Solving problems with the LLL algorithm

Mark van Hoeij

Florida State University hoeij@math.fsu.edu

October 17, 2015

Lattice basis reduction (LLL)

A lattice is a discrete \mathbb{Z} -module $\subseteq \mathbb{R}^n$

Example: If $b_1, b_2 \in \mathbb{R}^2$ are \mathbb{R} -linearly independent then

$$L = \mathrm{SPAN}_{\mathbb{Z}}(b_1, b_2) = \{ n_1b_1 + n_2b_2 \mid n_1, n_2 \in \mathbb{Z} \}$$

is a lattice of rank 2 and b_1, b_2 is a basis of L.

Lattice basis reduction

Input: a basis of *L*.

Output: a good basis of L.

- For rank 2 this is easy (\approx Euclidean algorithm). For a long time it was not known how to handle rank n > 2 until:
- [LLL 1982] (Lenstra, Lenstra, Lovász): Efficient algorithm for any rank.
- Has lots of applications!

Figure 1: A lattice with a bad basis b_1, b_2 and a good basis v_1, v_2 .

$$L = \{ \text{dots in Figure 1} \} = \text{SPAN}_{\mathbb{Z}}(b_1, b_2) = \text{SPAN}_{\mathbb{Z}}(v_1, v_2)$$

Gram-Schmidt process (n = 2)

- $v_1^* = v_1$
- $v_2^* = v_2 \mu v_1^*$ Compute $\mu \in \mathbb{R}$ such that $v_1^* \perp v_2^*$.

G.S.-vectors $v_1^*, \ldots, v_n^* \rightsquigarrow$ very useful information on L even though v_2^*, \ldots, v_n^* are generally not in L.

b_1, b_2 is a bad basis because:

- \bullet b_1, b_2 are almost parallel,
- $||b_2^*|| \ll ||b_2||$

(good basis $\Longrightarrow ||v_i^*|| \approx ||v_i||$)

Let $b^{\min} \coloneqq \min(\|b_i^*\|)$

Shortest-vector-bound:

$$b^{\min} \leq ||\text{shortest } v \neq 0 \text{ in } L||$$

Given a bad basis b_1, b_2 , how to find a good basis?

- Subtract an integer-multiple of a one vector from another. (First step in the picture is: replace b_1 with $b_1 b_2$).
- Repeat as long as Step 1 can make a vector shorter.

This strategy works well for rank n = 2.

Efforts to extend to n > 2 failed until the breakthrough [LLL 1982], which uses lengths of G.S.-vectors b_i^* and not the lengths of the b_i themselves!

Application #1: $p = a^2 + b^2$

Theorem (Fermat)

If p prime and $p \equiv 1 \mod 4$, then $p = a^2 + b^2$ for some $a, b \in \mathbb{Z}$.

How to find $a, b \in \mathbb{Z}$ with $a^2 + b^2$ equal to p?

Observation: $a^2 + b^2 \equiv 0 \mod p$

Hence $a \equiv \alpha b \mod p$ for some solution of $\alpha^2 + 1 \equiv 0 \mod p$.

Compute α (e.g. Berlekamp's algorithm). Then

$$\begin{pmatrix} \pm a \\ b \end{pmatrix} \in SPAN_{\mathbb{Z}} \begin{pmatrix} p \\ 0 \end{pmatrix}, \begin{pmatrix} \alpha \\ 1 \end{pmatrix})$$

(the \pm is irrelevant) $(\alpha^2 + 1 \equiv 0 \text{ has two solutions mod } p)$

Application #1: $p = a^2 + b^2$

Find: $a, b \in \mathbb{Z}$ with $a^2 + b^2 = p$.

lf

$$v = \begin{pmatrix} a \\ b \end{pmatrix} \in SPAN_{\mathbb{Z}} \begin{pmatrix} p \\ 0 \end{pmatrix}, \begin{pmatrix} \alpha \\ 1 \end{pmatrix})$$

then

$$||v^2|| = a^2 + b^2 \equiv (\alpha b)^2 + b^2 = (\alpha^2 + 1)b^2 \equiv 0 \mod p.$$

So $||v||^2$ is divisible by p.

So
$$||v||^2$$
 is *p* if *v* is short enough: $0 < ||v||^2 < 2p$

Such v is easy to find in a good basis.

However,
$$\left\{ \begin{pmatrix} p \\ 0 \end{pmatrix}, \begin{pmatrix} \alpha \\ 1 \end{pmatrix} \right\}$$
 is a bad basis (angle $\approx 10^{-400}$ radians!)

Application #1: $p = a^2 + b^2$

Find: $a, b \in \mathbb{Z}$ with $a^2 + b^2 = p$.

The simple strategy from slide 6 reduces the bad basis to a good basis.

From it we can immediately read off a solution:

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 858038135984417422601.....0688928009299704710 \\ 513585978387637054198.....0249251426547937937 \end{pmatrix}$$

The computation (finding α and reducing the basis) takes < 0.1 seconds.

Lattice basis reduction for arbitrary rank *n*

Apply the Gram-Schmidt process to b_1, \ldots, b_n

- $b_1^* = b_1$
- $b_2^* = b_2 \mu_{2,1}b_1^*$

(take $\mu_{ij} \in \mathbb{R}$ s.t. $b_i^* \perp b_i^*$) (j < i)

• $b_3^* = b_3 - \mu_{3,1}b_1^* - \mu_{3,2}b_2^*$

 $\operatorname{Det}(L) = ||b_1^*|| \cdots ||b_n^*||$ (the determinant is basis-independent).

Replacing $b_i \leftarrow b_i - k b_j$ reduces μ_{ij} to $\mu_{ij} - k$ $(k \in \mathbb{Z})$.

LLL lattice basis reduction

- Reduce to $|\mu_{ij}| \le 0.51$ (≤ 0.5 if μ_{ij} known exactly).
- ② If swapping $b_{i-1} \leftrightarrow b_i$ increases $||b_i^*||$ at least 10% for some i, then do so and go back to Step 1.

Output: good basis: $||b_{i-1}^*|| \le 1.28 \cdot ||b_i^*||$ and $|\mu_{ij}| \le 0.51$

Properties of LLL reduced basis

If
$$Output(LLL) = b_1, \ldots, b_n$$
 then

$$||b_1^*|| \le 1.28 \cdot ||b_2^*|| \le 1.28^2 \cdot ||b_3^*|| \le \dots \le 1.28^{n-1} \cdot b^{\min}$$

hence

$$||b_1|| \le f_n \cdot ||\text{shortest } v \ne 0 \text{ in } L||$$
 "fudge factor" $f_n = 1.28^{n-1}$

If L has a short non-zero vector then b_1 is not much longer.

If L has short independent S_1, \ldots, S_k then b_1, \ldots, b_k are not much longer.

Many problems P can be solved this way:

- Construct a lattice $L = SPAN_{\mathbb{Z}}(b_1, ..., b_n)$ for which Solution(P) can be read some solution-vectors $S_1, ..., S_k \in L$.
- ② Construct L in such a way that vectors in $L \operatorname{SPAN}_{\mathbb{Z}}(S_1, \dots, S_k)$ are $\geq f_n$ times longer than S_1, \dots, S_k .
- 3 Replace b_1, \ldots, b_n by an LLL-reduced basis, then:

Application #2:

Reconstruct algebraic number from an approximation

Suppose β is an algebraic number, a root of an irreducible $P \in \mathbb{Z}[x]$. Suppose $P = \sum_{i=0}^{n-1} c_i x^i$ with $|c_i| \leq 10^b$.

Suppose we have an approximation $\alpha \in \mathbb{R}$ with error $< 10^{-a}$. We need $a \ge bn + \epsilon n^2$ because P has $\approx bn$ digits of data. (fudge factor $f_n \leadsto \epsilon n^2$)

Problem: Compute exact β (compute P) from the approximation α .

Can read P from solution-vector $S := (c_0, \ldots, c_{n-1}) \in \mathbb{Z}^n$.

Problem: \mathbb{Z}^n contains unwanted vectors as well.

$$S = Sculpture \subseteq rock.$$

Use chisel to separate unwanted rock.

Idea:

Add one (or more) entries $\mathbb{Z}^n \to \mathbb{Z}^{n+1}$ that make unwanted vectors at least f_n times longer than S. Use LLL to separate them.

Application #2:

Reconstruct algebraic number from an approximation

Define $E: \mathbb{Z}^n \to \mathbb{Z}^{n+1}$

$$\left(c_0,\ldots,c_{n-1}\right)\mapsto \left(c_0,\ldots,c_{n-1},\ \sum c_i\left[10^a\alpha^i\right]\right)$$

 $b_1, \ldots, b_n \coloneqq E(\text{ standard basis of } \mathbb{Z}^n)$

 b_1, \ldots, b_n spans a lattice $L \subseteq \mathbb{Z}^{n+1}$ of rank n.

 b_1, \ldots, b_n is a bad basis. **Typical example**: degree(P) < 40 and |coefficients| $\leq 10^{100}$. Angles will be $\approx 10^{-4000}$ radians!

LLL quickly turns this into a good basis.

With suitable precision a, this either leads to the minpoly $P = \sum c_i x^i$ or a proof that no P exists within the chosen bounds.

Application #3: Polynomial-time factorization

Theorem (LLL 1982)

Factoring in $\mathbb{Q}[x]$ can be done in polynomial time.

Proof sketch: Compute a root of f to precision a. Use the previous slide to compute its minpoly. Choose a in such a way that this produces either a non-trivial factor, or an irreducibility proof.

- [LLL 1982] uses a p-adic root, while [Schönhage 1984] uses a real or complex root. Both work in polynomial time.
- Neither was used in computer algebra systems; [Zassenhaus 1969] (not polynomial time!) is usually much faster.
- Faster algorithm [vH 2002]: apply LLL to a much smaller lattice.

Integer solutions of approximate and/or modular equations.

Find: $x_1, \ldots, x_n \in \mathbb{Z}$ when given:

- ② or modular linear equations $b_{i,1}x_1 + \cdots + b_{i,n}x_n \equiv 0 \mod m_i$
- or a mixture of the above, and other variations

then use LLL.

- Linear equations over \mathbb{R} : Ordinary linear algebra gives a basis solutions over \mathbb{R} , but this does not help to find solutions over \mathbb{Z} .
- Equations (approximate and/or modular etc.) are inserted in a lattice by adding entries (like $E: \mathbb{Z}^n \to \mathbb{Z}^{n+1}$ on p. 13).
- [vH, Novocin 2010]: Efficient method for: "amount(data in equations)" >> "amount(data in solution)"

Application: Integer relation finding

Given
$$a_1, \ldots, a_n \in \mathbb{R}$$
, find $x_1, \ldots, x_n \in \mathbb{Z}$ (say $|x_i| \le 10^{100}$) with $a_1x_1 + \cdots + a_nx_n = 0$.

Notable algorithms:

- [LLL 1982]
- [PSLQ 1992] (= [HJLS 1986] ?)

Beautiful applications e.g. PSLQ \sim Bailey-Borwein-Plouffe formula for π

- [LLL 1982] is a more complete solution because [PSLQ 1992] gave no bound(precision(a_i)) \rightsquigarrow provable result.
- PSLQ won SIAM Top 10 Algorithms of the Century award.
- The fastest implementations I have seen can handle n = 500 (using modern versions of LLL).

Counting # LLL uses in one paper

Recent paper: [Derickx, vH, Zeng] Computing Galois representations and equations for modular curves $X_H(\ell)$.

This paper uses LLL for:

- Finding low-degree functions: To a function, associate a vector containing root/pole orders. Low degree functions have short vectors, use LLL to find them.
- ② The paper computes an algebraic number α mod primes p_1, \ldots, p_n . Use LLL to reconstruct the minpoly P of α .
- **③** P has huge coefficients (> 10^{1000}). Use LLL to find a smaller $Q \in \mathbb{Z}[x]$ with $\mathbb{Q}[x]/(P) \cong \mathbb{Q}[x]/(Q)$.
- One of the tests for Q is to compute its Galois group. Galois group computations use LLL directly and indirectly (factoring resolvent polynomials uses [vH 2002], which uses LLL).

Other applications

[Imamoglu, vH 2015]: solve linear differential equations in terms of hypergeometric functions ${}_2F_1(a,b;c|f)$ where f is a rational function.

Problem:

We can recover f if the first term cx^d of the Taylor series of f is known. We have no direct way to compute c, but given c, we can check if c is OK.

Strategy for finding c:

Work modulo a prime p, then try all p cases! Then work mod higher p-powers (or other primes) until one can recover $c \in \overline{\mathbb{Q}}$ with LLL.

This strategy has other applications. It may help if a system of polynomial equations is too complicated to be solved directly with Gröbner basis.

Polynomial factorization until 2000.

 $f \in \mathbb{Z}[x]$, degree N, square-free and primitive.

Step 1:

Factor $f \equiv f_1 \cdots f_r \mod p$ and Hensel lift:

$$f\equiv f_1\cdots f_r \bmod p^a$$

Step 2 in [Zassenhaus 1969]:

- Try $S \subseteq \{f_1, \ldots, f_r\}$ with $1, 2, \ldots \lfloor r/2 \rfloor$ elements, and check if the product (lifted to $\mathbb{Z}[x]$) is a factor of f in $\mathbb{Z}[x]$.
- Up to 2^{r-1} cases $S \subseteq \{f_1, \dots, f_r\}$ (Combinatorial Problem)

[LLL 1982] Bypasses Combinatorial Problem:

- $L := \{(c_0, \dots, c_{N-1}) \mid \sum c_i x^i \equiv 0 \mod (p^a, f_1)\}$ (rank = N)
- LLL-reduce, take first vector, and compute $gcd(f, \sum c_i x^i)$.

Factor f in $\mathbb{Q}[x]$, degree N = 1000

[LLL 1982] reduces a lattice of rank N

- Algorithm runs in polynomial time.
- However, lattice reduction for rank 500 is very time consuming.
- rank N = 1000 is a problem!

[Zassenhaus 1969] tries $\leq 2^{r-1}$ cases

- $r = 12 \sim \odot$ (Finishes in seconds)
- $r = 80 \sim \odot$ (Millions of years, even with 10^9 cases per second)

If: f has degree N = 1000, few factors in $\mathbb{Q}[x]$ but r = 80 factors in $\mathbb{F}_p[x]$ **Then**: Out of reach for any algorithm in 2000.

However, 80 bits of data reduces CPU time from eons to seconds!

[vH 2002]: Use lattice reduction to compute **only those bits!** (rank $\approx r$)

Factor f in $\mathbb{Q}[x]$, degree N, with $f \equiv f_1 \cdots f_r \mod p^a$

[LLL 1982]: (polynomial time)

Reduce a lattice of rank N (and large entries)

[Zassenhaus 1969]: (not poly time, usually faster than [LLL 1982])

Try (exponentially many) subsets $S \subseteq \{f_1, \dots, f_r\}$ (Combinatorial Problem)

[vH 2002]: (fastest)

- $S \Longleftrightarrow (v_1,\ldots,v_r) \in \{0,1\}^r$
- Insert data: $\{0,1\}^r \subseteq \mathbb{Z}^r \to \mathbb{Z}^{r+\epsilon}$ to construct lattice of rank $r+\epsilon$
- Sequence of lattice reductions leads to v_1, \ldots, v_r , and hence S.
- Test (as in Zassenhaus) if $\prod S \mod p^a \rightsquigarrow$ a factor in $\mathbb{Q}[x]$.
- [vH 2002]: correctness and termination proof, no complexity bound.
- Complexity bound: [vH, Novocin 2010] and [vH 2013].

[vH 2002] factoring

- $S \subseteq \{f_1, \ldots, f_r\} \iff v \in \{0, 1\}^r \subseteq \mathbb{Z}^r \to \mathbb{Z}^{r+\epsilon}$
- If: we have: approximate/modular linear equations for $v = (v_1, \dots, v_r)$ then: lattice reduction $\sim v$.
- However, the factor $\prod S = \prod f_i^{v_i}$ of f depends non-linearly on v.
- Idea: coefficients $(f \cdot f_i'/f_i) \sim$ equations for v (f_i'/f_i) is the logarithmic derivative; turns products into sums)

- [vH 2002] runs fast; lattice reduction is only used to construct r bits.
- Lots of data in coefficients $(f \cdot f'_i/f_i) \ \ N \cdot \log_2(p^a)$ bits $\sim r$ bits.
- How to select from this data? (select all → no speedup)
- [vH Novocin 2010] and [vH 2013] solve this → best complexity bound and practical performance, in the same algorithm.

References, polynomial factorization over $\mathbb Q$

H. Zassenhaus (1969)

On Hensel Factorization I.

J. Number Theory, 1, 291-311

Lenstra, Lenstra, Lovász (1982)

Factoring polynomials with rational coefficients

Math Ann. 261, 515-534

M. van Hoeij (2002)

Factoring polynomials and the knapsack problem

J. of Number Theory, 95, 167-189

M. van Hoeij, A. Novocin (2010)

Gradual sub-lattice reduction and a new complexity for factoring polynomials *LATIN*. 539-553

M. van Hoeij (2013)

The complexity of factoring univariate polynomials over the rationals *ISSAC'2013 tutorial*, slides at www.math.fsu.edu/~hoeij