$

To calculate $f(s+n)$ with values of $f(s), \ldots, f(s+n-1), s \in \mathbb{C}$,

$$
f(x+n)=-\frac{a_{n-1}(x)}{a_{n}(x)} f(x+n-1)-\cdots-\frac{a_{0}(x)}{a_{n}(x)} f(x)
$$

To calculate $f(s)$ with values of $f(s+1)$,

Definition
Let $L=a_{n} \tau^{n}+\cdots+a_{0} \tau^{0}$ with $a_{i} \in \mathbb{C}[x] . q \in \mathbb{C}$ is called a problem
point of L if q is a root of the polynomial $a_{0}(x) a_{n}(x-n) . p \in \mathbb{C} / \mathbb{Z}$ is called a finite singularity of L if it contains a problem point.

Finite Singularity: Valuation Growth

Suppose we have a difference equation

$$
a_{n}(x) f(x+n)+a_{n-1}(x) f(x+n-1)+\cdots+a_{0}(x) f(x)+a(x)=0 \quad a_{i}(x) \in \mathbb{C}[x]
$$

To calculate $f(s+n)$ with values of $f(s), \ldots, f(s+n-1), s \in \mathbb{C}$,

$$
f(x+n)=-\frac{a_{n-1}(x)}{a_{n}(x)} f(x+n-1)-\cdots-\frac{a_{0}(x)}{a_{n}(x)} f(x)
$$

To calculate $f(s)$ with values of $f(s+1), \ldots, f(s+n), s \in \mathbb{C}$,

$$
f(x)=-\frac{a_{n}(x)}{a_{0}(x)} f(x+n)-\cdots-\frac{a_{1}(x)}{a_{0}(x)} f(x+1)
$$

Definition
Let $L=a_{n} \tau^{n}+\cdots+a_{0} \tau^{0}$ with $a_{j} \in \mathbb{C}[x] . q \in \mathbb{C}$ is called a problem point of L if q is a root of the polynomial $a_{0}(x) a_{n}(x-n) . p \in \mathbb{C} / \mathbb{Z}$ is called a finite singularity of L if it contains a problem point.

Finite Singularity: Valuation Growth

Suppose we have a difference equation

$$
a_{n}(x) f(x+n)+a_{n-1}(x) f(x+n-1)+\cdots+a_{0}(x) f(x)+a(x)=0 \quad a_{i}(x) \in \mathbb{C}[x]
$$

To calculate $f(s+n)$ with values of $f(s), \ldots, f(s+n-1), s \in \mathbb{C}$,

$$
f(x+n)=-\frac{a_{n-1}(x)}{a_{n}(x)} f(x+n-1)-\cdots-\frac{a_{0}(x)}{a_{n}(x)} f(x)
$$

To calculate $f(s)$ with values of $f(s+1), \ldots, f(s+n), s \in \mathbb{C}$,

$$
f(x)=-\frac{a_{n}(x)}{a_{0}(x)} f(x+n)-\cdots-\frac{a_{1}(x)}{a_{0}(x)} f(x+1)
$$

Definition

Let $L=a_{n} \tau^{n}+\cdots+a_{0} \tau^{0}$ with $a_{i} \in \mathbb{C}[x] . q \in \mathbb{C}$ is called a problem point of L if q is a root of the polynomial $a_{0}(x) a_{n}(x-n) . p \in \mathbb{C} / \mathbb{Z}$ is called a finite singularity of L if it contains a problem point.

Finite Singularity: Valuation Growth

Definition

Let $u(x) \in \mathbb{C}(x)$ be a non-zero meromorphic function. The valuation growth of $u(x)$ at $p=q+\mathbb{Z}$ is
$\liminf _{n \rightarrow \infty}($ order of $u(x)$ at $x=n+q)$

- $\liminf _{n \rightarrow \infty}($ order of $u(x)$ at $x=-n+q)$

> Definition
> Let $p \in \mathbb{C} / \mathbb{Z}$ and L be a difference operator. Then $\operatorname{Min}_{p}(L)$ resp. $\operatorname{Max}_{p}(L)$ is the minimum resp. maximum valuation growth at p, taken over all meromorphic solutions of L.

Theorem

If $L_{1} \sim_{g} L_{2}$ then they have the same $\operatorname{Min}_{p}, \operatorname{Max}_{p}$ for all $p \in \mathbb{C} / \mathbb{Z}$.

Finite Singularity: Valuation Growth

Definition

Let $u(x) \in \mathbb{C}(x)$ be a non-zero meromorphic function. The valuation growth of $u(x)$ at $p=q+\mathbb{Z}$ is
$\liminf _{n \rightarrow \infty}($ order of $u(x)$ at $x=n+q)$

- $\liminf _{n \rightarrow \infty}($ order of $u(x)$ at $x=-n+q)$

Definition

Let $p \in \mathbb{C} / \mathbb{Z}$ and L be a difference operator. Then $\operatorname{Min}_{p}(L)$ resp. $\operatorname{Max}_{p}(L)$ is the minimum resp. maximum valuation growth at p, taken over all meromorphic solutions of L.

Theorem

If $L_{1} \sim_{g} L_{2}$ then they have the same $\operatorname{Min}_{p}, \operatorname{Max}_{p}$ for all $p \in \mathbb{C} / \mathbb{Z}$.

Theorem

$\operatorname{Max}_{p}-\operatorname{Min}_{p}$ is $\sim_{g t}$ invariant for all $p \in \mathbb{C} / \mathbb{Z}$.
Invariant data: Compute all $p \in \mathbb{C} / \mathbb{Z}$ for which $\operatorname{Max}_{p} \neq \operatorname{Min}_{p}$ store $\left[p, \operatorname{Max}_{p}-\operatorname{Min}_{p}\right]$ for all such p.
Note: Since $p \in \mathbb{C} / \mathbb{Z}$ and not in \mathbb{C}, the parameters computed from such data are determined $\bmod r \mathbb{Z}$ for some $r \in \mathbb{Q}$. Suppose we need parameter $\nu \bmod \mathbb{Z}$ but find it $\bmod \frac{1}{2} \mathbb{Z}$, then we need to check two cases.

Finite Singularity: Valuation Growth

Theorem

$\operatorname{Max}_{p}-\operatorname{Min}_{p}$ is $\sim_{g t}$ invariant for all $p \in \mathbb{C} / \mathbb{Z}$.
Invariant data: Compute all $p \in \mathbb{C} / \mathbb{Z}$ for which $\operatorname{Max}_{p} \neq \operatorname{Min}_{p}$ store $\left[p, \operatorname{Max}_{p}-\operatorname{Min}_{p}\right.$] for all such p.
Note: Since $p \in \mathbb{C} / \mathbb{Z}$ and not in \mathbb{C}, the parameters computed from such data are determined $\bmod r \mathbb{Z}$ for some $r \in \mathbb{Q}$. Suppose we need parameter $\nu \bmod \mathbb{Z}$ but find it $\bmod \frac{1}{2} \mathbb{Z}$, then we need to check two cases.

Difference Operator Example Transformations Main Idea Invariant Local Data Liouvillian Special Functions

Singularity at ∞ : Generalized Exponent

Definition

If $\tau-c t^{v}\left(1+\sum_{i=1}^{\infty} \mathrm{a}_{i} t^{\frac{i}{r}}\right)$, with $t=1 / x$, is right hand factor of L for
some $v \in \frac{1}{r} \mathbb{Z}, c \in \mathbb{C}^{*}, a_{i} \in \mathbb{C}, r \in \mathbb{N}$, then the dominant term $c t^{v}\left(1+a_{1} t^{\frac{1}{r}}+\cdots+a_{r} t^{1}\right)$ is called a generalized exponent of L.

We say two generalized exponents

and denote $g_{1} \sim_{r} g_{2}$
Theorem
Generalized exponents are invariant up to \sim_{r} under Gauge equivalence.

Difference Operator Example Transformations Main Idea Invariant Local Data Liouvillian Special Functions

Singularity at ∞ : Generalized Exponent

Definition

If $\tau-c t^{v}\left(1+\sum_{i=1}^{\infty} a_{i} t^{\frac{i}{r}}\right)$, with $t=1 / x$, is right hand factor of L for
some $v \in \frac{1}{r} \mathbb{Z}, c \in \mathbb{C}^{*}, a_{i} \in \mathbb{C}, r \in \mathbb{N}$, then the dominant term $c t^{\nu}\left(1+a_{1} t^{\frac{1}{r}}+\cdots+a_{r} t^{1}\right)$ is called a generalized exponent of L.

We say two generalized exponents
$g_{1}=c_{1} t^{v_{1}}\left(1+a_{1} t^{\frac{1}{r}}+\cdots+a_{r} t^{1}\right)$ and
$g_{2}=c_{2} t^{v_{2}}\left(1+b_{1} t^{\frac{1}{r}}+\cdots+b_{r} t^{1}\right)$ are equivalent if
$c_{1}=c_{2}, v_{1}=v_{2}, a_{i}=b_{i}$ for $i=1 \ldots r-1$ and $a_{r} \equiv b_{r} \bmod \frac{1}{r} \mathbb{Z}$ and denote $g_{1} \sim_{r} g_{2}$
Theorem
Generalized exponents are invariant up to \sim_{r} under Gauge equivalence.

Singularity at ∞ : Generalized Exponent

Definition

If $\tau-c t^{v}\left(1+\sum_{i=1}^{\infty} a_{i} t^{\frac{i}{r}}\right)$, with $t=1 / x$, is right hand factor of L for
some $v \in \frac{1}{r} \mathbb{Z}, c \in \mathbb{C}^{*}, a_{i} \in \mathbb{C}, r \in \mathbb{N}$, then the dominant term $c t^{v}\left(1+a_{1} t^{\frac{1}{r}}+\cdots+a_{r} t^{1}\right)$ is called a generalized exponent of L.

We say two generalized exponents
$g_{1}=c_{1} t^{v_{1}}\left(1+a_{1} t^{\frac{1}{r}}+\cdots+a_{r} t^{1}\right)$ and
$g_{2}=c_{2} t^{v_{2}}\left(1+b_{1} t^{\frac{1}{r}}+\cdots+b_{r} t^{1}\right)$ are equivalent if
$c_{1}=c_{2}, v_{1}=v_{2}, a_{i}=b_{i}$ for $i=1 \ldots r-1$ and $a_{r} \equiv b_{r} \bmod \frac{1}{r} \mathbb{Z}$ and denote $g_{1} \sim_{r} g_{2}$

Theorem

Generalized exponents are invariant up to \sim_{r} under Gauge equivalence.

Difference Operator Example Transformations Main Idea Invariant Local Data Liouvillian Special Functions

Singularity at ∞ : Generalized Exponent

Generalized exponents are not invariant under term-product.

```
Definition
Suppose ord}(L)=2\mathrm{ and let genexp(L)={a, a , } such that
v(\mp@subsup{a}{1}{})\geqv(\mp@subsup{a}{2}{}). Then we define the set of quotient of the two
generalized' exponents as
if v(a+ )}>v(\mp@subsup{a}{2}{}
```



```
if \(v\left(a_{1}\right)=v\left(a_{2}\right)\) then we define
```


Theorem

Difference Operator Example Transformations Main Idea Invariant Local Data Liouvillian Special Functions

Singularity at ∞ : Generalized Exponent

Generalized exponents are not invariant under term-product.

Definition

Suppose $\operatorname{ord}(L)=2$ and let $\operatorname{genexp}(L)=\left\{a_{1}, a_{2}\right\}$ such that $v\left(a_{1}\right) \geq v\left(a_{2}\right)$. Then we define the set of quotient of the two generalized exponents as
if $v\left(a_{1}\right)>v\left(a_{2}\right)$

$$
\operatorname{Gquo}(L)=\left\{\frac{a_{1}}{a_{2}}\right\} \text { and }
$$

if $v\left(a_{1}\right)=v\left(a_{2}\right)$ then we define

$$
\operatorname{Gquo}(L)=\left\{\frac{a_{1}}{a_{2}}, \frac{a_{2}}{a_{1}}\right\}
$$

Theorem
If $L_{1} \sim_{g t} L_{2}$ then $\operatorname{Gquo}\left(L_{1}\right)=\operatorname{Gquo}\left(L_{2}\right) \bmod \sim_{r}$

Difference Operator Example Transformations Main Idea Invariant Local Data Liouvillian Special Functions

Singularity at ∞ : Generalized Exponent

Generalized exponents are not invariant under term-product.

Definition

Suppose $\operatorname{ord}(L)=2$ and let $\operatorname{genexp}(L)=\left\{a_{1}, a_{2}\right\}$ such that $v\left(a_{1}\right) \geq v\left(a_{2}\right)$. Then we define the set of quotient of the two generalized exponents as
if $v\left(a_{1}\right)>v\left(a_{2}\right)$

$$
\operatorname{Gquo}(L)=\left\{\frac{a_{1}}{a_{2}}\right\} \text { and }
$$

if $v\left(a_{1}\right)=v\left(a_{2}\right)$ then we define

$$
\operatorname{Gquo}(L)=\left\{\frac{a_{1}}{a_{2}}, \frac{a_{2}}{a_{1}}\right\}
$$

Theorem

If $L_{1} \sim_{g t} L_{2}$ then $\operatorname{Gquo}\left(L_{1}\right)=\operatorname{Gquo}\left(L_{2}\right) \bmod \sim_{r}$

Outline

Difference Operator

(2) Example

(3) TransformationsMain Idea
(5) Invariant Local Data

- Finite Singularity
- Generalized Exponent
(7) Special Functions

Liouvillian Solutions of Linear Difference Equations: Property

Theorem (Hendriks Singer 1999)

If $L=a_{n} \tau^{n}+\cdots+a_{0} \tau^{0}$ is irreducible then
\exists Liouvillian Solutions $\Longleftrightarrow \exists b_{0} \in \mathbb{C}(x)$ such that

$$
a_{n} \tau^{n}+\cdots+a_{0} \tau^{0} \quad \sim_{g} \tau^{n}+b_{0} \tau^{0}
$$

Remark
Operators of the form $\tau^{n}+b_{0} \tau^{0}$ are easy to solve, so if we
know b_{0} then we can solve L.

Liouvillian Solutions of Linear Difference Equations: Property

Theorem (Hendriks Singer 1999)

If $L=a_{n} \tau^{n}+\cdots+a_{0} \tau^{0}$ is irreducible then
\exists Liouvillian Solutions $\Longleftrightarrow \exists b_{0} \in \mathbb{C}(x)$ such that

$$
a_{n} \tau^{n}+\cdots+a_{0} \tau^{0} \quad \sim_{g} \tau^{n}+b_{0} \tau^{0}
$$

Remark

Operators of the form $\tau^{n}+b_{0} \tau^{0}$ are easy to solve, so if we know b_{0} then we can solve L.

Liouvillian Solutions of Linear Difference Equations: The Problem

Let $L=a_{n} \tau^{n}+\cdots+a_{0} \tau^{0}$ with $a_{i} \in \mathbb{C}[x]$ and assume that

$$
L \sim_{g} \tau^{n}+b_{0} \tau^{0}
$$

for some unknown $b_{0} \in \mathbb{C}(x)$.
If we can find b_{0} then we can solve $\tau^{n}+b_{0} \tau^{0}$ and hence solve L.

Notation
write $h_{0}=c \phi$ where $\phi=\frac{\text { monic poly }}{\text { monic poly }}$ and $c \in \mathbb{C}^{*}$

Remark
\boldsymbol{c} is easy to compute, the main task is to compute ϕ.

Liouvillian Solutions of Linear Difference Equations: The Problem

Let $L=a_{n} \tau^{n}+\cdots+a_{0} \tau^{0}$ with $a_{i} \in \mathbb{C}[x]$ and assume that

$$
L \sim_{g} \tau^{n}+b_{0} \tau^{0}
$$

for some unknown $b_{0} \in \mathbb{C}(x)$.
If we can find b_{0} then we can solve $\tau^{n}+b_{0} \tau^{0}$ and hence solve L.

Notation

write $b_{0}=\boldsymbol{c} \phi$ where $\phi=\frac{\text { monic poly }}{\text { monic poly }}$ and $c \in \mathbb{C}^{*}$.
Remark
c is easy to compute, the main task is to compute ϕ.

Liouvillian Solutions of Linear Difference Equations: The Problem

Let $L=a_{n} \tau^{n}+\cdots+a_{0} \tau^{0}$ with $a_{i} \in \mathbb{C}[x]$ and assume that

$$
L \sim_{g} \tau^{n}+b_{0} \tau^{0}
$$

for some unknown $b_{0} \in \mathbb{C}(x)$.
If we can find b_{0} then we can solve $\tau^{n}+b_{0} \tau^{0}$ and hence solve L.

Notation

write $b_{0}=\boldsymbol{c} \phi$ where $\phi=\frac{\text { monic poly }}{\text { monic poly }}$ and $c \in \mathbb{C}^{*}$.

Remark

c is easy to compute, the main task is to compute ϕ.

Liouvillian Solutions of Linear Difference Equations: Approach

Remark

Let $L=a_{n} \tau^{n}+\cdots+a_{0} \tau^{0} \in \mathbb{C}[x][\tau]$ then the finite singularities of L are Sing $=\left\{q+\mathbb{Z} \in \mathbb{C} / \mathbb{Z} \mid q\right.$ is root of $\left.a_{0} a_{n}\right\}$

Theorem

If $q_{1}+\mathbb{Z}, \ldots, q_{k}+\mathbb{Z}$ are the finite singularities then we may
assume

with $k_{i, j} \in \mathbb{Z}$.
(1) At each finite singularity $p_{i} \in \mathbb{C} / \mathbb{Z}$ (where $\left.p_{i}=q_{i}+\mathbb{Z}\right)$ we have to find n unknown exponents $k_{i, 0}, \ldots, k_{i, n-1}$.
\square

Liouvillian Solutions of Linear Difference Equations: Approach

Remark

Let $L=a_{n} \tau^{n}+\cdots+a_{0} \tau^{0} \in \mathbb{C}[x][\tau]$ then the finite singularities of L are Sing $=\left\{q+\mathbb{Z} \in \mathbb{C} / \mathbb{Z} \mid q\right.$ is root of $\left.a_{0} a_{n}\right\}$

Theorem

If $q_{1}+\mathbb{Z}, \ldots, q_{k}+\mathbb{Z}$ are the finite singularities then we may k $n-1$
assume $\quad \phi=\prod_{i=1} \prod_{j=0}\left(x-q_{i}-j\right)^{k_{i, j}} \quad$ with $k_{i, j} \in \mathbb{Z}$.
(1) At each finite singularity $p_{i} \in \mathbb{C} / \mathbb{Z}$ (where $\left.p_{i}=q_{i}+\mathbb{Z}\right)$ we have to find n unknown exponents $k_{i, 0}, \ldots, k_{i, n-1}$
\square We can compute $k_{i, 0}+\cdots+k_{i, n-1}$ from a_{0} / a_{n}.

Liouvillian Solutions of Linear Difference Equations: Approach

Remark

Let $L=a_{n} \tau^{n}+\cdots+a_{0} \tau^{0} \in \mathbb{C}[x][\tau]$ then the finite singularities of L are Sing $=\left\{q+\mathbb{Z} \in \mathbb{C} / \mathbb{Z} \mid q\right.$ is root of $\left.a_{0} a_{n}\right\}$

Theorem

If $q_{1}+\mathbb{Z}, \ldots, q_{k}+\mathbb{Z}$ are the finite singularities then we may k n-1
assume $\quad \phi=\prod_{i=1} \prod_{j=0}\left(x-q_{i}-j\right)^{k_{i, j}} \quad$ with $k_{i, j} \in \mathbb{Z}$.
(1) At each finite singularity $p_{i} \in \mathbb{C} / \mathbb{Z}$ (where $p_{i}=q_{i}+\mathbb{Z}$) we have to find n unknown exponents $k_{i, 0}, \ldots, k_{i, n-1}$.
(2) We can compute $k_{i, 0}+\cdots+k_{i, n-1}$ from a_{0} / a_{n}.

Liouvillian Solutions of Linear Difference Equations: Approach

Remark

Let $L=a_{n} \tau^{n}+\cdots+a_{0} \tau^{0} \in \mathbb{C}[x][\tau]$ then the finite singularities of L are Sing $=\left\{q+\mathbb{Z} \in \mathbb{C} / \mathbb{Z} \mid q\right.$ is root of $\left.a_{0} a_{n}\right\}$

Theorem

If $q_{1}+\mathbb{Z}, \ldots, q_{k}+\mathbb{Z}$ are the finite singularities then we may k n-1
assume $\quad \phi=\prod_{i=1} \prod_{j=0}\left(x-q_{i}-j\right)^{k_{i, j}} \quad$ with $k_{i, j} \in \mathbb{Z}$.
(1) At each finite singularity $p_{i} \in \mathbb{C} / \mathbb{Z}$ (where $p_{i}=q_{i}+\mathbb{Z}$) we have to find n unknown exponents $k_{i, 0}, \ldots, k_{i, n-1}$.
(2) We can compute $k_{i, 0}+\cdots+k_{i, n-1}$ from a_{0} / a_{n}.

Example of Operator of order 2 with one finite singularity at $p=\mathbb{Z}$

Suppose $L=a_{2} \tau^{2}+a_{1} \tau+a_{0}$ and that

$$
L \sim_{g} \tau^{2}+c \cdot x^{k_{0}}(x-1)^{k_{1}}
$$

(1) c can be computed from a_{0} / a_{2}
(2) $k_{0}+k_{1}$ can be computed from a_{0} / a_{2}
(3) $\max \left\{k_{0}, k_{1}\right\}=\operatorname{Max}_{\mathbb{Z}}(L)$
(4) $\min \left\{k_{0}, k_{1}\right\}=\operatorname{Min}_{\mathbb{Z}}(L)$

Items 2, 3, 4 determine k_{0}, k_{1} up to a permutation.

Example of Operator of order 2 with one finite singularity at $p=\mathbb{Z}$

Suppose $L=a_{2} \tau^{2}+a_{1} \tau+a_{0}$ and that

$$
L \sim_{g} \tau^{2}+c \cdot x^{k_{0}}(x-1)^{k_{1}}
$$

(1) c can be computed from a_{0} / a_{2}
(2) $k_{0}+k_{1}$ can be computed from a_{0} / a_{2}
(3) $\max \left\{k_{0}, k_{1}\right\}=\operatorname{Max}_{\mathbb{Z}}(L)$
(4) $\min \left\{k_{0}, k_{1}\right\}=\operatorname{Min}_{\mathbb{Z}}(L)$

Items 2, 3, 4 determine k_{0}, k_{1} up to a permutation.

Example of Operator of order 2 with one finite singularity at $p=\mathbb{Z}$

Suppose $L=a_{2} \tau^{2}+a_{1} \tau+a_{0}$ and that

$$
L \sim_{g} \tau^{2}+c \cdot x^{k_{0}}(x-1)^{k_{1}}
$$

(1) c can be computed from a_{0} / a_{2}
(2) $k_{0}+k_{1}$ can be computed from a_{0} / a_{2}
(3) $\max \left\{k_{0}, k_{1}\right\}=\operatorname{Max}_{\mathbb{Z}}(L)$
(4) $\min \left\{k_{0}, k_{1}\right\}=\operatorname{Min}_{\mathbb{Z}}(L)$

Items 2, 3, 4 determine k_{0}, k_{1} up to a permutation.

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{T M}$ (OEIS ${ }^{T M}$)

A000246 =(1, 1, 1, 3, 9, 45, 225, 1575, 11025, 99225,...) Number of permutations in the symmetric group S_{n} that have odd order.

- $\tau^{2}-\tau-x(x+1)$
- Sing $=\{\mathbb{Z}\}$ and $c=1$.
- At \mathbb{Z},
$\min =0, \quad \max =2, \quad$ sum $=2$
- So the exponents of $x^{\cdots}(x-1) \cdots$ must be a permutation of
- Candidates of $c \phi$ are x^{2} and $(x-1)^{2}$.

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{\text {TM }}$ (OEIS ${ }^{\text {TM }}$)

A000246 =(1, 1, 1, 3, 9, 45, 225, 1575, 11025, 99225,...) Number of permutations in the symmetric group S_{n} that have odd order.

- $\tau^{2}-\tau-x(x+1)$
- Sing $=\{\mathbb{Z}\}$ and $c=1$.
- At \mathbb{Z},

$$
\min =0, \quad \max =2, \quad \text { sum }=2
$$

- So the exponents of $x^{\cdots}(x-1) \cdots$ must be a permutation of 0,2
- Candidates of $c \phi$ are x^{2} and $(x-1)^{2}$.

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{\text {TM }}$ (OEIS ${ }^{\text {TM }}$)

- $\tau^{2}-x^{2}$ is gauge equivalent to L
- Gauge transformation is $\tau+x$.
- Basis of solutions of $\tau^{2}-x^{2}$ is

- Thus, Basis of solutions of L is

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{\text {TM }}$ (OEIS ${ }^{\text {TM }}$)

- $\tau^{2}-x^{2}$ is gauge equivalent to L
- Gauge transformation is $\tau+x$.
- Basis of solutions of $\tau^{2}-x^{2}$ is

$$
\left\{2^{x} \Gamma\left(\frac{1}{2} x\right)^{2},(-2)^{x} \Gamma\left(\frac{1}{2} x\right)^{2}\right\}
$$

- Thus, Basis of solutions of L is

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{T M}$ (OEIS ${ }^{T M}$)

- $\tau^{2}-x^{2}$ is gauge equivalent to L
- Gauge transformation is $\tau+x$.
- Basis of solutions of $\tau^{2}-x^{2}$ is

$$
\left\{2^{x} \Gamma\left(\frac{1}{2} x\right)^{2},(-2)^{x} \Gamma\left(\frac{1}{2} x\right)^{2}\right\}
$$

- Thus, Basis of solutions of L is

$$
\left\{x 2^{x} \Gamma\left(\frac{1}{2} x\right)^{2}+2^{x+1} \Gamma\left(\frac{1}{2} x+\frac{1}{2}\right)^{2}, x(-2)^{x} \Gamma\left(\frac{1}{2} x\right)^{2}+(-2)^{x+1} \Gamma\left(\frac{1}{2} x+\frac{1}{2}\right)^{2}\right\}
$$

Example of Operator of order 3 with one finite singularity at $p=\mathbb{Z}$

Suppose $L=a_{3} \tau^{3}+a_{2} \tau^{2}+a_{1} \tau+a_{0}$ and that

$$
L \sim_{g} \tau^{3}+c \cdot x^{k_{0}}(x-1)^{k_{1}}(x-2)^{k_{2}}
$$

(1) c can be computed from a_{0} / a_{3}
(2) $k_{0}+k_{1}+k_{2}$ can be computed from a_{0} / a_{3}
(3) $\max \left\{k_{0}, k_{1}, k_{2}\right\}=\operatorname{Max}_{\mathbb{Z}}(L)$
(c) $\min \left\{k_{0}, k_{1}, k_{2}\right\}=\operatorname{Min}_{\mathbb{Z}}(L)$

Items 2, 3, 4 determine k_{0}, k_{1}, k_{2} up to a permutation.

Example of Operator of order 3 with one finite singularity at $p=\mathbb{Z}$

Suppose $L=a_{3} \tau^{3}+a_{2} \tau^{2}+a_{1} \tau+a_{0}$ and that

$$
L \sim_{g} \tau^{3}+c \cdot x^{k_{0}}(x-1)^{k_{1}}(x-2)^{k_{2}}
$$

(1) c can be computed from a_{0} / a_{3}
(2) $k_{0}+k_{1}+k_{2}$ can be computed from a_{0} / a_{3}
(3) $\max \left\{k_{0}, k_{1}, k_{2}\right\}=\operatorname{Max}_{\mathbb{Z}}(L)$
(4) $\min \left\{k_{0}, k_{1}, k_{2}\right\}=\operatorname{Min}_{\mathbb{Z}}(L)$

Items 2, 3, 4 determine k_{0}, k_{1}, k_{2} up to a permutation.

Example of Operator of order 3 with one finite singularity at $p=\mathbb{Z}$

Suppose $L=a_{3} \tau^{3}+a_{2} \tau^{2}+a_{1} \tau+a_{0}$ and that

$$
L \sim_{g} \tau^{3}+c \cdot x^{k_{0}}(x-1)^{k_{1}}(x-2)^{k_{2}}
$$

(1) c can be computed from a_{0} / a_{3}
(2) $k_{0}+k_{1}+k_{2}$ can be computed from a_{0} / a_{3}
(3) $\max \left\{k_{0}, k_{1}, k_{2}\right\}=\operatorname{Max}_{\mathbb{Z}}(L)$
(4) $\min \left\{k_{0}, k_{1}, k_{2}\right\}=\operatorname{Min}_{\mathbb{Z}}(L)$

Items 2, 3, 4 determine k_{0}, k_{1}, k_{2} up to a permutation.

Difference Operator Example Transformations Main Idea Invariant Local Data Liouvillian Special Functions

Example with two finite singularities at \mathbb{Z} and $\frac{1}{2}+\mathbb{Z}$

Suppose $L=a_{3} \tau^{3}+a_{2} \tau^{2}+a_{1} \tau+a_{0}$ is gauge equivalent to

$$
\tau^{3}+c \cdot x^{k_{0}}(x-1)^{k_{1}}(x-2)^{k_{2}} \cdot\left(x-\frac{1}{2}\right)^{l_{0}}\left(x-\frac{3}{2}\right)^{l_{1}}\left(x-\frac{5}{2}\right)^{l_{2}}
$$

(1) $c, k_{0}+k_{1}+k_{2}$, and $I_{0}+l_{1}+I_{2}$ can be computed from a_{0} / a_{3}
(2) $\min \left\{k_{0}, k_{1}, k_{2}\right\}=\operatorname{Min}_{\mathbb{Z}}(L)$
(3) $\max \left\{k_{0}, k_{1}, k_{2}\right\}=\operatorname{Max}_{\mathbb{Z}}(L)$
(4) $\min \left\{I_{0}, l_{1}, I_{2}\right\}=\operatorname{Min}_{1,7}(L)$
(5) $\max \left\{l_{0}, l_{1}, l_{2}\right\}=\operatorname{Max}_{\frac{1}{2}+\mathbb{Z}}(L)$

This determines k_{0}, k_{1}, k_{2} up to a permutation, and also I_{0}, I_{1}, l_{2} up to a permutation.

Worst case is 3 ! • 3! combinations (actually: $1 / 3$ of that).

Example with two finite singularities at \mathbb{Z} and $\frac{1}{2}+\mathbb{Z}$

Suppose $L=a_{3} \tau^{3}+a_{2} \tau^{2}+a_{1} \tau+a_{0}$ is gauge equivalent to

$$
\tau^{3}+c \cdot x^{k_{0}}(x-1)^{k_{1}}(x-2)^{k_{2}} \cdot\left(x-\frac{1}{2}\right)^{l_{0}}\left(x-\frac{3}{2}\right)^{l_{1}}\left(x-\frac{5}{2}\right)^{l_{2}}
$$

(1) $c, k_{0}+k_{1}+k_{2}$, and $I_{0}+l_{1}+I_{2}$ can be computed from a_{0} / a_{3}
(2) $\min \left\{k_{0}, k_{1}, k_{2}\right\}=\operatorname{Min}_{\mathbb{Z}}(L)$
(3) $\max \left\{k_{0}, k_{1}, k_{2}\right\}=\operatorname{Max}_{\mathbb{Z}}(L)$
(a) $\min \left\{l_{0}, l_{1}, l_{2}\right\}=\operatorname{Min}_{\frac{1}{2}+\mathbb{Z}}(L)$
(6) $\max \left\{I_{0}, I_{1}, I_{2}\right\}=\operatorname{Max}_{\frac{1}{2}+\mathbb{Z}}(L)$

This determines k_{0}, k_{1}, k_{2} up to a permutation, and also $/ 0,1 / 1, / 2$ up to a permutation.

Worst case is 3 ! • 3 ! combinations (actually: $1 / 3$ of that).

Example with two finite singularities at \mathbb{Z} and $\frac{1}{2}+\mathbb{Z}$

Suppose $L=a_{3} \tau^{3}+a_{2} \tau^{2}+a_{1} \tau+a_{0}$ is gauge equivalent to

$$
\tau^{3}+c \cdot x^{k_{0}}(x-1)^{k_{1}}(x-2)^{k_{2}} \cdot\left(x-\frac{1}{2}\right)^{l_{0}}\left(x-\frac{3}{2}\right)^{l_{1}}\left(x-\frac{5}{2}\right)^{l_{2}}
$$

(1) $c, k_{0}+k_{1}+k_{2}$, and $I_{0}+l_{1}+I_{2}$ can be computed from a_{0} / a_{3}
(2) $\min \left\{k_{0}, k_{1}, k_{2}\right\}=\operatorname{Min}_{\mathbb{Z}}(L)$
(3) $\max \left\{k_{0}, k_{1}, k_{2}\right\}=\operatorname{Max}_{\mathbb{Z}}(L)$
(4) $\min \left\{I_{0}, l_{1}, l_{2}\right\}=\operatorname{Min}_{\frac{1}{2}+\mathbb{Z}}(L)$
(5) $\max \left\{I_{0}, I_{1}, I_{2}\right\}=\operatorname{Max}_{\frac{1}{2}+\mathbb{Z}}(L)$

This determines k_{0}, k_{1}, k_{2} up to a permutation, and also I_{0}, I_{1}, l_{2} up to a permutation.

Worst case is 3 ! • 3 ! combinations (actually: $1 / 3$ of that).

Example with two finite singularities at \mathbb{Z} and $\frac{1}{2}+\mathbb{Z}$

Suppose $L=a_{3} \tau^{3}+a_{2} \tau^{2}+a_{1} \tau+a_{0}$ is gauge equivalent to

$$
\tau^{3}+c \cdot x^{k_{0}}(x-1)^{k_{1}}(x-2)^{k_{2}} \cdot\left(x-\frac{1}{2}\right)^{l_{0}}\left(x-\frac{3}{2}\right)^{l_{1}}\left(x-\frac{5}{2}\right)^{/_{2}}
$$

(1) $c, k_{0}+k_{1}+k_{2}$, and $I_{0}+l_{1}+l_{2}$ can be computed from a_{0} / a_{3}
(2) $\min \left\{k_{0}, k_{1}, k_{2}\right\}=\operatorname{Min}_{\mathbb{Z}}(L)$
(3) $\max \left\{k_{0}, k_{1}, k_{2}\right\}=\operatorname{Max}_{\mathbb{Z}}(L)$
(4) $\min \left\{l_{0}, l_{1}, l_{2}\right\}=\operatorname{Min}_{\frac{1}{2}+\mathbb{Z}}(L)$
(5) $\max \left\{I_{0}, I_{1}, I_{2}\right\}=\operatorname{Max}_{\frac{1}{2}+\mathbb{Z}}(L)$

This determines k_{0}, k_{1}, k_{2} up to a permutation, and also I_{0}, I_{1}, I_{2} up to a permutation.
Worst case is $3!\cdot 3$! combinations (actually: $1 / 3$ of that).

Liouvillian Solutions of Linear Difference Equations: Example $L=x \tau^{3}+\tau^{2}-(x+1) \tau-x(x+1)^{2}(2 x-1)$

- Sing $=\left\{\mathbb{Z}, \frac{1}{2}+\mathbb{Z}\right\}$ and $c=-2$.

$$
\min =0, \quad \max =1, \quad \text { sum }=2
$$

So the exponents of $x^{\cdots}(x-1)^{\cdots}(x-2)^{\cdots}$ must be a permutation of $0,1,1$

$$
\min =0, \quad \max =1, \quad \text { sum }=1
$$

So the exponents of $\left(x-\frac{1}{2}\right)^{\cdots}\left(x-\frac{3}{2}\right)^{\cdots}\left(x-\frac{5}{2}\right) \cdots$ must be a permutation of $0,0,1$

Liouvillian Solutions of Linear Difference Equations: Example $L=x \tau^{3}+\tau^{2}-(x+1) \tau-x(x+1)^{2}(2 x-1)$

- Sing $=\left\{\mathbb{Z}, \frac{1}{2}+\mathbb{Z}\right\}$ and $c=-2$.
- At \mathbb{Z},

$$
\min =0, \quad \max =1, \quad \text { sum }=2
$$

So the exponents of $x^{\cdots}(x-1)^{\cdots}(x-2)^{\cdots}$ must be a permutation of $0,1,1$

$$
\min =0, \quad \max =1, \quad \text { sum }=1
$$

So the exponents of $\left(x-\frac{1}{2}\right)^{\cdots}\left(x-\frac{3}{2}\right)^{\cdots}\left(x-\frac{5}{2}\right)^{\cdots}$ must be a permutation of $0,0,1$

Liouvillian Solutions of Linear Difference Equations: Example $L=x \tau^{3}+\tau^{2}-(x+1) \tau-x(x+1)^{2}(2 x-1)$

- Sing $=\left\{\mathbb{Z}, \frac{1}{2}+\mathbb{Z}\right\}$ and $c=-2$.
- At \mathbb{Z},

$$
\min =0, \quad \max =1, \quad \text { sum }=2
$$

So the exponents of $x^{\cdots}(x-1) \cdots(x-2) \cdots$ must be a permutation of $0,1,1$

- At $\frac{1}{2}+\mathbb{Z}$,

$$
\min =0, \quad \max =1, \quad \operatorname{sum}=1
$$

So the exponents of $\left(x-\frac{1}{2}\right) \cdots\left(x-\frac{3}{2}\right) \cdots\left(x-\frac{5}{2}\right) \cdots$ must be a permutation of $0,0,1$

Liouvillian Solutions of Linear Difference Equations: Example $L=x \tau^{3}+\tau^{2}-(x+1) \tau-x(x+1)^{2}(2 x-1)$

Candidates of $c \phi$ are

$$
\begin{aligned}
& \text { (1) }-2 x^{1}(x-1)^{1}(x-2)^{0}(x-1 / 2)^{1}(x-3 / 2)^{0}(x-5 / 2)^{0} \\
& \text { (2) }-2 x^{1}(x-1)^{1}(x-2)^{0}(x-1 / 2)^{0}(x-3 / 2)^{1}(x-5 / 2)^{0} \\
& \text { (3) }-2 x^{1}(x-1)^{1}(x-2)^{0}(x-1 / 2)^{0}(x-3 / 2)^{0}(x-5 / 2)^{1} \\
& \text { (4) }-2 x^{0}(x-1)^{1}(x-2)^{1}(x-1 / 2)^{0}(x-3 / 2)^{0}(x-5 / 2)^{1} \\
& \text { (5 }-2 x^{0}(x-1)^{1}(x-2)^{1}(x-1 / 2)^{0}(x-3 / 2)^{1}(x-5 / 2)^{0} \\
& \text { (}-2 x^{0}(x-1)^{1}(x-2)^{1}(x-1 / 2)^{1}(x-3 / 2)^{0}(x-5 / 2)^{0} \\
& \text { () }-2 x^{1}(x-1)^{0}(x-2)^{1}(x-1 / 2)^{1}(x-3 / 2)^{0}(x-5 / 2)^{0} \\
& \text { (8) }-2 x^{1}(x-1)^{0}(x-2)^{1}(x-1 / 2)^{0}(x-3 / 2)^{0}(x-5 / 2)^{1} \\
& \text { (}-2 x^{1}(x-1)^{0}(x-2)^{1}(x-1 / 2)^{0}(x-3 / 2)^{1}(x-5 / 2)^{0}
\end{aligned}
$$

Liouvillian Solutions of Linear Difference Equations: Example $L=x \tau^{3}+\tau^{2}-(x+1) \tau-x(x+1)^{2}(2 x-1)$

Remark

$$
\tau^{n}-c \phi \sim_{g} \tau^{n}-c \tau^{k}(\phi) \text { for } k=1 \ldots n-1
$$

(3) $-2 x^{1}(x-1)^{1}(x-2)^{0}(x-1 / 2)^{0}(x-3 / 2)^{0}(x-5 / 2)^{1}$

Only need to try $1,2,3$, the others are redundant.

Liouvillian Solutions of Linear Difference Equations: Example $L=x \tau^{3}+\tau^{2}-(x+1) \tau-x(x+1)^{2}(2 x-1)$

Remark

$$
\tau^{n}-c \phi \sim_{g} \tau^{n}-c \tau^{k}(\phi) \text { for } k=1 \ldots n-1
$$

(1) $-2 x^{1}(x-1)^{1}(x-2)^{0}(x-1 / 2)^{1}(x-3 / 2)^{0}(x-5 / 2)^{0}$
(2) $-2 x^{1}(x-1)^{1}(x-2)^{0}(x-1 / 2)^{0}(x-3 / 2)^{1}(x-5 / 2)^{0}$
(3) $-2 x^{1}(x-1)^{1}(x-2)^{0}(x-1 / 2)^{0}(x-3 / 2)^{0}(x-5 / 2)^{1}$

Only need to try 1, 2, 3, the others are redundant.

Liouvillian Solutions of Linear Difference Equations: Example $L=x \tau^{3}+\tau^{2}-(x+1) \tau-x(x+1)^{2}(2 x-1)$

- $\tau^{3}-2 x(x-1)(x-1 / 2)$ is gauge equivalent to L
- Gauge transformation is $\tau+x-1$.
- Basis of solutions of $\tau^{3}-2 x(x-1)(x-1 / 2)$ is

where $v(x)=3^{x} 2^{x / 3} \Gamma\left(\frac{x}{3}\right) \Gamma\left(\frac{x-1}{3}\right) \Gamma\left(\frac{x-\frac{1}{2}}{3}\right)$ and $\xi^{3}=1$.
- Thus, Basis of solutions of L is

Liouvillian Solutions of Linear Difference Equations: Example $L=x \tau^{3}+\tau^{2}-(x+1) \tau-x(x+1)^{2}(2 x-1)$

- $\tau^{3}-2 x(x-1)(x-1 / 2)$ is gauge equivalent to L
- Gauge transformation is $\tau+x-1$.
- Basis of solutions of $\tau^{3}-2 x(x-1)(x-1 / 2)$ is

$$
\left\{\left(\xi^{k}\right)^{x} v(x)\right\} \text { for } k=0 \ldots 2
$$

where $v(x)=3^{x} 2^{x / 3} \Gamma\left(\frac{x}{3}\right) \Gamma\left(\frac{x-1}{3}\right) \Gamma\left(\frac{x-\frac{1}{2}}{3}\right)$ and $\xi^{3}=1$.

- Thus, Basis of solutions of L is

Liouvillian Solutions of Linear Difference Equations: Example $L=x \tau^{3}+\tau^{2}-(x+1) \tau-x(x+1)^{2}(2 x-1)$

- $\tau^{3}-2 x(x-1)(x-1 / 2)$ is gauge equivalent to L
- Gauge transformation is $\tau+x-1$.
- Basis of solutions of $\tau^{3}-2 x(x-1)(x-1 / 2)$ is

$$
\left\{\left(\xi^{k}\right)^{x} v(x)\right\} \text { for } k=0 \ldots 2
$$

where $v(x)=3^{x} 2^{x / 3} \Gamma\left(\frac{x}{3}\right) \Gamma\left(\frac{x-1}{3}\right) \Gamma\left(\frac{x-\frac{1}{2}}{3}\right)$ and $\xi^{3}=1$.

- Thus, Basis of solutions of L is

$$
\left\{\left(\xi^{k}\right)^{x+1} v(x+1)+(x-1)\left(\xi^{k}\right)^{x} v(x)\right\} \text { for } k=0 \ldots 2
$$

Outline

Difference Operator

(2) Example
(3) TransformationsMain IdeaInvariant Local Data

- Finite Singularity
- Generalized ExponentLiouvillian
(7) Special Functions
- LbIK $=z \tau^{2}+(2+2 v+2 x) \tau-z$

Solutions: Modified Bessel functions of the first and second kind, $I_{v+x}(z)$ and $K_{v+x}(-z)$

- LbJY $=z \tau^{2}-(2+2 v+2 x) \tau+z$

Solutions: Bessel functions of the first and second kind, $J_{v+x}(z)$ and $Y_{v+x}(z)$

- $L W W=\tau^{2}+(z-2 v-2 x-2) \tau-v-x-\frac{1}{4}-v^{2}-2 v x-x^{2}+n^{2}$

Solution: Whittaker function $W_{x, n}(z)$

- $L W M=\tau^{2}(2 n+2 v+3+2 x)+(2 z-4 v-4 x-4) \tau-2 n+1+2 v+2 x$

Solution: Whittaker function $M_{x, n}(z)$

- L2F1 $=(z-1)(a+x+1) \tau^{2}+(-z+2-z a-z x+2 a+2 x+z b-c) \tau-a+c-1-x$

Solution: Hypergeometric function ${ }_{2} F_{1}(a+x, b ; c ; z)$

- Ljc $=\tau^{2}-\frac{1}{2} \frac{(2 x+3+a+b)\left(a^{2}-b^{2}+(2 x+a+b+2)(2 x+4+a+b) z\right)}{(x+2)(x+2+a+b)(2 x+a+b+2)} \tau+\frac{(x+1+a)(x+1+b)(2 x+4+a+b)}{(x+2)(x+2+a+b)(2 x+a+b+2)}$

Solution: Jacobian polynomial $P_{X}^{a, b}(z)$

- $\operatorname{Lgd}=\tau^{2}-\frac{(2 x+3) z}{x+2} \tau+\frac{x+1}{x+2}$

Solution: Legendre functions $P_{X}(z)$ and $Q_{X}(z)$

- $\operatorname{Lgr}=\tau^{2}-\frac{2 x+3+\alpha-z}{x+2} \tau+\frac{x+1+\alpha}{x+2}$

Solution: Laguerre polynomial $L_{x}^{(\alpha)}(z)$

- $L g b=\tau^{2}-\frac{2 z(m+x+1)}{x+2} \tau-\frac{2 m+x}{x+2}$

Solution: Gegenbauer polynomial $C_{x}^{m}(z)$

- Lgr $1=(x+2) \tau^{2}+(x+z-b+1) \tau+z$

Solution: Laguerre polynomial $L_{x}^{(b-x)}(z)$

- $L k m=(a+x+1) \tau^{2}+(-2 a-2 x-2+b-c) \tau+a+x+1-b$ Solution: Kummer's function $M(a+x, b, c)$
- $L 2 F 0=\tau^{2}+(-z b+z x+z+z a-1) \tau+z(b-x-1)$

Solution: Hypergeometric function ${ }_{2} F_{0}(a, b-x ; ; z)$

- Lge $=(x+2) \tau^{2}+(-a b-d+(a+1)(1+x)) \tau+a x-a(b+d)$

Solution: Sequences whose ordinary generating function is $(1+a x)^{b}(1+x)^{d}$

Special Functions:
 Functions and their Local Data

Operator	Val	Gquo
LbIK	\{\}	$\left\{-\frac{1}{4} T^{2} z^{2}(1-(1+2 v) T)\right\}$
LbJY	\{\}	$\left\{\frac{1}{4} T^{2} z^{2}(1-(1+2 v) T)\right\}$
LWW	$\left\{\left[-n+\frac{1}{2}-v, 1\right],\left[n+\frac{1}{2}-v, 1\right]\right\}$	$\left\{-3-2 \sqrt{2}\left(1-\frac{1}{2} \sqrt{2} z\right) T,-3+2 \sqrt{2}\left(1+\frac{1}{2} \sqrt{2} z\right) T\right\}$
LWM	$\left\{\left[-n+\frac{1}{2}-v, 1\right],\left[n+\frac{1}{2}-v, 1\right]\right\}$	$\left\{1-2 \sqrt{-z} T-2 z T^{2}, 1+2 \sqrt{-z} T-2 z T^{2}\right\}$
L2F1	$\{[-a+c, 1],[-a, 1]\}$	$\left\{-\frac{1}{z-1}(1+(2 b-c) T),(-z+1)(1+(-2 b+c) T)\right\}$
Ljc	$\begin{gathered} \{[0,1],[-a, 1],[-b, 1] \\ [-a-b, 1]\} \end{gathered}$	$\left\{2 z^{2}-2 z \sqrt{z^{2}-1}-1,2 z^{2}+2 z \sqrt{z^{2}-1}-1\right\}$
Lgd	$\{[0,2]\}$	$\left\{2 z^{2}-2 z \sqrt{z^{2}-1}-1,2 z^{2}+2 z \sqrt{z^{2}-1}-1\right\}$
Lgr	$\{[0,1],[-\alpha, 1]\}$	$\left\{1+2 \sqrt{-z} T-2 z T^{2}, 1-2 \sqrt{-z} T-2 z T^{2}\right\}$
Lgr1	$\{[0,1]\}$	$\{z T(1+2 b T)\}$
Lgb	$\{[0,1],[-2 m, 1]\}$	$\left\{-2 z \sqrt{z^{2}+1}-2 z^{2}-1,2 z \sqrt{z^{2}+1}-2 z^{2}-1\right\}$
Lkm	$\{[-a, 1],[-a+b, 1]\}$	$\left\{1-2 \sqrt{c} T+2 c T^{2}, 1+2 \sqrt{c} T+2 c T^{2}\right\}$
L2F0	$\{[b, 1]\}$	$\left\{\frac{T}{z}(1+(b-2 a) T)\right\}$
Lge	$\{[0,1],[b+d, 1]\}$	$\left\{a\left(1+(d-b)\right.\right.$ T) , $\frac{1}{a}(1-7(-b \equiv d) T)$ \}

Effectiveness of solver

Found 10,659 sequences in OEIS ${ }^{\text {TM }}$ that satisfy a second order recurrence but not a first order recurrence.

- 9,455 were reducible
- 161 irreducible Liouvillian
- 86 Bessel
- 330 Legendre
- 374 Hermite
- 21 Jacobi
- 8 Kummer
- 44 Laguerre
- $7{ }_{2} F_{1}$
- $14{ }_{2} F_{0}$
- 77 Generating function $(1+x)^{a}(1+b x)^{c}$
- 82 Not yet solved

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{\text {TM }}$ (OEIS ${ }^{\text {TM }}$)

A096121 $=(2,8,60,816,17520,550080,23839200, \ldots$. Number of full spectrum rook's walks on a (2 x n) board.

- Difference Operator: $\tau^{2}-(1+x)(x+2) \tau-(1+x)(x+2)$
- Val: $\}$
- Gquo: $\left\{-T^{2}(1-3 T)\right\}$

Modified Bessel functions of the first and second kind,

$I_{v+x}(z)$ and $K_{v+x}(-z)$.

- Difference Operator: $z \tau^{2}+(2+2 v+2 x) \tau-z$
- Gquo: $\left\{-\frac{1}{4} T^{2} z^{2}(1-(1+2 v) T)\right\}$

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{\text {TM }}$ (OEIS ${ }^{\text {TM }}$)

A096121 $=(2,8,60,816,17520,550080,23839200, \ldots$. Number of full spectrum rook's walks on a (2 x n) board.

- Difference Operator: $\tau^{2}-(1+x)(x+2) \tau-(1+x)(x+2)$
- Val: \{\}
- Gquo: $\left\{-T^{2}(1-3 T)\right\}$

Modified Bessel functions of the first and second kind, $I_{v+x}(z)$ and $K_{v+x}(-z)$.

- Difference Operator: $z \tau^{2}+(2+2 v+2 x) \tau-z$
- Val: \{\}
- Gquo: $\left\{-\frac{1}{4} T^{2} z^{2}(1-(1+2 v) T)\right\}$

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{\text {TM }}$ (OEIS ${ }^{\text {TM }}$)

- Comparing Gquo, $\left\{-T^{2}(1-3 T)\right\}$ and $\left\{-\frac{1}{4} z^{2} T^{2}(1-(1+2 v) T)\right\}$, we get candidates of $z=\{2,-2\}$ and candidates of $v=\left\{\frac{1}{2}, 1\right\}$

- We get four candidates to check $\sim g t$,

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{\text {TM }}$ (OEIS ${ }^{\text {TM }}$)

- Comparing Gquo, $\left\{-T^{2}(1-3 T)\right\}$ and $\left\{-\frac{1}{4} z^{2} T^{2}(1-(1+2 v) T)\right\}$,
we get candidates of $z=\{2,-2\}$
and candidates of $v=\left\{\frac{1}{2}, 1\right\}$
- We get four candidates to check $\sim_{g t}$,

$$
\begin{aligned}
& 2 \tau^{2}-(2 x+4) \tau-2,2 \tau^{2}-(2 x+3) \tau-2 \\
& 2 \tau^{2}+(2 x+4) \tau-2,2 \tau^{2}+(2 x+3) \tau-2
\end{aligned}
$$

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{\text {TM }}$ (OEIS ${ }^{\text {TM }}$)

- $2 \tau^{2}-(2 x+4) \tau-2 \sim_{g t} L$ (When $\left.v=1, z=-2\right)$
- Term-transformation is $x+2$ and gauge-transformation is 1 .
- Applying gt-transformation to $M_{1+x}(2)$ and $K_{1+x}(-2)$ we get basis of a basis of solutions of L,

$$
\left\{I_{1+x}(2) \Gamma(x+2), K_{1+x}(-2) \Gamma(x)\right\}
$$

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{\text {TM }}$ (OEIS ${ }^{\text {TM }}$)

- $2 \tau^{2}-(2 x+4) \tau-2 \sim_{g t} L$ (When $\left.v=1, z=-2\right)$
- Term-transformation is $x+2$ and gauge-transformation is 1 .
- Applying gt-transformation to $I_{1+x}(2)$ and $K_{1+x}(-2)$ we get basis of a basis of solutions of L,

$$
\left\{I_{1+x}(2) \Gamma(x+2), K_{1+x}(-2) \Gamma(x)\right\}
$$

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{T M}$ (OEIS ${ }^{T M}$)

A000262 $=(1,1,3,13,73,501,4051,37633,394353, \ldots)$ Number of "sets of lists":
number of partitions of $\{1, . ., n\}$ into any number of lists.

- Difference Operator: $\tau^{2}-(3+2 x) \tau+x(x+1)$
- Val: $\{[0,2]\}$
- Gquo: $\left\{1-2 T+2 T^{2}, 1+2 T+2 T^{2}\right\}$

Laguerre polynomial $L_{x}^{(\alpha)}(z)$.

- Difference Operator: $\operatorname{Lgr}=\tau^{2}-\frac{2 x+3+\alpha-z}{x+2} \tau+\frac{x+1+\alpha}{x+2}$
- Val: $\{[0,1],[-\alpha, 1]\}$
- Gquo: $\left.\left\{1-2 \sqrt{-z} T-2 z T^{2}, 1+2 \sqrt{-z} T-2 z T^{2}\right)\right\}$

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{T M}$ (OEIS ${ }^{T M}$)

A000262 $=(1,1,3,13,73,501,4051,37633,394353, \ldots)$ Number of "sets of lists":
number of partitions of $\{1, . ., n\}$ into any number of lists.

- Difference Operator: $\tau^{2}-(3+2 x) \tau+x(x+1)$
- Val: $\{[0,2]\}$
- Gquo: $\left\{1-2 T+2 T^{2}, 1+2 T+2 T^{2}\right\}$

Laguerre polynomial $L_{x}^{(\alpha)}(z)$.

- Difference Operator:Lgr $=\tau^{2}-\frac{2 x+3+\alpha-z}{x+2} \tau+\frac{x+1+\alpha}{x+2}$
- Val: $\{[0,1],[-\alpha, 1]\}$
- Gquo: $\left.\left\{1-2 \sqrt{-z} T-2 z T^{2}, 1+2 \sqrt{-z} T-2 z T^{2}\right)\right\}$

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{T M}$ (OEIS ${ }^{T M}$)

- Comparing Gquo,

$$
\begin{aligned}
& \left\{1-2 T+2 T^{2} \quad 1+2 T+2 T^{2}\right\} \text { and } \\
& \left.\left\{1-2 \sqrt{-z} T-2 z T^{2}, 1+2 \sqrt{-z} T-2 z T^{2}\right)\right\}, \\
& \text { we get } z=-1
\end{aligned}
$$

- $\mathrm{Val}=\{[0,2]\}$ is a special case of Lgr when $\alpha=0$.
- We get one candidate to check $\sim g t$,

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{\text {TM }}$ (OEIS ${ }^{\text {TM }}$)

- Comparing Gquo,

$$
\begin{aligned}
& \left\{1-2 T+2 T^{2} \quad 1+2 T+2 T^{2}\right\} \text { and } \\
& \left.\left\{1-2 \sqrt{-z} T-2 z T^{2}, 1+2 \sqrt{-z} T-2 z T^{2}\right)\right\}, \\
& \text { we get } z=-1 .
\end{aligned}
$$

- $\mathrm{Val}=\{[0,2]\}$ is a special case of Lgr when $\alpha=0$.
- We get one candidate to check $\sim g t$,

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{\text {TM }}$ (OEIS ${ }^{\text {TM }}$)

- Comparing Gquo,

$$
\begin{aligned}
& \left\{1-2 T+2 T^{2} \quad 1+2 T+2 T^{2}\right\} \text { and } \\
& \left.\left\{1-2 \sqrt{-z} T-2 z T^{2}, 1+2 \sqrt{-z} T-2 z T^{2}\right)\right\}, \\
& \text { we get } z=-1 .
\end{aligned}
$$

- $\mathrm{Val}=\{[0,2]\}$ is a special case of Lgr when $\alpha=0$.
- We get one candidate to check $\sim g t$,

$$
\tau^{2}-\frac{2 x+4}{x+2} \tau+\frac{x+1}{x+2}
$$

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{\text {TM }}$ (OEIS ${ }^{\text {TM }}$)

- Term-transformation is x and gauge-transformation is $\frac{x+1}{x} \tau-\frac{x^{2}+2 x}{x}$. - Applying gt-transformation to $L_{x}^{(0)}(-1)$, $\left\{(x+1) L_{x+1}^{(0)}(-1)-(x+2) L_{x}^{(0)}(-1)\right\} \Gamma(x)$

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{\text {TM }}$ (OEIS ${ }^{\text {TM }}$)

- Term-transformation is x and gauge-transformation is $\frac{x+1}{x} \tau-\frac{x^{2}+2 x}{x}$.
- Applying gt-transformation to $L_{x}^{(0)}(-1)$,

$$
\left\{(x+1) L_{x+1}^{(0)}(-1)-(x+2) L_{x}^{(0)}(-1)\right\} \Gamma(x)
$$

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{\text {TM }}$ (OEIS ${ }^{\text {TM }}$)

A068770 = (1, 1, 16, 264, 4480, 77952, 1386496, 25135616,...) Generalized Catalan numbers.

- Difference Operator: $(3+x) \tau^{2}+(-48-32 x) \tau+224 x$
- Val: $\{[0,2]\}$
- Gquo: $\left\{\frac{9}{7}-\frac{4}{7} \sqrt{2}, \frac{9}{7}+\frac{4}{7} \sqrt{2}\right\}$

Jacobian polynomial $P_{x}^{a, b}(z)$

- Difference Operator: $\operatorname{Lgd}=\tau^{2}-\frac{(2 x+3) z}{x+2} \tau+\frac{x+1}{x+2}$
- Val: $\{[0,2]\}$
- Gquo: $\left\{2 z^{2}-2 z \sqrt{z^{2}-1}-1,2 z^{2}+2 z \sqrt{z^{2}-1}-1\right\}$

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{\text {TM }}$ (OEIS ${ }^{\text {TM }}$)

A068770 = (1, 1, 16, 264, 4480, 77952, 1386496, 25135616,...) Generalized Catalan numbers.

- Difference Operator: $(3+x) \tau^{2}+(-48-32 x) \tau+224 x$
- Val: $\{[0,2]\}$
- Gquo: $\left\{\frac{9}{7}-\frac{4}{7} \sqrt{2}, \frac{9}{7}+\frac{4}{7} \sqrt{2}\right\}$

Jacobian polynomial $P_{X}^{a, b}(z)$

- Difference Operator: $\operatorname{Lgd}=\tau^{2}-\frac{(2 x+3) z}{x+2} \tau+\frac{x+1}{x+2}$
- Val: $\{[0,2]\}$
- Gquo: $\left\{2 z^{2}-2 z \sqrt{z^{2}-1}-1,2 z^{2}+2 z \sqrt{z^{2}-1}-1\right\}$

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{\text {TM }}$ (OEIS ${ }^{\text {TM }}$)

- Comparing Gquo,
$\left\{\frac{9}{7}-\frac{4}{7} \sqrt{2}, \frac{9}{7}+\frac{4}{7} \sqrt{2}\right\}$ and
$\left\{2 z^{2}-2 z \sqrt{z^{2}-1}-1,2 z^{2}+2 z \sqrt{z^{2}-1}-1\right\}$,
we get candidates of $z=\left\{\frac{2}{7} \sqrt{14},-\frac{2}{7} \sqrt{14}\right\}$.
- $\mathrm{Val}=\{[0,2]\}$ is used to find the right base equation.

We get 2 candidate to check \sim gt,

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{\text {TM }}$ (OEIS ${ }^{\top M}$)

- Comparing Gquo,
$\left\{\frac{9}{7}-\frac{4}{7} \sqrt{2}, \frac{9}{7}+\frac{4}{7} \sqrt{2}\right\}$ and
$\left\{2 z^{2}-2 z \sqrt{z^{2}-1}-1,2 z^{2}+2 z \sqrt{z^{2}-1}-1\right\}$,
we get candidates of $z=\left\{\frac{2}{7} \sqrt{14},-\frac{2}{7} \sqrt{14}\right\}$.
- $\mathrm{Val}=\{[0,2]\}$ is used to find the right base equation.

We get 2 candidate to check $\sim_{g t}$,

$$
\begin{aligned}
& \tau^{2}-\frac{2}{7} \frac{(2 x+3) \sqrt{14}}{x+2} \tau+\frac{1+x}{x+2} \\
& \tau^{2}+\frac{2}{7} \frac{(2 x+3) \sqrt{14}}{x+2} \tau-\frac{1+x}{x+2}
\end{aligned}
$$

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{\text {TM }}$ (OEIS ${ }^{\text {TM }}$)

- $\tau^{2}-\frac{2}{7} \frac{(2 x+3) \sqrt{14}}{x+2} \tau+\frac{1+x}{x+2}$
(When $z=\frac{2}{7} \sqrt{14}$)
- Term-transformation is $4 \sqrt{14}$ and
gauge-transformation is $\frac{1}{x}(\tau-16)$.
- Applying gt-transformation to $\left\{P_{x}\left(\frac{2}{7} \sqrt{14}\right), Q_{x}\left(\frac{2}{7} \sqrt{14}\right)\right\}$, we get

Example from

The On-Line Encyclopedia of Integer Sequences ${ }^{\text {TM }}$ (OEIS ${ }^{\top M}$)

- $\tau^{2}-\frac{2}{7} \frac{(2 x+3) \sqrt{14}}{x+2} \tau+\frac{1+x}{x+2}$
(When $z=\frac{2}{7} \sqrt{14}$)
- Term-transformation is $4 \sqrt{14}$ and
gauge-transformation is $\frac{1}{x}(\tau-16)$.
- Applying gt-transformation to $\left\{P_{X}\left(\frac{2}{7} \sqrt{14}\right), Q_{X}\left(\frac{2}{7} \sqrt{14}\right)\right\}$, we get

$$
\begin{aligned}
& \left\{-\frac{1}{x}\left(4^{x+2} 14^{\frac{1}{2} x} P_{x}\left(\frac{2}{7} \sqrt{14}\right)+4^{x+1} 14^{\frac{1}{2} x+\frac{1}{2}} P_{x+1}\left(\frac{2}{7} \sqrt{14}\right),\right.\right. \\
& -\frac{1}{x}\left(4^{x+2} 14^{\frac{1}{2} x} Q_{x}\left(\frac{2}{7} \sqrt{14}\right)+4^{x+1} 14^{\frac{1}{2} x+\frac{1}{2}} Q_{x+1}\left(\frac{2}{7} \sqrt{14}\right)\right\}
\end{aligned}
$$

How to add a new base equation

One advantage of solver is we can add base equation to it. (Back to Maple Worksheet)

