Introduction 000000000	Preliminaries 00000000	Local Invariant 00000000000	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions

Finding all Bessel type solutions for Linear Differential Equations with Rational Function Coefficients

Quan Yuan

March 19, 2012

Quan Yuan

Bessel Type Solutions

March 19, 2012

Slide 1/ 46

Introduction ●00000000	Preliminaries	Local Invariant	Solving 0000000	Solving-details 00000	Proof of Uniqueness	Conclusions 00
introduction						
Main Q	uestion					

- Given a second order homogeneous differential equation $a_2y'' + a_1y' + a_0 = 0$, where a_i 's are rational functions, can we find solutions in terms of Bessel functions?
- A homogeneous equation corresponds a second order differential operator L := a₂∂² + a₁∂ + a₀.

Introduction 00000000	Preliminaries 00000000	Local Invariant	Solving 00000000	Solving-details	Proof of Uniqueness	Conclusions
introduction						
An Ana	logy					

- $\frac{I_{\nu}(x)\sqrt{x}}{e^{x}}$ converges when $x \to +\infty$. $I_{\nu}(x)$ and e^{x} have similar asymptotic behavior when $x \to +\infty$.
- The idea behind finding closed form solutions is to reconstruct them from the asymptotic behavior at the singular points.
- Before studying how to find Bessel type solutions, let's see how this strategy works for exponential solutions e^{f(x)}.

伺 > く ヨ > く ヨ > …

Introduction 00000000	Preliminaries 00000000	Local Invariant	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00
introduction						
General	ized Exp	onents				

- To find exponential solutions $y = e^{f(x)}$, we need to know the asymptotic behavior of y at each singularity.
- Generalized exponents (up to equivalence) effectively determine asymptotic behavior up to a meromorphic function.

Introduction 000000000	Preliminaries 00000000	Local Invariant 00000000000	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00
introduction						

Finding Exponential Solutions

Let $L \in \mathbb{C}(x)[\partial]$. Suppose $y = e^{f(x)}$ is a solution of L, where $f \in \mathbb{C}(x)$. Question: How to find f?

Poles of f

Let $p \in \mathbb{C} \cup \{\infty\}$.

p is a pole of $f \implies p$ is an essential singularity of y $\implies p$ is an irregular singularity of L.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00
introduction						

Finding Exponential Solutions

Suppose *L* has order *n* and *p* is an irregular singularity of *L* (notation $p \in S_{irr}$).

- *L* has *n* generalized exponents at *p*, one of which gives the polar part of *f* at *x* = *p*.
- There are finitely many combinations of generalized exponents at all irregular singularities. Each combination give us a candidate for *f*.
- Try all candidate f's will give us the exponential solutions.

伺 ト イ ヨ ト イ ヨ ト

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 0000000	Solving-details 00000	Proof of Uniqueness	Conclusions 00				
introduction										
Finding	Finding Bessel type Solutions									

- The same process as finding e^{f(x)} will give us all solutions of the form I_ν(f), f ∈ C(x).
- We want to find all solutions of L that can be expressed in terms of Bessel functions.
- 3 As we shall see, $(1) \not\Longrightarrow (2)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction	Preliminaries	Local Invariant	Solving	Solving-details	Proof of Uniqueness	Conclusions
0000000000						
introduction						

Finding Bessel Type Solutions-Challenges

- Let $g \in \mathbb{C}(x)$ and $f = \sqrt{g}$. Then $I_{\nu}(f)$ satisfies an equation in $\mathbb{C}(x)[\partial]$.
- So it is not sufficient to only consider f ∈ C(x). We need to allow for f's with f² ∈ C(x).
- **③** As for $e^{f(x)}$ solutions, we find at each $p \in S_{irr}$:

$$\begin{array}{rcl} \text{Polar part of } f & \Longrightarrow & \text{half of polar part of } g \\ & \Longrightarrow & \text{half of } g \ (\text{half of } f). \end{array}$$

An Example

lf

$$f = 1x^{-3} + 2x^{-2} + 3x^{-1} + O(x^0),$$

then

$$g = x^{-6} + 4x^{-5} + 10x^{-4} + 2x^{-3} + O(x^{-2}).$$

Introduction 0000000●0	Preliminaries	Local Invariant 00000000000	Solving 00000000	Solving-details	Proof of Uniqueness	Conclusions 00
introduction						

Find Bessel type Solutions–Challenges

- Let $r \in \mathbb{C}(x)$, then $\exp(\int r) l_{\nu}(\sqrt{g(x)})$ also satisfies an equation in $\mathbb{C}(x)[\partial]$.
- Let $r_0, r_1 \in \mathbb{C}(x)$, then $r_0 l_{\nu}(\sqrt{g(x)}) + r_1(l_{\nu}(\sqrt{g(x)}))'$ satisfies an equation in $\mathbb{C}(x)[\partial]$ too.
- So to solve *L* "in terms of " Bessel functions, we also need to allow sums, products, differentiations, exponential integrals.
- Note: our "in terms of" is the same as that in Singer's (1985) definition. (more on that later.)

Introduction 00000000●	Preliminaries 00000000	Local Invariant	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00
introduction						
Find Be	essel type	e Solution	s			

To summarize the three cases, when we say solve equations *in terms of* Bessel Functions we mean find solutions which have the form

$$e^{\int rdx}(r_0B_
u(\sqrt{g})+r_1(B_
u(\sqrt{g}))')$$

where $B_{\nu}(x)$ is one of the Bessel functions, and $r, r_0, r_1, g \in \mathbb{C}(x)$. (Later in the talk: completeness theorem regarding this form.)

通 と く ヨ と く ヨ と

Introduction 000000000	Preliminaries ●0000000	Local Invariant	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00
Notation						
Differer	ntial Field	ds				

- Let C_K be a number field with characteristic 0.
- Let $K = C_K(x)$ be the rational function field over C_K .
- Let $\partial = \frac{d}{dx}$.
- Then K is a differential field with derivative ∂ and $C_K := \{c \in K | \partial(c) = 0\}$ is the constant field of K.

Introduction 000000000	Preliminaries	Local Invariant 00000000000	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00			
Notation									
Differential Operators									

- $L := \sum_{i=0}^{n} a_i \partial^i$ is a differential operator over K, where $a_i \in K$.
- $K[\partial]$ is the ring of all differential operators over K.
- L corresponds to a homogeneous differential equation Ly = 0.
- We say y is a solution of L, if Ly = 0.
- Denote V(L) as the vector space of solutions. (Defined inside a so-called *universal extension*).
- p is a singularity of L, if p is a root of a_n or p is a pole of $a_i, i \neq n$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □

Introduction 000000000	Preliminaries	Local Invariant	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00
Notation						
Bessel	Function	S				

- The two linearly independent solutions $J_{\nu}(x)$ and $Y_{\nu}(x)$ of $L_{B1} = x^2 \partial^2 + x \partial + (x^2 \nu^2)$ are called Bessel functions of first and second kind, respectively.
- Solutions $I_{\nu}(x)$ and $K_{\nu}(x)$ of $L_{B2} = x^2 \partial^2 + x \partial (x^2 + \nu^2)$ are called the modified Bessel functions of first and second kind, respectively.
- The change of variables $x \to x\sqrt{-1}$ sends $V(L_{B1})$ to $V(L_{B2})$ and vice versa. So we can start our algorithm with $L_B := L_{B2}$. And let $B_{\nu}(x)$ refer to one of the Bessel functions.

• If
$$\nu \in \frac{1}{2} + \mathbb{Z}$$
, then L_B is reducible.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction 000000000	Preliminaries ○○○●○○○○	Local Invariant	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions
Main Problem						
Questio	ons					

- Given an irreducible second order differential operator
 L = a₂∂² + a₁∂ + a₀, with a₀, a₁, a₂ ∈ K. Can we solve it in
 terms of Bessel Functions?
- More precisely can we find solutions which have the form

$$e^{\int rdx}(r_0B_
u(\sqrt{g})+r_1(B_
u(\sqrt{g}))')$$

where $B_{\nu}(x)$ is one of the Bessel functions.

通 と く ヨ と く ヨ と

Introduction 000000000	Preliminaries ○○○○●○○○	Local Invariant 00000000000	Solving 00000000	Solving-details	Proof of Uniqueness	Conclusions 00
Main Problem						

0			1	
(.)	па	n	ΥU	an
~				

◆□→ ◆御→ ◆注→ ◆注→ □注

Introduction 000000000	Preliminaries	Local Invariant 00000000000	Solving 00000000	Solving-details	Proof of Uniqueness	Conclusions 00
Main Problem						

- Definition (Singer 1985): L ∈ C(x)[∂], and if a solution y can be expressed in terms of solutions of second order equations, then y is a *eulerian solution*.
- Note: any solution of L ∈ C(x)[∂] that can be expressed in terms of Bessel functions is a eulerian solution.

Introduction 000000000	Preliminaries ○○○○●○○○	Local Invariant 00000000000	Solving 00000000	Solving-details	Proof of Uniqueness	Conclusions 00
Main Problem						

- Definition (Singer 1985): L ∈ C(x)[∂], and if a solution y can be expressed in terms of solutions of second order equations, then y is a *eulerian solution*.
- Note: any solution of L ∈ C(x)[∂] that can be expressed in terms of Bessel functions is a eulerian solution.
- Singer proved that solving such *L* can be reduced to solving second order *L*'s
- van Hoeij developed an algorithm that reduces to order 2.

→ < □ > < □ > < □ >

Introduction 000000000	Preliminaries	Local Invariant	Solving 00000000	Solving-details	Proof of Uniqueness	Conclusions
Main Problem						

- Definition (Singer 1985): L ∈ C(x)[∂], and if a solution y can be expressed in terms of solutions of second order equations, then y is a *eulerian solution*.
- Note: any solution of L ∈ C(x)[∂] that can be expressed in terms of Bessel functions is a eulerian solution.
- Singer proved that solving such *L* can be reduced to solving second order *L*'s
- van Hoeij developed an algorithm that reduces to order 2.
- such reduction to order 2 is valuable, *if* we can actually solve such second order equations.
- In summary, to solve *n*'s order equation in terms of Bessel, we need an algorithm that solve 2nd order equations in terms of Bessel functions.

Introduction 000000000	Preliminaries ○○○○○●○○	Local Invariant	Solving 0000000	Solving-details 00000	Proof of Uniqueness	Conclusions 00
Main Problem						
Questic	ons					

^	. \/		
Quar	יז ר	ua	n

◆□ → ◆□ → ◆三 → ◆三 → ○ へ ⊙

Introduction 000000000	Preliminaries ○○○○○●○○	Local Invariant	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00
Main Problem						
Questio	ns					

If we can find a Bessel Solver, then we can find all $_{p}F_{q}$ type solutions of second order equations excepts (p, q) = (2, 1)

- $_0F_1$ and $_1F_1$ functions can be written in terms of either Whittaker functions or Bessel functions.
- Whittaker functions has already been handled. (Debeerst, van Hoeij, and Koepf)
- T. Fang and V. Kunwar are working on $_2F_1$ solver.

Introduction 000000000	Preliminaries ○○○○○●○○	Local Invariant	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00
Main Problem						
Questio	ns					

If we can find a Bessel Solver, then we can find all $_{p}F_{q}$ type solutions of second order equations excepts (p, q) = (2, 1)

- $_0F_1$ and $_1F_1$ functions can be written in terms of either Whittaker functions or Bessel functions.
- Whittaker functions has already been handled. (Debeerst, van Hoeij, and Koepf)
- T. Fang and V. Kunwar are working on $_2F_1$ solver.

Why Irreducible?

Introduction 000000000	Preliminaries ○○○○○●○○	Local Invariant	Solving	Solving-details	Proof of Uniqueness	Conclusions 00
Main Problem						
Questio	ns					

If we can find a Bessel Solver, then we can find all $_{p}F_{q}$ type solutions of second order equations excepts (p, q) = (2, 1)

- $_0F_1$ and $_1F_1$ functions can be written in terms of either Whittaker functions or Bessel functions.
- Whittaker functions has already been handled. (Debeerst, van Hoeij, and Koepf)
- T. Fang and V. Kunwar are working on $_2F_1$ solver.

Why Irreducible?

If the second order operator is reducible, it has Liouvillian solutions. Kovacic's algorithm can find such solutions.

< ロ > < 同 > < 三 > < 三 > <

Introduction 000000000	Preliminaries	Local Invariant 00000000000	Solving 0000000	Solving-details 00000	Proof of Uniqueness	Conclusions 00
Main Problem						
Comple	teness					

Questions

For Bessel type solutions, is it sufficient to consider solutions with form

$$e^{\int rdx}(r_0B_
u(\sqrt{g})+r_1(B_
u(\sqrt{g}))')$$

where $B_{\nu}(x)$ is one of the Bessel functions, and $r, r_0, r_1, g \in K$?

To answer that, we need to answer:

• what about
$$B''_{\nu}, B'''_{\nu}, \ldots$$
?

What about sums, products, derivatives, exponential integrals?

3) what about
$$r, r_0, r_1, g \in \overline{K}?$$

- 4 同 2 4 目 2 4 目 2 4

Introduction 000000000	Preliminaries ○○○○○○●	Local Invariant	Solving 0000000	Solving-details 00000	Proof of Uniqueness	Conclusions 00
Main Problem						
Comple	teness					

Theorem of Completeness

Let $K = C_K(x) \subseteq \mathbb{C}(x)$. Let $L \in K[\partial]$. Let $r, f, r_0, r_1 \in \overline{\mathbb{C}(x)}$ and

 $e^{\int rdx}(r_0B_{\nu}(f)+r_1(B_{\nu}(f))')$

be a non-zero solution of f. Then $\exists \tilde{r}, \tilde{r_0}, \tilde{r_1}, \tilde{f}, \tilde{\nu}$ with $\tilde{f}^2 \in K$ such that

$$e^{\int \widetilde{r} dx} (\widetilde{r_0} B_{\widetilde{\nu}}(\widetilde{f}) + \widetilde{r_1} (B_{\widetilde{\nu}}(\widetilde{f}))')$$

is a non-zero solution of *L*. Moreover, $\left(\nu - \frac{n}{2}\right)^2 \in C_K$ for some $n \in \mathbb{Z}$, and $\tilde{r}, \tilde{r_0}, \tilde{r_1} \in K(\nu^2)$. (If $n \in 2\mathbb{Z}$, we may assume $\nu^2 \in C_K$)

- 4 同 2 4 回 2 4 U

Introduction 000000000	Preliminaries 00000000	Local Invariant ●00000000000	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions
Transformation						
Transfo	rmation	5				

There are three types of transformations that preserve order 2:

- change of variables $\xrightarrow{f}_{C}: y(x) \mapsto y(f(x)), \qquad f(x) \in K.$ (for $L_B, f^2 \in K$)
- $exp-product \longrightarrow_E: y \mapsto exp(\int r \, dx) \cdot y, \qquad r \in K.$
- **3** gauge transformation $\longrightarrow_G: y \mapsto r_0y + r_1y', \qquad r_0, r_1 \in K.$

L can be solved in terms of Bessel functions when $L_B \longrightarrow_{CEG} L$. Where \longrightarrow_{CEG} is any combination of $\longrightarrow_C, \longrightarrow_E, \longrightarrow_G$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Introduction 000000000	Preliminaries	Local Invariant ●0000000000	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions
Transformation						
Trancfo	rmation	_				

There are three types of transformations that preserve order 2:

- change of variables $\xrightarrow{f}_{C}: y(x) \mapsto y(f(x)), \qquad f(x) \in K.$ (for $L_B, f^2 \in K$)
- $exp-product \longrightarrow_E: y \mapsto exp(\int r \, dx) \cdot y, \qquad r \in K.$
- **3** gauge transformation $\longrightarrow_G: y \mapsto r_0 y + r_1 y', \qquad r_0, r_1 \in K.$

L can be solved in terms of Bessel functions when $L_B \longrightarrow_{CEG} L$. Where \longrightarrow_{CEG} is any combination of $\longrightarrow_C, \longrightarrow_E, \longrightarrow_G$.

Note

- The composition of 2 & 3 is an equivalence relation (\sim_{EG}). And there exist some algorithms to find such relations.
- If $L_1 \longrightarrow_{CEG} L_2$, then there exist an operator $M \in K[\partial]$ such that $L_1 \xrightarrow{f} C M \sim_{EG} L$.

Introduction 000000000	Preliminaries 00000000	Local Invariant 0000000000	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00
Transformation						
Main P	rohlem					

Main Problem

Given an irreducible second order differential operator $L \in K[\partial]$, can we find solutions with the form:

 $e^{\int rdx}(r_0B_{\nu}(f)+r_1(B_{\nu}(f))')$

Where $f^2 \in K$ and $r, r_0, r_1 \in K(\nu^2)$.

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 0000000	Solving-details 00000	Proof of Uniqueness	Conclusions 00
Transformation						
Main P	roblem					

Main Problem

Given an irreducible second order differential operator $L \in K[\partial]$, can we find solutions with the form:

$$e^{\int rdx}(r_0B_{\nu}(f)+r_1(B_{\nu}(f))')$$

Where $f^2 \in K$ and $r, r_0, r_1 \in K(\nu^2)$.

Rephrase the Main Problem

Given an irreducible second linear order differential operator $L \in K[\partial]$, find f and ν with $f^2 \in K$ and $(\nu + \frac{n}{2})^2 \in C_K$ s.t there exist M and $L_B \xrightarrow{f} C M \sim_{EG} L$

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 0000000	Solving-details 00000	Proof of Uniqueness	Conclusions 00
Transformation						
Related	Work					

$\longrightarrow_C, \longrightarrow_E$

• Bronstein, M., and Lafaille, S. (ISSAC 2002) solve using only \longrightarrow_C and \longrightarrow_E .

• An analogy about \longrightarrow_C and \longrightarrow_E : Suppose you solve polynomial equations using only $x \mapsto c \cdot x$ and $x \mapsto x + c$. then $x^6 - 24x^3 - 108x^2 - 72x + 132$ will not be solved in terms of solutions of $x^6 - 12$, even though it does have a solution in $\mathbb{Q}(\sqrt[6]{12})$. Likewise omitting \longrightarrow_G means not solving the non-trivial case!

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00
Transformation						
Related	Work					

$\longrightarrow C, \longrightarrow E$

- Bronstein, M., and Lafaille, S. (ISSAC 2002) solve using only \longrightarrow_C and \longrightarrow_E .
- An analogy about →_C and →_E: Suppose you solve polynomial equations using only x → c · x and x → x + c. then x⁶ 24x³ 108x² 72x + 132 will not be solved in terms of solutions of x⁶ 12, even though it does have a solution in Q(⁶√12). Likewise omitting →_G means not solving the non-trivial case!

> < 同 > < 三 > < 三 > <</p>

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 0000000	Solving-details 00000	Proof of Uniqueness	Conclusions 00
Transformation						
Related	Work					

No Square Root

• Debeerst, R, van Hoeij, M, and Koepf. W. (ISSAC 2008) solve under \longrightarrow_{CEG} without dealing with square root case.

 Note for square root case, we only have half information of non-square-root case.

・ロト ・四ト ・ヨト ・ヨト

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 0000000	Solving-details 00000	Proof of Uniqueness	Conclusions 00
Transformation						
Related	Work					

No Square Root

- Debeerst, R, van Hoeij, M, and Koepf. W. (ISSAC 2008) solve under → CEG without dealing with square root case.
- Note for square root case, we only have half information of non-square-root case.

Introduction 000000000	Preliminaries	Local Invariant	Solving	Solving-details	Proof of Uniqueness	Conclusions 00
Exponent Differ	ences					
Invariar	nt Under	\sim_{FG}				

Assume the input is L, and $L_B \xrightarrow{f} M \sim_{EG} L$:

If M were known, it would be easy to compute f from M. However, the input is not M, but an operator $L \sim_{EG} M$. So we must compute f not from M, but only from the portion of M that is invariant under \sim_{EG} . The portion is **exponent difference** $(mod\mathbb{Z})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00				
Exponent Differences										
General	lized Exp	onents								

Assume $L \in K[\partial]$ with order 2:

Define

$$t_p := \begin{cases} x - p & \text{if } p \neq \infty \\ \frac{1}{x} & \text{if } p = \infty \end{cases}$$

- there are two generalized exponents $e_1, e_2 \in \mathbb{C}[t_p^{-\frac{1}{2}}]$ at each point x = p.
- We can think of e_1, e_2 as truncated Puiseux series. They determine the asymptotic behavior of solutions.
- If a solution contains $ln(t_p)$, then we say L is **logarithmic** at x = p. (only occurs when $e_1 e_2 \in \mathbb{Z}$)
- $\Delta(L, p) := \pm(e_1 e_2)$ is the **exponent difference**.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 0000000	Solving-details 00000	Proof of Uniqueness	Conclusions 00				
Exponent Differences										
Singularities										

A singularity p of $L \in K[\partial]$ is:

- removable singularity if and only if Δ(L, p) ∈ Z and L is not logarithmic at x = p.
- non-removable regular singularity (denoted by S_{reg}) if and only if Δ(L, p) ∈ C \ Z or L is logarithmic at x = p.
- *irregular singularity* (denoted by S_{irr}) if and only if $\Delta(L, p) \in \mathbb{C}[t_p^{-\frac{1}{2}}] \setminus \mathbb{C}.$

< □ > < □ > < □ > -

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 0000000	Solving-details 00000	Proof of Uniqueness	Conclusions 00					
Exponent Differences											
Exponent Difference											

• $L_B \xrightarrow{f} C M$ then:

• if p is a zero of f with multiplicity $m_p \in \frac{1}{2}\mathbb{Z}^+$, then p is an removable singularity or $p \in S_{reg}$, and $\Delta(M, p) = m_p \cdot 2\nu$.

If is a pole of f with pole order m_p ∈ $\frac{1}{2}\mathbb{Z}^+$ such that f = $\sum_{i=-m_p}^{\infty} f_i t_p^i$, if and only if p ∈ S_{irr} and $\Delta(M, p) = 2 \sum_{i<0} i \cdot f_i t_p^i$.

•
$$\Delta(L, p)$$
 is invariant under \longrightarrow_E .

• \longrightarrow_G shifts $\Delta(L,p)$ by integers.

ullet removable singularity can disappear under \sim_{EG} .

• \sim_{EG} preserve S_{reg} and S_{irr} .

→ ▲□ → ▲目 → ▲目 → □
Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 0000000	Solving-details 00000	Proof of Uniqueness	Conclusions 00			
Exponent Differences									
Evnono	nt Diffor	onco							

• $L_B \xrightarrow{f} C M$ then:

• if p is a zero of f with multiplicity $m_p \in \frac{1}{2}\mathbb{Z}^+$, then p is an removable singularity or $p \in S_{reg}$, and $\Delta(M, p) = m_p \cdot 2\nu$.

If p is a pole of f with pole order $m_p \in \frac{1}{2}\mathbb{Z}^+$ such that f = ∑_{i=-m_p}[∞] f_it_pⁱ, if and only if p ∈ S_{irr} and $\Delta(M, p) = 2 \sum_{i<0} i \cdot f_i t_p^i.$

- $\Delta(L, p)$ is invariant under \longrightarrow_E .
- \longrightarrow_G shifts $\Delta(L, p)$ by integers.
- ullet removable singularity can disappear under \sim_{EG} .
- \sim_{EG} preserve S_{reg} and S_{irr} .

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00			
Exponent Differences									
Evenne	nt Diffor	ion co							

• $L_B \xrightarrow{f} C M$ then:

• if p is a zero of f with multiplicity $m_p \in \frac{1}{2}\mathbb{Z}^+$, then p is an removable singularity or $p \in S_{reg}$, and $\Delta(M, p) = m_p \cdot 2\nu$.

2 p is a pole of f with pole order
$$m_p \in \frac{1}{2}\mathbb{Z}^+$$
 such that $f = \sum_{i=-m_p}^{\infty} f_i t_p^i$, if and only if $p \in S_{irr}$ and $\Delta(M, p) = 2 \sum_{i<0} i \cdot f_i t_p^i$.

- $\Delta(L,p)$ is invariant under \longrightarrow_E .
- \longrightarrow_G shifts $\Delta(L,p)$ by integers.
- ullet removable singularity can disappear under \sim_{EG} .
- \sim_{EG} preserve S_{reg} and S_{irr} .

・ 同 ・ ・ ヨ ・ ・ ヨ ・ ・

Introduction 000000000	Preliminaries	Local Invariant	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00			
Exponent Differences									
Expone	nt Diffe	rence							

- $L_B \xrightarrow{f} C M$ then:
 - if p is a zero of f with multiplicity $m_p \in \frac{1}{2}\mathbb{Z}^+$, then p is an removable singularity or $p \in S_{reg}$, and $\Delta(M, p) = m_p \cdot 2\nu$.
 - ② *p* is a pole of *f* with pole order $m_p \in \frac{1}{2}\mathbb{Z}^+$ such that $f = \sum_{i=-m_p}^{\infty} f_i t_p^i$, if and only if $p \in S_{irr}$ and $\Delta(M, p) = 2 \sum_{i<0} i \cdot f_i t_p^i$.
- $\Delta(L, p)$ is invariant under \longrightarrow_E .
- \longrightarrow_G shifts $\Delta(L, p)$ by integers
- ullet removable singularity can disappear under \sim_{EG} .
- \sim_{EG} preserve S_{reg} and S_{irr} .

・日・ ・ヨ・ ・ヨ・

Introduction 000000000	Preliminaries	Local Invariant	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00			
Exponent Differences									
Expone	nt Diffe	rence							

- $L_B \xrightarrow{f} C M$ then:
 - if p is a zero of f with multiplicity $m_p \in \frac{1}{2}\mathbb{Z}^+$, then p is an removable singularity or $p \in S_{reg}$, and $\Delta(M, p) = m_p \cdot 2\nu$.
 - ② *p* is a pole of *f* with pole order $m_p \in \frac{1}{2}\mathbb{Z}^+$ such that $f = \sum_{i=-m_p}^{\infty} f_i t_p^i$, if and only if $p \in S_{irr}$ and $\Delta(M, p) = 2 \sum_{i<0} i \cdot f_i t_p^i$.
- $\Delta(L, p)$ is invariant under \longrightarrow_E .
- \longrightarrow_G shifts $\Delta(L, p)$ by integers.
- ullet removable singularity can disappear under \sim_{EG} .
- $ullet \sim_{EG}$ preserve S_{reg} and $S_{irr}.$

(4回) (4回) (10)

Introduction 000000000	Preliminaries	Local Invariant	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00			
Exponent Differences									
Expone	nt Diffe	rence							

- $L_B \xrightarrow{f} C M$ then:
 - if p is a zero of f with multiplicity $m_p \in \frac{1}{2}\mathbb{Z}^+$, then p is an removable singularity or $p \in S_{reg}$, and $\Delta(M, p) = m_p \cdot 2\nu$.

2 *p* is a pole of *f* with pole order
$$m_p \in \frac{1}{2}\mathbb{Z}^+$$
 such that $f = \sum_{i=-m_p}^{\infty} f_i t_p^i$, if and only if $p \in S_{irr}$ and $\Delta(M, p) = 2 \sum_{i<0} i \cdot f_i t_p^i$.

•
$$\Delta(L, p)$$
 is invariant under \longrightarrow_E .

- \longrightarrow_G shifts $\Delta(L, p)$ by integers.
- removable singularity can disappear under \sim_{EG} .

• \sim_{EG} preserve S_{reg} and S_{irr} .

Introduction 000000000	Preliminaries	Local Invariant	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00			
Exponent Differences									
Exponent Difference									

- $L_B \xrightarrow{f} C M$ then:
 - if p is a zero of f with multiplicity $m_p \in \frac{1}{2}\mathbb{Z}^+$, then p is an removable singularity or $p \in S_{reg}$, and $\Delta(M, p) = m_p \cdot 2\nu$.
 - ② *p* is a pole of *f* with pole order $m_p \in \frac{1}{2}\mathbb{Z}^+$ such that $f = \sum_{i=-m_p}^{\infty} f_i t_p^i$, if and only if $p \in S_{irr}$ and $\Delta(M, p) = 2 \sum_{i<0} i \cdot f_i t_p^i$.
- $\Delta(L, p)$ is invariant under \longrightarrow_E .
- \longrightarrow_G shifts $\Delta(L, p)$ by integers.
- removable singularity can disappear under \sim_{EG} .
- \sim_{EG} preserve S_{reg} and S_{irr} .

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions			
Exponent Differences									
Local II	nformatio	on							

• some (not necessarily all!) zeroes of A from S_{reg} .

- the polar parts of f (from S_{irr}), then by squaring that we know the polar parts of g partially. (as a truncated Laurent series at each irregular singularity).
- B
- an upper bound for the degree of A (denoted by d_A)
- Now we need to compute A.

> < 同 > < 回 > < 回 >

Introduction 000000000	Preliminaries 00000000	Local Invariant ○○○○○○○○●○○	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions			
Exponent Differences									
Local Ir	nformatio	on							

- some (not necessarily all!) zeroes of A from S_{reg} .
- the polar parts of f (from S_{irr}), then by squaring that we know the polar parts of g partially. (as a truncated Laurent series at each irregular singularity).
- B
- an upper bound for the degree of A (denoted by d_A)
- Now we need to compute A.

> <同> < 国> < 国> < 国> <</p>

Introduction 000000000	Preliminaries 00000000	Local Invariant ○○○○○○○○●○○	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions			
Exponent Differences									
Local Ir	nformatio	on							

- some (not necessarily all!) zeroes of A from S_{reg} .
- the polar parts of f (from S_{irr}), then by squaring that we know the polar parts of g partially. (as a truncated Laurent series at each irregular singularity).

• B

- an upper bound for the degree of A (denoted by d_A).
- Now we need to compute A.

> <同> < 国> < 国> < 国> <</p>

Introduction 000000000	Preliminaries 00000000	Local Invariant ○○○○○○○○●○○	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions			
Exponent Differences									
Local Ir	nformatio	on							

- some (not necessarily all!) zeroes of A from S_{reg} .
- the polar parts of f (from S_{irr}), then by squaring that we know the polar parts of g partially. (as a truncated Laurent series at each irregular singularity).
- B
- an upper bound for the degree of A (denoted by d_A).
- Now we need to compute A.

Introduction 000000000	Preliminaries 00000000	Local Invariant ○○○○○○○○●○○	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions			
Exponent Differences									
Local Ir	nformatio	on							

- some (not necessarily all!) zeroes of A from S_{reg} .
- the polar parts of f (from S_{irr}), then by squaring that we know the polar parts of g partially. (as a truncated Laurent series at each irregular singularity).
- B
- an upper bound for the degree of A (denoted by d_A).
- Now we need to compute A.

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00			
Exponent Differences									
Ressal Parameter 11									

Assume $L_B \xrightarrow{f} C M \sim_{EG} L$.

- The exponent differences of *L* give us whether $\nu \in \mathbb{Z}$, $\nu \in \mathbb{Q} \setminus \mathbb{Z}$, $\nu \in C_K \setminus \mathbb{Q}$ or $\nu \notin C_K$.
- if ν ∉ Q, we first compute candidates for f, and use them to compute candidates for ν.
- If ν ∈ Q, then exponent differences give a list of the candidates for the denominator of ν.
- It is sufficient to consider only $Re(\nu) \in [0, \frac{1}{2}]$, because $\nu \mapsto \nu + 1$ and $\nu \mapsto 1 \nu$ are special case of \longrightarrow_G

> < 同 > < 回 > < 回 > <</p>

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 0000000	Solving-details 00000	Proof of Uniqueness	Conclusions 00
Exponent Differe	ences					
Ressel I	Daramet	or 11				

Assume $L_B \xrightarrow{f} C M \sim_{EG} L$.

- The exponent differences of *L* give us whether $\nu \in \mathbb{Z}$, $\nu \in \mathbb{Q} \setminus \mathbb{Z}$, $\nu \in C_K \setminus \mathbb{Q}$ or $\nu \notin C_K$.
- if ν ∉ Q, we first compute candidates for f, and use them to compute candidates for ν.
- If ν ∈ Q, then exponent differences give a list of the candidates for the denominator of ν.
- It is sufficient to consider only $Re(\nu) \in [0, \frac{1}{2}]$, because $\nu \mapsto \nu + 1$ and $\nu \mapsto 1 \nu$ are special case of \longrightarrow_G

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00
Exponent Different	ences					
Rescal	Daramet	or 11				

Assume $L_B \xrightarrow{f} M \sim_{EG} L$.

- The exponent differences of *L* give us whether $\nu \in \mathbb{Z}$, $\nu \in \mathbb{Q} \setminus \mathbb{Z}$, $\nu \in C_K \setminus \mathbb{Q}$ or $\nu \notin C_K$.
- if ν ∉ Q, we first compute candidates for f, and use them to compute candidates for ν.
- If $\nu \in \mathbb{Q}$, then exponent differences give a list of the candidates for the denominator of ν .
- It is sufficient to consider only $Re(\nu) \in [0, \frac{1}{2}]$, because $\nu \mapsto \nu + 1$ and $\nu \mapsto 1 \nu$ are special case of $\longrightarrow_{\mathcal{G}}$

> < 同 > < 回 > < 回 > <</p>

Introduction 000000000	Preliminaries 00000000	Local Invariant ○○○○○○○○○●○	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00
Exponent Differe	ences					
Roscol I	Daramot	or 1				

Assume $L_B \xrightarrow{f} M \sim_{EG} L$.

- The exponent differences of *L* give us whether $\nu \in \mathbb{Z}$, $\nu \in \mathbb{Q} \setminus \mathbb{Z}$, $\nu \in C_K \setminus \mathbb{Q}$ or $\nu \notin C_K$.
- if ν ∉ Q, we first compute candidates for f, and use them to compute candidates for ν.
- If $\nu \in \mathbb{Q}$, then exponent differences give a list of the candidates for the denominator of ν .
- It is sufficient to consider only $Re(\nu) \in [0, \frac{1}{2}]$, because $\nu \mapsto \nu + 1$ and $\nu \mapsto 1 \nu$ are special case of $\longrightarrow_{\mathcal{G}}$

▶ ▲冊▶ ▲ 国▶ ▲ 国▶ ---

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 00000000	Solving-details	Proof of Uniqueness	Conclusions
An Example						
An Exa	mple					

$$\begin{split} L := \partial^2 - \frac{1}{x-1}\partial + \frac{1}{18}\frac{18-23x+4x^2-20x^3+12x^4}{(x-1)^4x^3}\\ \text{From generalized exponent, we can obtain the following:} \end{split}$$

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 00000000	Solving-details	Proof of Uniqueness	Conclusions 00
An Example						
An Exa	mple					

$$\begin{split} L &:= \partial^2 - \frac{1}{x-1}\partial + \frac{1}{18}\frac{18-23x+4x^2-20x^3+12x^4}{(x-1)^4x^3}\\ \text{From generalized exponent, we can obtain the following:} \end{split}$$

•
$$S_{reg} = \emptyset$$
, so no known zeroes.

• the polar part of f is
$$\frac{\pm 2i}{\sqrt{t_0}}$$
 at $x = 0$, and $\frac{\pm 1}{\sqrt{2} \cdot t_1}$ at $x = 1$.

• the polar part of g is
$$\frac{-4}{t_0}$$
 at $x = 0$, and $\frac{1}{2t_1^2} + \frac{?}{t_1}$ at $x = 1$

•
$$B = x(x-1)^2$$
, $d_A = 3$.

•
$$\nu \in \left\{\frac{1}{3}\right\}$$

How to compute A?

◆□→ ◆御→ ◆注→ ◆注→ □注

Introduction 000000000	Preliminaries	Local Invariant	Solving ●000000	Solving-details	Proof of Uniqueness	Conclusions
linear equations						
linear F	Justion	c				

Assume
$$L_B \xrightarrow{f} C M \sim_{EG} L$$
 and $g = f^2 = \frac{A}{B}$ and $A = \sum_{i=0}^{d_A} a_i x^i$.

Roots

$$p \in S_{reg} \implies p \text{ is a root of } A$$

 \implies one linear equation of a_i 's.

Poles

If
$$p \in S_{irr} \implies p$$
 is a pole of g (assume m_p is the pole order)
 $\implies \lceil \frac{m_p}{2} \rceil$ linear equations of a_i 's.

We get at least $\#S_{reg} + \frac{1}{2}d_A$ linear equations in total.

ヘロン 人間 と 人間 と 人間 と

Introduction 000000000	Preliminaries 00000000	Local Invariant 00000000000	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions 00
linear equations						

In our example we can assume

$$g = \frac{a_0 + a_1 x + a_2 x^2 + a_3 x^3}{x(x-1)^2}$$

Roots

 $S_{reg} = \emptyset \implies$ no linear equations from regular singularities.

Poles

- polar part of g at x = 0 is $\frac{a_0}{t_0} + O(t_0^0) \Longrightarrow a_0 = -4$.
- polar part of g at x = 1 is $\frac{a_0+a_1+a_2+a_3}{t_1^2} + O(t_1^{-1}) \Longrightarrow a_0 + a_1 + a_2 + a_3 = \frac{1}{2}.$

◆□→ ◆□→ ◆三→ ◆三→ 三三

Introduction 000000000	Preliminaries	Local Invariant 00000000000	Solving ○○●○○○○	Solving-details 00000	Proof of Uniqueness	Conclusions 00
Difficulties						
The Fir	st Diffic	ultv				

Assume
$$L_B \xrightarrow{f} M \sim_{EG} L$$
, $g = f^2 = \frac{A}{B}$.

Not enough equations to compute A

- Only know about half of polar parts of g
- Only have about $\frac{1}{2}d_A$ linear equations from irregular singularities to get A.
- With disappearing singularities, we do not have enough equations to get *A*.

→ < □ → < □ → < □ →</p>

Introduction 000000000	Preliminaries	Local Invariant 00000000000	Solving ○○●○○○○	Solving-details 00000	Proof of Uniqueness	Conclusions 00
Difficulties						
The Fir	st Diffic	ultv				

Assume
$$L_B \xrightarrow{f} M \sim_{EG} L$$
, $g = f^2 = \frac{A}{B}$.

Not enough equations to compute A

- Only know about half of polar parts of g
- Only have about $\frac{1}{2}d_A$ linear equations from irregular singularities to get A.
- With disappearing singularities, we do not have enough equations to get *A*.

- 4 同 2 4 回 2 4 回 2 4

Introduction 000000000	Preliminaries 00000000	Local Invariant 00000000000	Solving ○○●○○○○	Solving-details 00000	Proof of Uniqueness	Conclusions 00
Difficulties						
The Fir	et Diffic	ulty				

Assume
$$L_B \xrightarrow{f} M \sim_{EG} L$$
, $g = f^2 = \frac{A}{B}$.

Not enough equations to compute A

- Only know about half of polar parts of g
- Only have about ¹/₂d_A linear equations from irregular singularities to get A.
- With disappearing singularities, we do not have enough equations to get *A*.

同 ト イヨ ト イヨト

the Dee	and four		ו:בנ:			
Difficulties						
Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving ○○○●○○○	Solving-details	Proof of Uniqueness	Conclusions 00

the Reason for the First difficulty

Assume
$$L_B \xrightarrow{f} C M \sim_{EG} L$$
, where $g = f^2 = \frac{A}{B}$ and $\nu \in \mathbb{Q} \setminus \mathbb{Z}$.
• $S_{irr} = \{ \text{Poles of } f \}.$

• $S_{reg} \subseteq \{ \text{Roots of } f \}$

the Reason for the First difficulty

Assume
$$L_B \xrightarrow{f} C M \sim_{EG} L$$
, where $g = f^2 = \frac{A}{B}$ and $\nu \in \mathbb{Q} \setminus \mathbb{Z}$.
• $S_{irr} = \{ \text{Poles of } f \}.$

•
$$S_{reg} \subseteq \{ \text{Roots of } f \}$$

Problem: \subseteq is not =

Ullan Yilan	0		1	
a dan taan	Qua	ın.	Υu	an

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving ○○○●○○○	Solving-details 00000	Proof of Uniqueness	Conclusions 00
Difficulties						
	<i>c</i>	a en a				

the Reason for the First difficulty

Assume
$$L_B \xrightarrow{f} C M \sim_{EG} L$$
, where $g = f^2 = \frac{A}{B}$ and $\nu \in \mathbb{Q} \setminus \mathbb{Z}$.
• $S_{irr} = \{\text{Poles of } f\}$.

• $S_{reg} \subseteq \{ \text{Roots of } f \}$

Problem: \subseteq is not =

Reason: Regular singularities may become removable under \xrightarrow{f}_{C} , thus may disappear under \sim_{EG} **Note:** If $f \in K$, this is not a problem, because we do not need as many equations in that case.

< ロ > < 同 > < 回 > < 回 > :

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving Sol	lving-details	Proof of Uniqueness	Conclusions
Difficulties						
	_					

Assume $L_B \xrightarrow{f} M \sim_{EG} L$, where $g = f^2 = \frac{A}{B}$.

Let d be the denominator of ν and m_p be the multiplicity of f at p.

Solution:

- Singularity p disappears only if $\nu \in \mathbb{Q} \setminus \mathbb{Z}$ and $d \mid 2m_p$.
- We can write $A = C \cdot A_1 \cdot A_2^d$. Here A_1 contains all known roots, A_2 is the disappeared part.
- Now we need to compute A₂.
- Since $d \ge 3$, so we only need roughly $\frac{1}{3}d_A$ equations to get A_2 .

> < 同 > < 回 > < 回 > <</p>

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving ○○○○●○○	Solving-details	Proof of Uniqueness	Conclusions
Difficulties						

Assume $L_B \xrightarrow{f} M \sim_{EG} L$, where $g = f^2 = \frac{A}{B}$.

Let d be the denominator of ν and m_p be the multiplicity of f at p.

Solution:

- Singularity p disappears only if $\nu \in \mathbb{Q} \setminus \mathbb{Z}$ and $d \mid 2m_p$.
- We can write $A = C \cdot A_1 \cdot A_2^d$. Here A_1 contains all known roots, A_2 is the disappeared part.
- Now we need to compute A₂.
- Since $d \ge 3$, so we only need roughly $\frac{1}{3}d_A$ equations to get A_2 .

> < 同 > < 国 > < 国 > < 国 > <</p>

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving ○○○○●○○	Solving-details	Proof of Uniqueness	Conclusions
Difficulties						

Assume $L_B \xrightarrow{f} M \sim_{EG} L$, where $g = f^2 = \frac{A}{B}$.

Let d be the denominator of ν and m_p be the multiplicity of f at p.

Solution:

- Singularity p disappears only if $\nu \in \mathbb{Q} \setminus \mathbb{Z}$ and $d \mid 2m_p$.
- We can write $A = C \cdot A_1 \cdot A_2^d$. Here A_1 contains all known roots, A_2 is the disappeared part.
- Now we need to compute A₂.
- Since $d \ge 3$, so we only need roughly $\frac{1}{3}d_A$ equations to get A_2 .

> <同> < 国> < 国> < 国>

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving ○○○○●○○	Solving-details	Proof of Uniqueness	Conclusions
Difficulties						

Assume $L_B \xrightarrow{f} M \sim_{EG} L$, where $g = f^2 = \frac{A}{B}$.

Let d be the denominator of ν and m_p be the multiplicity of f at p.

Solution:

- Singularity p disappears only if $\nu \in \mathbb{Q} \setminus \mathbb{Z}$ and $d \mid 2m_p$.
- We can write $A = C \cdot A_1 \cdot A_2^d$. Here A_1 contains all known roots, A_2 is the disappeared part.
- Now we need to compute A₂.
- Since $d \ge 3$, so we only need roughly $\frac{1}{3}d_A$ equations to get A_2 .

Introduction 000000000	Preliminaries 00000000	Local Invariant 00000000000	Solving ○○○○○●○○	Solving-details	Proof of Uniqueness	Conclusions
Difficulties						

In our example: assume $A = C \cdot A_1 \cdot A_2^3$

•
$$S_{reg} = \emptyset \Longrightarrow A_1 = 1;$$

• Fix C = -4. (We will discuss how to find C later.)

• Assume
$$A_2 = a_0 + a_1 x$$
.

Now we get

$$g = \frac{-4(a_0 + a_1 x)^3}{x(x-1)^2}$$

• polar part of g at x = 0 is $\frac{-4a_0^3}{t_0} + O(t_0^0) \Longrightarrow -4a_0^3 = -4$.

• polar part of g at
$$x = 1$$
 is
 $\frac{-4(a_0+a_1)^3}{t^2} + O(t_1^{-1}) \Longrightarrow -4(a_0+a_1)^3 = \frac{1}{2}.$

 The equations are not linear. (In this case, the equations are easy to solve because there is only one term in each power series. But in general, it is hard.)

Introduction 000000000	Preliminaries 00000000	Local Invariant 00000000000	Solving ○○○○○●○○	Solving-details	Proof of Uniqueness	Conclusions
Difficulties						

In our example: assume $A = C \cdot A_1 \cdot A_2^3$

•
$$S_{reg} = \emptyset \Longrightarrow A_1 = 1;$$

• Fix C = -4. (We will discuss how to find C later.)

• Assume
$$A_2 = a_0 + a_1 x$$
.

Now we get

$$g = \frac{-4(a_0 + a_1 x)^3}{x(x-1)^2}$$

- polar part of g at x = 0 is $\frac{-4a_0^3}{t_0} + O(t_0^0) \Longrightarrow -4a_0^3 = -4$.
- polar part of g at x = 1 is $\frac{-4(a_0+a_1)^3}{t_1^2} + O(t_1^{-1}) \Longrightarrow -4(a_0+a_1)^3 = \frac{1}{2}.$
- The equations are not linear. (In this case, the equations are easy to solve because there is only one term in each power series. But in general, it is hard.)

Introduction 000000000	Preliminaries 00000000	Local Invariant 00000000000	Solving ○○○○○●○○	Solving-details	Proof of Uniqueness	Conclusions 00
Difficulties						

In our example: assume $A = C \cdot A_1 \cdot A_2^3$

•
$$S_{reg} = \emptyset \Longrightarrow A_1 = 1;$$

• Fix C = -4. (We will discuss how to find C later.)

• Assume
$$A_2 = a_0 + a_1 x$$
.

Now we get

$$g = \frac{-4(a_0 + a_1 x)^3}{x(x-1)^2}$$

- polar part of g at x = 0 is $\frac{-4a_0^3}{t_0} + O(t_0^0) \Longrightarrow -4a_0^3 = -4$.
- polar part of g at x = 1 is $\frac{-4(a_0+a_1)^3}{t_1^2} + O(t_1^{-1}) \Longrightarrow -4(a_0+a_1)^3 = \frac{1}{2}.$
- The equations are not linear. (In this case, the equations are easy to solve because there is only one term in each power series. But in general, it is hard.)

Introduction 000000000	Preliminaries 00000000	Local Invariant 00000000000	Solving	Solving-details	Proof of Uniqueness	Conclusions
Difficulties						
The Se	cond Dif	ficulty				

Non-linear equations

- To get enough equations, we write $A = C \cdot A_1 \cdot A_2^d$.
- But the approach on the previous slide provides non-linear equations, that can be solved with Gröbner basis. (Problem: doubly-exponential complexity).

→ < □ → < □ → < □ →</p>

Introduction 000000000	Preliminaries 00000000	Local Invariant 00000000000	Solving	Solving-details 00000	Proof of Uniqueness	Conclusions			
Difficulties									
The Se	cond Dif	ficulty							

Non-linear equations

- To get enough equations, we write $A = C \cdot A_1 \cdot A_2^d$.
- But the approach on the previous slide provides non-linear equations, that can be solved with Gröbner basis. (Problem: doubly-exponential complexity).

> < 同 > < 回 > < 回 >

Introduction 000000000	Preliminaries 00000000	Local Invariant 00000000000	Solving ○○○○○○●	Solving-details 00000	Proof of Uniqueness	Conclusions
Difficulties						
The Se	cond Dif	ficulty				

Non-linear equations

- To get enough equations, we write $A = C \cdot A_1 \cdot A_2^d$.
- But the approach on the previous slide provides non-linear equations, that can be solved with Gröbner basis. (Problem: doubly-exponential complexity).

the Solution:

From power series of A_2^d , try to get a power series of A_2 , then we will have linear equations.

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving Solving-de	etails Proof of Uniqueness	Conclusions 00
Difficulties					
C					

Assume
$$A = -4(a_0 + a_1 x)^3$$
, $\mu_3 = -\frac{1}{2} + \frac{\sqrt{-3}}{2}$.
• the power series of $g = \frac{CA_2^3}{B}$ at 0 is $\frac{-4}{t_0} + O(t_0^0)$.

◆□ → ◆□ → ◆ 三 → ◆ 三 → の へ ()
Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving Solving-details	Proof of Uniqueness	Conclusions 00
Difficulties					
Continu	ation of	the Exam	nple		

Assume $A = -4(a_0 + a_1 x)^3$, $\mu_3 = -\frac{1}{2} + \frac{\sqrt{-3}}{2}$.

• the power series of $g = \frac{CA_2^3}{B}$ at 0 is $\frac{-4}{t_0} + O(t_0^0)$.

• The series of
$$A_2^3$$
 is $1 + O(t_0)$.

◆□ > ◆□ > ◆ □ > ◆ □ > □ ● の Q (>

Introduction 000000000	Preliminaries 00000000	Local Invariant 00000000000	Solving	Solving-details	Proof of Uniqueness	Conclusions 00
Difficulties						
<u> </u>		· · ·				

Assume
$$A = -4(a_0 + a_1 x)^3$$
, $\mu_3 = -\frac{1}{2} + \frac{\sqrt{-3}}{2}$.

- the power series of $g = \frac{CA_2^3}{B}$ at 0 is $\frac{-4}{t_0} + O(t_0^0)$.
- The series of A_2^3 is $1 + O(t_0)$.
- The series of A_2 is $1 + O(t_0)$. $(\mu_3 + O(t_0), \text{ or } \mu_3^2 + O(t_0))$.

< 同 > < 三 > < 三 >

Introduction 000000000	Preliminaries 00000000	Local Invariant 00000000000	Solving	Solving-details	Proof of Uniqueness	Conclusions 00
Difficulties						
<u> </u>		· · ·				

Assume
$$A = -4(a_0 + a_1 x)^3$$
, $\mu_3 = -\frac{1}{2} + \frac{\sqrt{-3}}{2}$.

- the power series of $g = \frac{CA_2^2}{B}$ at 0 is $\frac{-4}{t_0} + O(t_0^0)$.
- The series of A_2^3 is $1 + O(t_0)$.
- The series of A_2 is $1 + O(t_0)$. $(\mu_3 + O(t_0), \text{ or } \mu_3^2 + O(t_0))$.

• We get $a_0 = 1$. (uniqueness theorem)

伺 と く ヨ と く ヨ と

Introduction 000000000	Preliminaries 00000000	Local Invariant 00000000000	Solving	Solving-details	Proof of Uniqueness	Conclusions 00
Difficulties						
<u> </u>		· · ·				

Assume
$$A = -4(a_0 + a_1 x)^3$$
, $\mu_3 = -rac{1}{2} + rac{\sqrt{-3}}{2}$.

- the power series of $g = \frac{CA_2^3}{B}$ at 0 is $\frac{-4}{t_0} + O(t_0^0)$.
- The series of A_2^3 is $1 + O(t_0)$.
- The series of A_2 is $1 + O(t_0)$. $(\mu_3 + O(t_0), \text{ or } \mu_3^2 + O(t_0))$.
- We get $a_0 = 1$. (uniqueness theorem)
- the power series of $g = \frac{CA_2^3}{B}$ at 1 is $\frac{1}{2t_1^2} + O(t_1^{-1})$.
- the series of A_2^3 is $-\frac{1}{8} + O(t_1)$.
- The series of A_2 is $S = -\frac{1}{2} + O(t_1)$. $(\mu_3 S \text{ or } \mu_3^2 S)$.

• We get
$$a_0 + a_1 = -\frac{1}{2}$$
.

▶ ▲冊▶ ▲ 国▶ ▲ 国▶ ---

Introduction 000000000	Preliminaries	Local Invariant	Solving Solving-details	Proof of Uniqueness	Conclusions 00
Difficulties					
C					

Assume
$$A = -4(a_0 + a_1 x)^3$$
, $\mu_3 = -rac{1}{2} + rac{\sqrt{-3}}{2}.$

- the power series of $g = \frac{CA_2^3}{B}$ at 0 is $\frac{-4}{t_0} + O(t_0^0)$.
- The series of A_2^3 is $1 + O(t_0)$.
- The series of A_2 is $1 + O(t_0)$. $(\mu_3 + O(t_0), \text{ or } \mu_3^2 + O(t_0))$.
- We get $a_0 = 1$. (uniqueness theorem)
- the power series of $g = \frac{CA_2^3}{B}$ at 1 is $\frac{1}{2t_1^2} + O(t_1^{-1})$.
- the series of A_2^3 is $-\frac{1}{8} + O(t_1)$.
- The series of A_2 is $S = -\frac{1}{2} + O(t_1)$. $(\mu_3 S \text{ or } \mu_3^2 S)$.
- We get $a_0 + a_1 = -\frac{1}{2}$.
- solve both equations we get $A_2 = 1 \frac{3}{2}x$.

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving	Solving-details	Proof of Uniqueness	Conclusions
Difficulties						
Solutior	1					

By computing the relation under \sim_{EG} , we find two independent solutions:

$$\sqrt{x(3x-2)}(x-1)I_{\frac{1}{3}}(\sqrt{\frac{(3x-2)^3}{2x(x-1)^2}})$$

and

$$\sqrt{x(3x-2)}(x-1)K_{\frac{1}{3}}(\sqrt{\frac{(3x-2)^3}{2x(x-1)^2}})$$

Introduction 000000000	Preliminaries	Local Invariant	Solving 00000000	Solving-details	Proof of Uniqueness	Conclusions 00
Technique Detail	s					
Fix A_1						

- If we don't have regular singularities, then $A_1 = 1$
- Each $p \in S_{reg}$ corresponds to each root of A_1 .
- Exponent differences and *d* will give a set of candidates for the multiplicities. (Diophantine equations)
- Try all candidates.

伺 ト イ ヨ ト イ ヨ ト

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 00000000	Solving-details ○●○○	Proof of Uniqueness	Conclusions 00
Technique Detail	s					
Fix A_1						

• If we don't have regular singularities, then $A_1 = 1$

• Each $p \in S_{reg}$ corresponds to each root of A_1 .

- Exponent differences and *d* will give a set of candidates for the multiplicities. (Diophantine equations)
- Try all candidates.

伺 ト イ ヨ ト イ ヨ ト

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 00000000	Solving-details ○●○○	Proof of Uniqueness	Conclusions 00
Technique Detail	s					
Fix A_1						

- If we don't have regular singularities, then $A_1 = 1$
- Each $p \in S_{reg}$ corresponds to each root of A_1 .
- Exponent differences and *d* will give a set of candidates for the multiplicities. (Diophantine equations)
- Try all candidates.

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 00000000	Solving-details ○●○○	Proof of Uniqueness	Conclusions 00
Technique Detail	s					
Fix A_1						

- If we don't have regular singularities, then $A_1 = 1$
- Each $p \in S_{reg}$ corresponds to each root of A_1 .
- Exponent differences and *d* will give a set of candidates for the multiplicities. (Diophantine equations)
- Try all candidates.

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 00000000	Solving-details ○●○○	Proof of Uniqueness	Conclusions
Technique Detail	s					
Fix A_1						

- If we don't have regular singularities, then $A_1 = 1$
- Each $p \in S_{reg}$ corresponds to each root of A_1 .
- Exponent differences and *d* will give a set of candidates for the multiplicities. (Diophantine equations)
- Try all candidates.

For our example, $S_{reg} = \emptyset$, so $A_1 = 1$.

Introduction 000000000	Preliminaries	Local Invariant	Solving 00000000	Solving-details 00000	Proof of Uniqueness	Conclusions
Technique Detai	ls					
About	С					

- We know that no algebraic extension of C_K is needed for g.
- However without the right value for C in $g = \frac{CA_1A_2^d}{B}$, an algebraic extension of C_K will be needed in A_2 .
- Define $C_1 \sim C_2$ if $C_1 = c^d \cdot C_2$, where $c \in C_K$.
- C is unique (up to \sim) if there exist $p \in S_{irr}$ such that $p \in C_K \cup \{\infty\}$.
- If p ∈ C_K \ C_K then finding all C's up to ~ involves a number theoretical problem.

Introduction 000000000	Preliminaries	Local Invariant	Solving 00000000	Solving-details 0000●	Proof of Uniqueness	Conclusions
Technique Detail	s					
Fix C						

Pick $p \in S_{irr}$ such that $p \in C_K \cup \{\infty\}$. If no such p exists, pick any $p \in S_{irr}$ and consider everything over $C_K(p)$

< 同 > < 三 > < 三 >

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 00000000	Solving-details	Proof of Uniqueness	Conclusions 00
Technique Detail	s					
Fix C						

Pick $p \in S_{irr}$ such that $p \in C_K \cup \{\infty\}$. If no such p exists, pick any $p \in S_{irr}$ and consider everything over $C_K(p)$ We know the power series of $g = \frac{CA_1A_2^d}{B}$ at p. $(\Delta(L, p))$

通 と く ヨ と く ヨ と

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 00000000	Solving-details	Proof of Uniqueness	Conclusions 00
Technique Detail	s					
Fix C						

Pick $p \in S_{irr}$ such that $p \in C_K \cup \{\infty\}$. If no such p exists, pick any $p \in S_{irr}$ and consider everything over $C_K(p)$ We know the power series of $g = \frac{CA_1A_2^d}{B}$ at p. $(\Delta(L, p))$ \Rightarrow the series of $CA_2^d = \frac{gB}{A_1}$.

伺 ト イ ヨ ト イ ヨ ト

Introduction 000000000	Preliminaries	Local Invariant	Solving 00000000	Solving-details ⊃000●	Proof of Uniqueness	Conclusions 00
Technique Detail	s					
Fix C						

Pick $p \in S_{irr}$ such that $p \in C_K \cup \{\infty\}$. If no such p exists, pick any $p \in S_{irr}$ and consider everything over $C_K(p)$ We know the power series of $g = \frac{CA_1A_2^d}{B}$ at p. $(\Delta(L, p))$ \Rightarrow the series of $CA_2^d = \frac{gB}{A_1}$. \Rightarrow Let C equal the coefficient of the first term of this series.

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 00000000	Solving-details	Proof of Uniqueness	Conclusions
Technique Detail	s					
Fix C						

Pick $p \in S_{irr}$ such that $p \in C_K \cup \{\infty\}$. If no such p exists, pick any $p \in S_{irr}$ and consider everything over $C_K(p)$ We know the power series of $g = \frac{CA_1A_2^d}{B}$ at p. $(\Delta(L, p))$ \Rightarrow the series of $CA_2^d = \frac{gB}{A_1}$. \Rightarrow Let C equal the coefficient of the first term of this series.

For our examples, we can fix C = -4 (if we start with p = 0) or $\frac{1}{2}$ (if we start with p = 1). There are equivalent, since $-4 = \frac{1}{2} \cdot (-2)^3$.

周 ト イ ヨ ト イ ヨ ト

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 0000000	Solving-details	Proof of Uniqueness ●○○	Conclusions 00
introduction						
Uniquer	ness					

Theorem 1

If *L* has a solution $\exp(\int r)(r_0B_{\nu}(f_1) + r_1(B_{\nu}(f_1))')$ and $\exp(\int \hat{r})(\hat{r}_0B_{\nu}(f_2) + \hat{r}_1(B_{\nu}(f_2))')$ where $r, r_0, r_1, \hat{r}, \hat{r}_0, \hat{r}_1, f_1, f_2 \in \overline{\mathbb{Q}(x)}$, then $f_1 = \pm f_2$.

> < 同 > < 回 > < 回 > <</p>

Introduction 000000000	Preliminaries	Local Invariant	Solving	Solving-details	Proof of Uniqueness ●○○	Conclusions
introduction						
Uniquer	ness					

Theorem 1

If *L* has a solution $\exp(\int r)(r_0 B_{\nu}(f_1) + r_1(B_{\nu}(f_1))')$ and $\exp(\int \hat{r})(\hat{r}_0 B_{\nu}(f_2) + \hat{r}_1(B_{\nu}(f_2))')$ where $r, r_0, r_1, \hat{r}, \hat{r}_0, \hat{r}_1, f_1, f_2 \in \overline{\mathbb{Q}(x)}$, then $f_1 = \pm f_2$.

Why Need Uniqueness

- Theoretically, it to prove the completeness of our algorithm.
- Practically, if we get a candidate of f and f² ∉ K, we can discard f without further computation, which increases the speed of algorithm significantly.

(Note: In our example, it reduced the number of combinations from 9 to 1.)

< 同 > < 国 > < 国 >

Introduction 000000000	Preliminaries 00000000	Local Invariant 00000000000	Solving 0000000	Solving-details 00000	Proof of Uniqueness ○●○	Conclusions
Sketch of Proof						
Theory	Requirer	nent				

To prove the theorem, we need to use

- Classification of differential operators mod *p* (*p*-curvature).
- Number theory (Chebotarev's density theorem).
- Differential Galois theory.

Introduction 000000000	Preliminaries 00000000	Local Invariant 00000000000	Solving 0000000	Solving-details	Proof of Uniqueness ○○●	Conclusions 00
Sketch of Proof						
the Ske	tch of tł	ne proof				

- If $\nu \in \frac{1}{2} + \mathbb{Z}$ (non-interesting case in algorithm), then L_B has exponential solutions.
- Use Chebotarev's density theorem, there are infinitely many p, for which ν reduces to an element in \mathbb{F}_p .
- Thus $\nu \equiv \frac{1}{2} \mod p$.
- So we know the solutions mod such p in these cases.
- by classification theory (*p*-curvature), we get $\pm f' \equiv 1 \mod p$.
- Since there exist infinity many such p, we get $\pm f$ is unique up to a constant.
- The rest of the proof is based on the differential Galois theory.

Introduction 000000000	Preliminaries 00000000	Local Invariant	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions ●○
Conclusions						
Conclus	sions					

Our contribution in the thesis:

- Developed a complete Bessel solver for second order differential equations.
- Combine Bessel Solver with Whittaker/Kummer solver to get a solver for $_0F_1$, $_1F_1$ functions.
- Proved the completeness of our algorithm.
- As an application, found relations between Heun functions and Bessel functions.

Introduction 000000000	Preliminaries 00000000	Local Invariant 00000000000	Solving 0000000	Solving-details	Proof of Uniqueness	Conclusions ○●
Thanks						
Acknow	ledgeme	ent				

- Thanks to my advisor Mark van Hoeij for his support, patience, and friendship.
- Thanks to the members of my committee for their time and efforts.
- Thanks to my family and friends for their support.

三 🖌