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ABSTRACT

A linear differential equation with rational function coefficients has a Bessel type

solution when it is solvable in terms of Bessel functions, change of variables, algebraic

operations and exponential integrals. For second order equations with rational

function coefficients, the function f of change of variables must be a rational function

or the square root of a rational function. An algorithm was given by Debeerst, van

Hoeij, and Koepf, that can compute Bessel type solutions if and only if f is a rational

function. In this thesis we extend this work to the square root case, resulting in a

complete algorithm to find all Bessel type solutions. This algorithm can be easily

extended to a Whittaker/Kummer solver. Combining the two algorithms, we get a

complete algorithm for all 0F1 and 1F1 type solutions. We also use our algorithm to

analyze the relation between Bessel functions and Heun functions.
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CHAPTER 1

INTRODUCTION

Ordinary differential equations have many applications. Although there is

no general algorithm to solve every equation, there are many methods, such as

integrating factors, symmetry method. One way to solve ordinary differential

equations is using differential Galois theory.

We consider a differential field K, e.g K = Q(x) or K = C(x) and ∂ = d
dx

, and then

we write homogeneous differential equations as Ly = 0, here

L =
n∑
i=0

ai∂
i, ai ∈ K

Now L is an element of the non-commutative ring of differential operators K[∂]. We

can study the algebraic properties of a differential operator L to get the solution

space of the equation.

If we can find a first order right factor ∂−r of L, then exp(
∫
r) is a solution of L. This

type of solutions is called hyperexponential solutions. In general, if we can find the

solution in terms of algebraic operations and iterations of exponentials and integrals,

then the solutions are called Liouvillian solutions. To find Liouvillian solutions, we

can use Kovacic’s algorithm [22]. For reducible operators, Beke’s Algorithm and the

algorithm in [35] can factor L into irreducible factors. After factoring, if we have a

first order right factor, then we have the corresponding exponential solution, which

is a special case of a Liouvillian soultion. For irreducible operators of order 2, we can

use Kovacic’s algorithm [22].

But not all operators have Liouvillian solutions. For example, the Bessel operator

1



LB1 = x2∂2 + x∂ + (x2 − ν2)

is irreducible in K[∂] and has no Liouvillian solution when ν /∈ 1
2

+ Z.

Although some irreducible operators have no Liouvillian solutions, it may correspond

to special functions. For example, the solutions of the Bessel operator are Bessel func-

tions. Because many special functions such as Bessel, Airy and Kummer/Whittaker

are well studied, it is useful to find the solution in terms of them, along with algebraic

operations, and exponential integrals. From this point on, we just consider Bessel

type solutions. If we allow a square root in the change of variables, then we can find

all pFq type solutions of second order equations except (p, q) = (2, 1).

We only consider irreducible operators with order 2, because if the second order

operator is irreducible, then it has Liouvillian solutions. So we can solve it by

Kovacic’s algorithm.

If the order is higher than 2, we define Eulerian solution:

Definition 1. If L ∈ C(x)[∂], and if a solution y can be expressed (using sums,

products, field operations, algebraic extensions, integrals, differentiations, exp, ln

and change of variables) in terms of second order equations L2a, L2b, . . . ∈ C(x)[∂],

then y is a eulerian solution.

Singer [28] showed that solving such L can be reduced to solving second order L’s;

through factoring operators, or reducing operators to tensor products of lower order

operators. An algorithm and implementation for such reduction (order 3 to order 2)

is given in [37]. Such reduction to order 2 is valuable, if we can actually solve such

second order equations. That is why we focus on second order operators.

Let a0, a1, a2 ∈ C(x) and let L = a2∂
2 + a1∂ + a0 be a differential operator of order

two. The corresponding differential equation is L(y) = 0, i.e. a2y
′′ + a1y

′ + a0y = 0.

Let Bν(x) denote one of the Bessel functions (one of Bessel I, J , K, or Y functions).

The question studied in [14, 15] is the following: Given L, decide if there exists a

2



rational function f ∈ C(x) such that L has a solution y that can be expressed1 in

terms of Bν(f). If so, then find f , ν, and the corresponding solutions of L. The same

problem was also solved for Kummer/Whittaker functions, see [14]. This means that

for second order L, with rational function coefficients, there is an almost-complete

algorithm in [14] to decide if L(y) = 0 is solvable in terms of 0F1 or 1F1 functions,

and if so, to find the solutions.

The reason this almost-complete algorithm is not complete is the following: If

Bν(f) satisfies a second order linear differential equation with rational function

coefficients, then either: f ∈ C(x), or (square root case): f 6∈ C(x) but f 2 ∈ C(x),

see Section 2.3.1.

However, only the f ∈ C(x) case was handled in [14, 15], the square-root case

was listed in the conclusion of [15] as a task for future work. This meant that [14, 15]

is not yet a complete solver for 0F1 and 1F1 type solutions.

In this thesis, we treat the square-root case for Bessel functions. The combination

of this with the treatment of Kummer/Whittaker functions in [14] is then a complete

algorithm to find 0F1 and 1F1 type solutions whenever they exist2.

The reason why the square-root case was not yet treated in [15] will be explained

in the next two paragraphs. If f is a rational function f = A/B, then from the

generalized exponents at the irregular singularities, we can compute B, as well as

deg(A) linear equations for the coefficients of A, see [15], or see [14] which contains

more details and examples. Since a polynomial A of degree deg(A) has deg(A) + 1

coefficients, this meant that only one more equation was needed to reconstruct A,

and in each of the various cases in [14, 15] there was a way to compute such an

equation.

1using sums, products, differentiation, and exponential integrals (see Definition 19)
2Other 0F1 and 1F1 type functions can be rewritten in terms of Bessel, or Kummer/Whittaker

functions. For instance, Airy type functions form a subclass of Bessel type functions (provided that
the square-root case is treated!)
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In the square-root case, we can not write f as a quotient of polynomials, but

we can write f 2 = A/B. The same method as in [14, 15] will still produce B, and

linear equations for the coefficients of A. The number of linear equations for the

coefficients of A is still the same as it was in the f ∈ C(x) case. Unfortunately, by

squaring f to make it a rational function, we doubled the degree of A, but we do

not get more linear equations, which means that in the square-root case the number

of linear equations is only 1
2
deg(A) (plus an additional ≥ 0 equations coming from

regular singularities). So in the worst case, the number of equations is only half of

the degree of A. This is why the square-root case was not solved in [15] but only

mentioned as a future task.

Our approach is the following: One can rewrite A = CA1A
d
2 where A1 can be

computed from the regular singularities, but A2 can not. The problem is that

while the degree of A2 is only 1
d

times the degree of A/A1, the linear equations

on the coefficients of A translate into polynomial equations (with degree d) for the

coefficients of A2. Solving systems of polynomial equations (e.g. with Gröbner basis)

can take too much CPU time. However, we discovered that with some modifications,

one can actually obtain linear equations for the coefficients of A2. This means that

we only need to solve linear systems. (See section 4.5.) The result is an efficient

algorithm that can handle complicated inputs.

This thesis is organized as follows. After introducing some preliminaries in

Chapter 2, we will discuss the transformations and the local information we collect

to solve the differential equations in Chapter 3. Chapter 4 will give the details of the

algorithm case by case along with examples.

We prove a uniqueness theorem for f in Chapter 4. This theorem allows us to

conclude that f 2 ∈ K (instead of CK · K), which in turn allow us to discard any

candidate that is defined over an algebraic extension of CK . That in turn speeds up

the algorithm significantly.

Chapter 5 will discuss how to extend our algorithm to Airy and Whittaker/Kummer
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type solutions. Chapter 6 will apply our algorithm to find relations between Heun

functions and Bessel functions.

An implementation of the algorithms in this thesis is available online at:

http://www.math.fsu.edu/∼qyuan/Besselsolver.txt.

All examples in this thesis are included in a Maple worksheet at:

http://www.math.fsu.edu/∼qyuan/ExamplesforThesis.mw.

A worksheet for the details of Chapter 6 is available at:

http://www.math.fsu.edu/∼qyuan/Heun.mw
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CHAPTER 2

PRELIMINARIES

In this chapter, we will first introduce differential operators, their singularities,

solution spaces and corresponding differential equations. Then we will introduce

formal solutions and generalized exponents of differential operators. Our methods

and algorithms are based on information we collect from generalized exponents. Then

we will give some basic properties of Bessel functions. The goal of this thesis is solving

differential equations in terms of Bessel functions. Finally we will discuss some maple

commands we need. In this chapter, we skip most of the proofs, for more details, see

[14].

2.1 Differential Operators

Definition 2. Let K be a field. A derivation D is a additive map on K such that

D(ab) = D(a)b+aD(b),∀a, b ∈ K. A field K with derivation D is called a differential

field.

Theorem 1. Let K be a differential field with derivation D, then CK := {a ∈

K|D(a) = 0} is also a field. We call it the constant field of K.

Proof. The proof is trivial and can be found in [35]

Example 1. Let CK be an extension of Q, and D = ∂ := d
dx

, then K := CK(x) is a

differential field.

Definition 3. Let K be a differential field with derivation ∂, then

6



L :=
n∑
i=0

ai∂
i, ai ∈ K,

is called a differential operator. If an 6= 0, then n is the order of L, which is denoted

by deg(L). We also denote K[∂] as the ring of all differential operators.

Remark 1. In general, K[∂] is not commutative. For example ∂x = x∂ + 1. But

it is a Euclidean ring. For two operators L1 and L2, there are unique operators Q,

R, such that L1 = QL2 + R, where deg(R) < deg(L2) or R = 0. If R = 0, we say

L2 is a right divisor of L1. Since K[∂] is not commutative, we can not define the

greatest common divisor or the least common multiple in K[∂]. But we can define the

greatest common right divisor (notation GCRD) and the least common left multiple

(notation LCLM) of differential operators (We do not use GCLD or LCRM).

In our context, each differential operator corresponds to a homogeneous differen-

tial equation Ly = 0 and vice versa. In Maple, the command DEtools[diffop2de] will

convert a differential operator to a differential equation and DEtools[de2diffop] will

convert it back.

Definition 4. Let L be a differential operator. We say y is a solution of L, if

L(y) = 0. The vector space of solutions, which is denoted as V (L), is called the

solution space of L. V (L) is a subspace of a universal extension of K, see Theorem 3

in section 2.2.

K[∂] is a Euclidean ring. To find the solutions of L, one can try to factor L into

lower degree operators. If we know a right divisor L2 of L, then V (L2) ⊆ V (L). If

we have two operators, L1 and L2, then LCLM(L1, L2) will give us the operator with

minimal order such that all solutions of L1 and L2 are solutions of LCLM(L1, L2) as

well.

V (L1) + V (L2) = V (LCLM(L1, L2))

And for GCRD, we have
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V (L1) ∩ V (L2) = V (GCRD(L1, L2)).

Definition 5. Let K be a differential field and CK be its constants, CK be the

algebraic closure of CK. We call p ∈ CK ∪ {∞} a singularity of the differential

operator L ∈ K[∂], if p = ∞ or p is a zero of the leading coefficient of L or p is a

pole of a coefficient of L. If p is not a singularity, p is regular.

Remark 2. To understand the singularity at x =∞, one can always use the change

of variables x 7→ 1
x

and deal with 0.

If p is a singularity of a solution of L, then p must be a singularity of L. But the

converse is not true. See apparent singularity in Definition 8 below.

Definition 6. If p ∈ CK ∪ {∞}, we define the local parameter tp as

tp :=

{
x− p if p 6=∞

1
x

if p =∞

Definition 7. Let L ∈ K[∂] with leading coefficient an = 1. A singularity p of L is:

(i) regular singularity (p 6=∞) if tipan−i is analytic at x = p for 1 ≤ i ≤ n.

(ii) regular singularity (p =∞) if an−i

ti∞
is analytic at x =∞ for 1 ≤ i ≤ n.

(iii) irregular singularity otherwise.

Definition 8. We say a singularity is an apparent singularity if all solutions of L

are analytic at x = p.

Theorem 2. L ∈ K[∂], and deg(L) = 2, then:

(i) If L is non-singular or apparent singular at x = p, then all solutions are analytic

at x = p. Hence, we can write it as convergent power series y(x) =
∑∞

i=0 bit
i
p.
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(ii) If L is regular singular at x = p, then there exist the two linearly independent

solutions

y1(x) = te1p

∞∑
i=0

ait
i
p, a0 6= 0

and

y2(x) = te2p

∞∑
i=0

bit
i
p + cy1(x) ln tp, b0 and c are not both 0

where e1, e2, ai, bi, c ∈ CK and c = 0 if e1 − e2 /∈ Z.

(iii) If L is irregular singular at x = p, two linearly independent solutions are

y1(x) = exp

(∫
e1
tp
dtp

) ∞∑
i=0

ait
i
m
p , a0 6= 0

and

y2(x) = exp

(∫
e2
tp
dtp

) ∞∑
i=0

bit
i
m
p + cy1(x) ln tp, b0 and c are not both 0

where ai, bi, c ∈ CK, e1, e2 ∈ CK [t
−1/m
p ], c = 0 if e1 − e2 /∈ Z and m is 1 or 2

(because the order of L is 2).

Proof. The proof can be found in [40].

Definition 9. In the previous Theorem, if c = 0, then the solutions of L do not

contain logarithmic terms. If c 6= 0, then we say L has logarithmic solutions at

x = p.

Remark 3. (i) Note that L can only have logarithmic solutions at x = p if

e1 − e2 ∈ Z. We will discuss more details in the following chapter.

(ii) In the regular singular case, the constants e1 and e2 are called exponents, they

can be found by solving the indicial equation

λ(λ− 1) + p0λ+ q0 = 0

where p0 resp. q0 is the constant coefficient of the power series expansion of

tpp(x) resp. t2pq(x) at x = p.
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(iii) For irregular singularity, e1 and e2 are generalized exponents, which will be

explained in Section 2.2

2.2 Formal Solutions and Generalized Exponents

In this section, we introduce the idea of generalized exponents. Generally, the

generalized exponents give us the asymptotic local information about solutions. We

will use the information to reconstruct solutions in Chapter 3. In this section, we

consider operators in C((x))[∂].

Definition 10. A universal extension U of K is a minimal differential ring1 in which

every operator L ∈ K[∂] has precisely deg(L) linearly independent2 solutions.

We construct a universal extension of C((x)) as follows:

First denote E :=
⋃
m≥1C[x−1/m].

Theorem 3. (i) C((x)) =
⋃
n≥1C((x1/m)).

(ii) For each q ∈ E, we introduce a symbol Exp(q).

(iii) Consider the ring R := C((x))[ln(x), {Exp(q)|q ∈ E}]. Let I be the ideal

generated by all Exp(q1)Exp(q2) − Exp(q1 + q2) and all Exp(r) − xr for all

q1, q2 ∈ E and all r ∈ Q.

(iv) Let V := R/I, and define Exp(q)′ := q
x
Exp(q) for all q ∈ E.

(v) Then V is a universal extension of C((x)). Which means:

• the constant field of V is C.

• If L ∈ C((x))[∂] has order n, then V (L) := ker(L : V → V ) is a C-vector

space of dimension n.

1with field of constant equal to CK
2over CK
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Proof. The proof and other details of universal extension can be found in [35].

Definition 11. Let

Ve :=Exp(e)C((x))[e, ln(x)]

=Exp(e)C((x1/ram(e)))[ln(x)]

Here ram(e) is the ramification index of e, it is the smallest postitive integer for

which e ∈ C[x−1/ram(e)].

Define an equivalence relation ∼ on E:

e1 ∼ e2 ⇐⇒ e1 − e2 ∈
1

ram(e1)
Z

Then e1 ∼ e2 ⇐⇒ Ve1 = Ve2 (working mod the ideal I in Theorem 3 (iii)). Then

V =
⊕
e∈E/∼

Ve is the universal extension in Theorem 3.

Remark 4. Ve is an indecomposable C((x))[∂]-module (is not a direct sum of smaller

modules). For each nonzero L ∈ C((x))[∂], there exist a basis y1, . . . , yn of V (L) such

that each yi is in Vei for some ei ∈ E, where ei are the generalized exponents (see

Definition 12).

Since Ve is a C((x))[∂]-module, so it is also a C(x)[∂]-module. In particular, if

G : V (L1)→ V (L2) and G ∈ C(x)[∂] and G is a bijection from V (L1) to V (L2) (i.e

a gauge transformation, see Definition 18), then L1 and L2 have the same generalized

exponents up to ∼.

Remark 5. If p ∈ C ∪ {∞}, then one can do a similar construction for C((tp)),

where tp is the local parameter (see Definition 6) at x = p. So at each point p, L has

deg(L) linearly independent solutions.

Definition 12. We say e ∈ C[t
− 1

m
p ] is a generalized exponent of L at x = p if L has a

solution exp
(∫

e
tp
dtp

)
S, with S ∈ Rm, and S /∈ t

1
m
p Rm, where m ∈ N (m := ram(e))
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and Rm = C[[t
1
m
p ]][ln(tp)]. If the solution involves a logarithm, we call it a logarithmic

solution. If m = 1, then e is unramified. If m > 1, then e is ramified.

Remark 6. Since we only consider second order differential operators, ram(e) is

either 1 or 2.

If the order of L is n, then at every point p, counting with multiplicity, there are n

generalized exponents e1, e2, ..., en, and the corresponding solutions exp
(∫

ei
tp
dtp

)
Si,

i = 1, ..., n form a basis of the solution space V (L). If p is regular, then the generalized

exponents of L at x = p are 0, 1, ..., n − 1. One can compute generalized exponents

with the Maple command DEtools[gen exp].

2.3 Special functions

In this section, we study the definition and basic properties of Bessel functions.

Our goal is to solve differential equations in terms of Bessel functions. Because

our algorithm can also deal with Airy functions, Kummer/Wittaker functions, we

introduce them as well. These special functions are generalized hypergeometric

functions, 0F1 and 1F1.

2.3.1 Bessel Functions

Definition 13. The solutions of

LB1 := x2∂2 + x∂ + (x2 − ν2)

with the constant parameter ν ∈ C are called Bessel functions. Two linearly

independent solutions

Jν :=
∞∑
k=0

(−1)k

k!Γ(ν + k + 1)
(
x

2
)2k+ν

and

Yν :=
Jν(x)cos(νπ)− J−ν(x)

sin(νπ)
if ν /∈ Z
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or

Yn := lim
ν→n

Yν , if n ∈ Z

generate the solution space V (LB1). Jν and Yν are called first and second kind Bessel

functions respectively.

Similarly solutions of LB2 := x2∂2 + x∂ − (x2 + ν2) are called modified Bessel

functions. First and second kind modified Bessel functions Iν and Kν are two linearly

independent solutions which span V (LB2). Here

Iν := (
x

2
)ν
∞∑
k=0

1

k!Γ(ν + k + 1)
(
x

2
)2k

and

Kν :=
π(I−ν(x)− Iν(x))

2 sin(νπ)

Notation: Bν refers to any element of {Jν , Yν , Iν , Kν}. For example, the following

lemma holds for all four elements:

Lemma 1. The space

S := C(x)Bν + C(x)B′ν

is invariant under the substitution ν 7→ ν + 1.

Proof. See [14] Corollary 1.23

If ν = 1
2

then the modified Bessel operator L := x2∂2+x∂+x2− 1
4

can be factored:

L = (∂ +

√
−1(2x−

√
−1)

2x
)(∂ −

√
−1(2x+

√
−1)

2x
)

Combined with Lemma 1, this implies that L is reducible if ν is any half-integer (if

ν ∈ 1
2

+ Z). One can always get the solutions by factoring such operators. We will

exclude this case from this thesis.

The change of variables x→ x
√
−1 sends V (LB1) to V (LB2) and vice versa. Since

our algorithm will deal with change of variables, as well as two other transformations
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(see Section 3.1), we only need one of LB1, LB2. We choose LB2 and denote

LB := LB2.

LB has only two singularities, 0 and ∞. The generalized exponents are ±ν

at x = 0 and ±t−1∞ + 1
2

at ∞. Note that LB1 also has 0 and ∞ as singularities.

The generalized exponents are ±ν at x = 0 and ±t−1∞
√
−1 + 1

2
respectively. The

generalized exponents of LB2 are simpler than LB1, that is the reason our algorithm

starts with LB := LB2.

After a change of variables y(x)→ y(
√
x), we get a new operator

L
√

B := x2∂2 + x∂ − 1

4
(x+ ν2)

Note it is still in Q(x)[∂]. This means for f ∈ K the function Bv(
√
f) is a solution

of an element of K[∂]. So this introduces the square root case. Let CV(L, f) denote

the operator obtained from L by change of variables x 7→ f . For any differential field

extension K of Q(x), if ν2 ∈ CK , and if f 2 ∈ K, then CV(LB, f) ∈ K[∂] since this

operator can be written as CV(L
√

B , f
2). The converse is also true:

Lemma 2. Let K be a differential field extension of Q(x), let f, ν be elements of a

differential field extension of K, and ν be constant. Then

CV(LB, f) ∈ K[∂]⇐⇒ f 2 ∈ K and ν2 ∈ CK .

Proof. It remains to prove =⇒. Let ν be a constant. Let monic(L) denote L divided

by the leading coefficient of L and

M := monic(CV(LB, f)) = ∂2 + a1∂ + a0

We have to prove

a0, a1 ∈ K =⇒ f 2, ν2 ∈ K

and so we assume a0, a1 ∈ K. Let g = f 2. By computing M = monic(CV(L
√

B , g))

we find

a1 = −ld(ld(g)), a0 =
−1

4
(g + ν2)ld(g)2
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where ld denotes the logarithmic derivative, ld(a) = a′/a. Let

a2 := ld(ld(a0) + 2a1) + ld(a0) + 3a1,

a3 := −4a0/a
2
2, a4 := a3(2a1 + ld(a0))

which are in K since a0, a1 ∈ K. Direct substitution shows that a2 = ld(g),

a3 = g + ν2, and a4 = g′. Hence g = a4/a2 ∈ K and ν2 = a3 − g ∈ K.

Because of this lemma, when we solve differential equations in terms of Bessel

functions, instead of using Bν(f), with f ∈ K, we should use Bν(f), with f 2 ∈ K.

2.3.2 Airy Functions

Definition 14. The solutions of

LA := ∂2 − x

are called Airy functions. Two linearly independent solutions

Ai(x) =
1

π

∫ ∞
0

cos(
1

3
t3 + xt)dt

and

Bi(x) =
1

π

∫ ∞
0

(e
1
3
t3+xt + sin(

1

3
t3 + xt))dt

are called first and second kind Airy functions.

Airy functions can be written in terms of Bessel functions, but only if we allow

square roots:

Lemma 3.

Ai(x) := −
√
x

3
I 1

3
(
2

3

√
x3) +

√
x

3
I− 1

3
(
2

3

√
x3)

Bi(x) := −
√
x

3
K 1

3
(
2

3

√
x3) +

√
x

3
K− 1

3
(
2

3

√
x3)

Proof. See [3]
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Thus equations solvable in terms of Airy functions will be solved by our Bessel

solver.

2.3.3 Hypergeometric Series

Definition 15. A generalized hypergeometric series pFq is defined by:

pFq(α1, α2, . . . , αp; β1, β2, . . . , βq;x) :=
∞∑
k=0

(α1)k · (α2)k · · · (αp)k
(β1)k · (β2)k · · · (βq)kk!

xk

Here (α)k is defined as:

(α)k :=

{
1 if k = 0

α(α + 1) . . . (α + k − 1) if k > 0

Many special functions are hypergeometric series, for example:

ex = 0F0(; ;x)

cos(x) = 0F1(;
1

2
;
−x2

4
)

Bessel functions and Airy functions are also hypergeometric series, for example:

Jv(x) = (
x

2
)ν

1

Γ(ν + 1)
0F1(; ν + 1;−x

2

4
)

and

Iv(x) = (
x

2
)ν

1

Γ(ν + 1)
0F1(; ν + 1;

x2

4
)

where Γ(x) is the Gamma function:

Γ(x) :=

∫ ∞
0

tx−1e−tdt

Definition 16. The equation

x(1− x)y′′ + (γ − (α + β + 1)x)y′ − αβy = 0

is called the hypergeometric differential equation. The solutions can be expressed by

2F1 functions (also called Gauss’ Hypergeometric functions)
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Definition 17. The equation

xy′′ + (γ − x)y′ − αy = 0

is called the Kummer equation. The solution

M(α, γ, x) := 1F1(α; γ;x)

and

U(α, γ, x) := x−α2F0(α, 1 + α− γ; ;−1

x
)

are called Kummer function and the second Kummer function, respectively.

The 0F1 function can be expressed in terms of Kummer functions, with Kummer

formula:

exp(−x
2

)1F1(α; 2α;x) = 0F1(;
1

2
+ α;

x2

16
).

If we have an irreducible second order differential operator L, then the possible

hypergeometric series solutions will satisfy p ≤ 2 and q ≤ 1, which can be written in

terms of 2F1 functions, Bessel functions and Kummer functions. Using the method

we developed in the thesis and the algorithm in [14], we can get all hypergeometric

series solver except for the 2F1 case. In that case, the differential operator has

only regular singularities. We get more information from irregular singularities than

regular singularities, see section 3.3.2.

For more detail and properties of hypergeometric series, see [3].

2.4 Maple Commands

All of my algorithms and code are developed with Maple. All of our examples

are illustrated with Maple. So in this section we want to introduce some commands

we need in Maple.

In Maple, the DEtools package contains commands that help us work with

differential equations. To use this package, we input:
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>with(DEtools):

For DEtools package, every command has a short version or long version. For the

long version, you always need to tell maple the variable and the derivation. To use

the short version, one needs to tell Maple the symbol for the variable x and the

derivation D by using:

>_Envdiffopdomain:=[Dx,x]:

This command tells Maple that we use x as variable and Dx as derivation. In this

thesis, we always assume that the DEtools package is loaded and the differential

domain is defined by [Dx,x].

The command diffop2de gives the corresponding differential equation. We use

Bessel operators as an example:

> L := x^2*Dx^2+x*Dx+x^2-nu^2;

L := x2Dx 2 + xDx + x2 − ν2

>eq := diffop2de(L, y(x))

eq :=
(
x2 − ν2

)
y (x) + x

d

dx
y (x) + x2

d2

dx2
y (x)

We can use de2diffop to convert the differential equations into differential operators,

for example:

>de2diffop(eq, y(x));

x2Dx 2 + xDx + x2 − ν2

The command gen exp will compute generalized exponents of the differential oper-

ators. Let us compute the generalized exponents for modified Bessel operators at

x = 0.

>L := x^2*Dx^2+x*Dx-x^2-nu^2;
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>gen_exp(L, T, x = 0);

[[ν, T = x], [−ν, T = x]]

So the generalized exponents are ±ν at x = 0. The local parameter (denoted by T) is

simply x here. At ∞, we can compute the generalized exponents and find ±t−1∞ + 1
2
.

>gen_exp(L, T, x = infinity);

[[−T−1 + 1/2, T = x−1], [T−1 + 1/2, T = x−1]]

And we can also verify, at any regular point (for example x = 1), the generalized

exponent are 0,1.

>gen_exp(L, T, x = 1);

[[0, 1, T = x− 1]]

If the parameter ν = 1
2

then the operator is reducible, we can use DFactor to factor

it:

>L := subs(nu = 1/2, L);

L := x2Dx 2 + xDx − x2 − 1/4

>DFactor(L);

[x2Dx + 1/2x (2x+ 1) ,Dx − 1/2
2x− 1

x
]

Maple can also solve it with dsolve command:

>dsolve(diffop2de(L, y(x)), y(x));

y (x) =
C1 sinh (x)√

x
+

C2 cosh (x)√
x

Maple can also compute the formal solutions and can detect if there are logarithmic

solutions. For example, if ν = 0 then Bessel operator has logarithmic solutions.

>L := x^2*Dx^2+x*Dx-x^2-nu^2;
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>L := subs(nu = 0, L);

L := x2Dx 2 + xDx − x2

>formal_sol(L, t, x = 0);

[[ln t+

(
−1

4
+

1

4
ln t

)
t2 +

(
1

64
ln t− 3

128

)
t4 +O(t6), 1 +

1

4
t2 +

1

64
t4 +O(t6), t = x]]

>formal_sol(L, ‘has logarithm?‘, x = 0);

true

In the following section, we can see that if the input has logarithmic solution, we

need to treat it separately.
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CHAPTER 3

TRANSFORMATION AND LOCAL

INFORMATION

In this chapter, we will discuss the transformations that preserve order 2 differen-

tial operators. Then we can clarify the definition of solving differential equations in

terms of solutions of another equation (in this thesis, the Bessel equation). We will

also discuss the invariants under the transformations, which we use to reconstruct the

transformation from the Bessel operator to the operator we want to solve. The details

in this chapter will be the key to our algorithm for solving differential operators in

terms of Bessel functions. In this section, we also assume the order of the differential

operators is 2, unless stated otherwise.

3.1 Transformation

Definition 18. A transformation between two differential operators L1 and L2 is an

onto map from the solution space V (L1) to V (L2). For an order 2 operator L1 ∈ K[∂],

there are three types of transformations that preserve K and preserve order 2. They

are (notation as in [14, 15]):

(i) change of variables: y(x) 7→ y(f(x)), f(x) ∈ K \ CK.

(ii) exp-product: y 7→ exp(
∫
r dx) · y, r ∈ K.

(iii) gauge transformation: y 7→ r0y + r1y
′, r0, r1 ∈ K.

We denote them by −→C, −→E, and −→G respectively. We also denote −→CEG be

any combinations of −→C, −→E and −→G.
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Lemma 4. −→C, −→E, and −→G will send a second order irreducible L1 ∈ K[∂] to

an L2 that is again in K[∂] of order 2.

Proof. [14, 15]

With this definition, we can state what we mean by solving equations in terms of

Bessel functions.

Definition 19. Assume y is a solution of a differential operator LO, we say we

can solve differential operator L in terms of y when we can find a transformation

LO −→CEG L.

To solve differential equations in terms of the Bessel functions means to find a

transformation from the Bessel operator LB to the operator L. Since we only focus

on order 2 differential operators, we only need to find combinations of −→C , −→E,

and −→G which send LB to L.

Remark 7. We can consider −→C, −→E, and −→G as binary relations on K[∂].

Let L1, L2 ∈ K[∂]. Then L1 is −→C (−→E, −→G resp.) related to L2, if and only if

L1 −→C L2 (−→E, −→G resp).

So it is natural to ask, whether −→C , −→E, and −→G are equivalence relations

and whether the order of the transformations is important.

Lemma 5. −→G and −→E are equivalence relations, but −→C is not.

Proof. [14, 15]. See also Remark 4.

The order of the −→E and −→G is not important, because:

Lemma 6. If L1, L2, L3 ∈ K[∂] such that L1 −→G L2 −→E L3, then there exist

M ∈ K[∂] such that L1 −→E M −→G L3. Similarly, if L1 −→E L2 −→G L3, then

∃M ∈ K[∂], such that L1 −→G M −→E L3
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Proof. [14, 15].

According to the lemma, the order of −→E and −→G can be switched, we denote

the combinations of −→E and −→G as −→EG. Since both −→E and −→G are

equivalence relation, so is −→EG. We also define:

Definition 20. We say L1 ∈ K[∂] is gauge equivalent to L2 if and only if L1 −→G L2.

And L1 ∈ K[∂] is projectively equivalent to L2 if and only if L1 −→EG L2.

If two operators are projectively equivalent, there are several algorithms to

compute the map of projective equivalence. The details of the algorithm can be

found in [4], [14] and Section 3.2. For −→C , we have:

Theorem 4. ([14, 15]) If L1 −→CEG L2, then there exist an operator M ∈ K[∂]

such that L1 −→C M −→EG L2.

If LB −→CEG L then L has solution of the form:

e
∫
rdx(r0Bν(f) + r1(Bν(f))′),

here Bν(x) is one of the Bessel functions, and r, r0, r1, f ∈ K.

For Bessel functions, in Section 2.3.1, we learned that x 7→
√
x sends LB to an

element of K[∂] namely L
√

B . So instead of starting from LB, we can apply Theorem 4

to L1 = L
√

B and L2, which is the operator we want to solve. But we still want to

use the notations and results in [14]. That means we start with LB, but we extend

change of variables to:

(i)’ Change of Variables: y(x)→ y(f(x)), f 2(x) ∈ K \ CK .

Also we can extend the definition of solving differential equations in terms of Bessel

functions to:

Definition 21. We say we can solve L in terms of Bessel functions, when

L
√

B −→CEG L, i.e the solutions of L, can be written as the following form:
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e
∫
rdx(r0Bν(f) + r1(Bν(f))′) (3.1)

here Bν(x) is one of the Bessel functions, and r, r0, r1, f
2 ∈ K.

Remark 8. Let K = CK(x) and L ∈ K[∂]. In section 4.10, we will show that if

there exists a solution of the form (3.1) with r, r0, r1, f
2 ∈ K then there is also a

solution in the form (3.1) with r, r0, r1, f
2 ∈ K.

To summarize, our goal is to solve differential equations in terms of Bessel

functions. This means: if L
√

B −→CEG L, then find the transformation, hence solve

L. So our Main problem is:

Main problem: Let CK be a field, CK ⊆ C, and let K = CK(x). Let L ∈ K[∂] be

irreducible and of order 2. The question we will solve in this thesis is the following:

Does there exist an operator M ∈ K[∂] such that

1. L is projectively equivalent to M , and

2. L
√

B

g−→C M for some g ∈ K and some constant ν.

If so, find g, ν and solve L.

Note that L
√

B

g−→C M is the same as LB
f−→C M , where f 2 = g ∈ K. The

reason we also use the second form is because we can then use the same notation as

in [14] [15].

There are two steps to find Bessel type solutions of L. The first step is to find

the middle operator M (i.e the change of variables f). If M (or equivalently f) is

known, then the next step is to find the map from M to L, which is a projective

equivalence. We will discuss the second the step first, because there are algorithms

to find projective equivalence.

3.2 Projective Equivalence

In this section, we will describe an algorithm to find the map of the projective

equivalence. There are several algorithms for this [4, 35]. For example the algorithm
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by Barkatou and Pflügel which is implemented in the ISOLDE package [4]. The idea

to find the equivalence maps is to reduce it to a differential equations system.

Theorem 5. The question whether two operators L1, L2 ∈ K[∂] are projectively

(gauge resp.) equivalent can be reduced to finding hyperexponential (rational resp.)

solutions of a system of differential equations.

Proof. If L1 −→EG L2, then there exist an operator G = exp(
∫
r)(r1∂ + r0), such

that G(V (L1)) = V (L2). So L1 will be a right factor of L2G. Write G = s1∂ + s0.

By computing the remainder of L2G divided by L1, which should equal zero, we can

get two differential equations of order two in two unknowns s0, s1. By introducing

two new variables s0 = s′o,s1 = s′1, we get a linear system of four order one equations.

We can write it in the standard way as Y ′ − AY = 0. The details of the proof can

be find in [14].

These hyperexponential (rational resp.) solutions can be found with the cyclic

vector method, or by a direct method (implemented in ISOLDE).

Definition 22. Let M be a n-dimensional vector space and ∂ : M → M . A vector

v ∈M is called a cyclic vector of M if

{v, ∂v, . . . , ∂n−1v}

is a basis of M .

Definition 23. Let

L =
n∑
i=0

ai∂
n ∈ K[∂]

be a differential operator. We define the adjoint operator

L∗ := (−1)n
n∑
i=0

(−∂)iai
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The adjoint operator satisfies L∗∗ = L and (L1L2)
∗ = L∗2L

∗
1.

The cyclic vector method works as follows.

Theorem 6. Let A be the matrix of the equation Y ′−AY = 0 and let ∂y := y′−Ay.

The we can compute a hyperexponential (rational resp.) solution by the following

steps:

(i) Pick a random element v ∈ K4.

(ii) Check whether v is cyclic, otherwise go back to step (i).

(iii) Compute L = a0 + a1∂ + a2∂
2 + a3∂

3 + ∂4 such that Lv = 0.

(iv) Compute a hyperexponential (rational resp.) solution s of L∗, see [13].

(v) Compute R such that L = (∂ + s
s′

)(1
s
R).

(vi) Let R = y0 + y1∂ + y2∂
2 + y3∂

3 and y = y0v + y1∂v + y2∂
2v + y3∂

3v.

Then y is a hyperexponential (rational resp.) solution of Y ′ − AY = 0.

Proof. The proof can be found in [14]

Here we also want to mention the p-curvature test for projective equivalence. It

is the idea to test whether two operators can be equivalent mod p.

Let Fp denote the algebraic closure of the finite field Fp. We define the ring Fp(x)[∂] in

the same way as before. The main difference is that the field of constants is Fp(xp).

The most important tool for operators in characteristic p is the p-curvature. We

briefly introduce the idea of the p-curvature test here, for more details, see [13, 33].
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The differential field Fp(x) is a finite dimensional vector space over its field of

constants Fp(xp):

Fp(x) =

p−1⊕
i=0

Fp(xp)xi.

To any differential operator L ∈ Fp(x)[∂], one can associate the differential module:

ML := Fp(x)[∂]/Fp(x)[∂]L

Multiplication by ∂ gives a map ∂ satisfying:

∂fm = f ′m+ f∂m, ∀m ∈ML, f ∈ Fp(x)

Definition 24. Let L ∈ Fp(x)[∂]. The p-curvature of L is the Fp(x)-linear map ∂
p

acting on the differential module ML associated to L.

An algorithm to compute the p-curvature matrix is given in [33]. Once we get

the matrix, it is natural to consider the characteristic polynomial. We denote the

characteristic polynomial of the p-curvature of L ∈ Fp(x)[∂] as χp(L) .

Lemma 7. Let L ∈ Fp(x)[∂] and if L = L1L2 then χp(L) = χp(L1)χp(L2) with

deg(χp(Li)) = deg(Li).

Proof. See [33].

Theorem 7. Let K ⊆ Q(x). Let L1, L2 ∈ K[∂] with order n and L1 −→G L2, then

χp(L1) = χp(L2) for any prime p.

Proof. Since L1 −→G L2, there exist order < n operators R1, R2 such that L1R1 =

R2L2, so R1 and R2 are also gauge equivalent. So χp(R1) = χp(R2) by induction. By

Lemma 7 we have χp(L1)χp(R1) = χp(L2)χp(R2). So χp(L1) = χp(L2).

The results can also be extended to algebraic extensions of Fp(x). It is because:

Remark 9. Let Kp = Fp(x)[y]/(F (x, y)) be an algebraic extension of F(x) of

degree n, where n < p. Let Cp = {a ∈ Kp|a′ = 0}. Then [Kp : Cp] = p and
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Kp = Cp + Cp · x+ . . .+ Cpx
p−1. So we can use the p-curvature for Kp in the same

way in Theorem 7.

Proof. Consider the following diagram:

Cp⋃
|

Kp

na

6=

Fp(xp, yp)
b

Fp(x)
p

Fp(xp)

where a, b, n, p are the indices of the algebraic extensions.

Since the extension of [Kp : Fp(xp, yp)] is purely inseparable (note that (Kp)
p =

Fp(xp, yp)), so a is a p-power. From the diagram, we have a · b = n · p.

We assumed p > n and p is a prime number. Then p divides n ·p = a ·b only once. So

a = p or 1. But a 6= 1, because x /∈ Cp. So a = p. Then b = n and Cp = Fp(xp, yp).

It follows that Kp = Cp + Cp · x+ . . .+ Cpx
p−1.

Remark 10. −→E changes χp(L) but not its discriminant.

Assume we have candidates for f and ν, then we compute LB
f−→C M . We can

pick some prime number (in our implementation, we choose 3 and 5), and compute

χp(L) and χp(M). If their discriminants do not match, then according to Theorem 7

and Remark 10, L and M can not be projectively equivalent. We call this process

the p-curvature test, it will increase the speed of our algorithm, because it quickly

eliminate most of candidates for (f, ν)

We summarize this section in Algorithm 1 for projective equivalence and Algorithm 2

for gauge equivalence:
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Input : two differential operator L1 and L2

Output: an first order operator G ∈ K[∂] and r ∈ K, such that
exp(

∫
r)G(V (L1)) = V (L2), if L1 and L2 are projectively equivalent

for some prime number p, compute χp(L1) and χp(L2);
if discriminant(χp(L1))6= discriminant(χp(L2)) then

output 0;
else

Use methods introduced in Theorem 6 to find exponential solutions of
the equation in Theorem 5;
output the solution;

end

Algorithm 1: Projective Equivalence

Input : two differential operator L1 and L2

Output: an first order operator G ∈ K[∂], such that G(V (L1)) = V (L2), if L1

and L2 are gauge equivalent

for some prime number p, compute χp(L1) and χp(L2);
if χp(L1)6= χp(L2) then

output 0;
else

Use methods introduced in Theorem 6 to find rational solutions of the
equation in Theorem 5;
output the solution;

end

Algorithm 2: Gauge Equivalence

3.3 Local Information: The Exponent Difference

3.3.1 Exponent Difference

According to Section 3.1 and Section 3.2, if we want to solve the differential

operator L, we need to recover the change of variable
f−→C . If we have f then we

can compute the middle operator M by computing LB
f−→C M . If M and L are

projectively equivalent, then we can compute the transformation from LB to L, hence

solve L in terms of Bessel functions. If M and L are not projectively equivalent for

all candidates (f, ν), then we can conclude that L can not be solved in terms of
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Bessel functions. So the remaining problem is how to reconstruct f . Notice that we

only have L and not M . However, M should be projectively equivalent to L. So for

computing f , the only information retrieved from L that we can use is information

invariant under projective equivalence. The invariant we use is the difference of the

generalized exponents of L.

Definition 25. If L is an order 2 differential operator, then at each singularity p,

there are two generalized exponents e1 and e2 of L at x = p. The difference e1− e2 is

called the exponent difference of L at x = p. We denote it by ∆(L, p) = ±(e1 − e2).

Remark 11. Note that our definition contains ±, because the generalized exponents

are not ordered.

This following lemma shows that ∆(L, p) is invariant under projective equivalence.

Lemma 8. The exponent difference ∆(L, p) modulo 1
m
Z is invariant under projective

equivalence, where m is the ramification index. Here m = 1 if the generalized

exponents are unramified, and m = 2 if they are ramified.

Proof. [14] gives the proof of the unramified case. We can just repeat the process

to proove the ramified case just replacing integers with half integers. See also

Remark 4

Definition 26. A singularity p of L ∈ K[∂] is:

(i) removable singularity if and only if ∆(L, p) ∈ Z and L is not logarithmic at

x = p. This is equivalent to saying that L has a basis of solutions y1, y2 for

which y1/y2 is analytic at x = p.

(ii) non-removable regular singularity if and only if ∆(L, p) ∈ C \ Z or L is

logarithmic at x = p.

(iii) irregular singularity if and only if ∆(L, p) ∈ C[t
− 1

2
p ] \ C.
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We also denote the set of non-removable regular singularities resp. irregular singu-

larities by Sreg resp. Sirr.

Proof. The definition is compatible with Definition 7. See [14].

Note: removable singularities are neither in Sreg nor Sirr.

Definition 27. Let g = f 2 ∈ K. If g has a root resp. pole at x = p of order k ∈ N,

then we say that f has a root resp. pole at p of order mp := k
2
.

3.3.2 An Example of Change of Variables

To illustrate the relations between local information, exponent difference, change

of variables and Bessel Parameter, we start with an example. Let LB = ∂2 + 1
x
∂ −

x2+ν2

x2
. Take for example ν = 1

3
and f = x

(x−2)2

√
(x−1)3
x+2

, and LB
f−→C M . Then

Example 2.

M = ∂2 +
(6x5 + 39x4 − 60x3 − 44x2 + 64x− 32)

x(x− 1)(x− 2)(x+ 2)(3x2 + 14x− 8)
∂

− 1

36

(10x5 − 33x4 + 35x3 + 7x2 − 48x+ 32)(3x2 + 14x− 8)2

x2(x− 1)2(x+ 2)3(x− 2)6

We will illustrate how the singularities of M are related to f .

First, we can expect 0, 1 are singularities because f maps them to a singularity of

LB, namely 0. And we can also expect ±2 to be singularities, because f maps them

to∞. But we also notice that by applying the change of variables, we introduce new

singularities, the roots of 3x2 + 14x− 8. If we compute the generalized exponent at

those points,

>gen_exp(M, T, x = RootOf(3*x^2+14*x-8));

[[0, 2, T = x−RootOf(3 Z2 + 14 Z − 8)]]

So they are removable singularity. Removable singularities do not give us useful

information because they can disappear under −→EG. If we choose a random
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gauge transformation −→G, then it is likely that these singularities (the roots of

3x2 + 14x− 8) disappear, and that new removable singularities will appear.

We also consider ∞ as possible singularity. The computation gives us:

>gen_exp(M, T, x = infinity);

[[0, 1, T =
1

x
]]

Also L is not logarithmic at x =∞:

>formal_sol(L, ‘has logarithm?‘, x = infinity);

false

So ∞ is a regular point.

Since f maps 0 and 1 to 0 (0 is the only regular singularity of LB, so we expect 0

and 1 to be regular singularities of M too.

>gen_exp(M, T, x = 0);

[[
1

3
, T = x], [−1

3
, T = x]]

The exponent difference is ±2
3

which is the 2 times of the Bessel parameter ν and

note the multiplicity of f at x = 0 is 1. At 1:

>gen_exp(M, T, x = 1);

[[−1

2
, T = x− 1], [

1

2
, T = x− 1]]

The exponent difference is ±1 which is equal 2ν times the multiplicity 3
2

of f at

x = 1. But since the exponent difference is an integer, it is a removable singularity.

The local information at x = 1 is not useful after −→EG, because after −→EG this
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point x = 1 can become a regular point. For example if we apply the exp-product

exp(
∫

1
2(x−1)dx) to M and M

1
2(x−1)−→ E M2, then

M2 =∂2 +
3x4 + 28x3 − 12x2 + 32

x(x− 2)(x+ 2)(3x2 + 14x− 8)
Dx

− 1

36(x− 2)6x2(x+ 2)3(3x2 + 14x− 8)
(27x11 + 216x10

− 1701x9 + 5607x8 + 21474x7 − 40852x6 − 41528x5

+ 167584x4 − 132992x3 − 92672x2 + 151552x− 16384)

But now 1 is not a singularity of M2. So if we want to find solutions of M2, we can

not get information at x = 1. But x = 1 is a root of f . This example also shows

that a root of f can be a removable singularity, which can disappear under −→EG.

This is the case we refer to as a ‘disappearing’ singularity in Section 3.3.4. Because

of those ‘disappearing’ singularities, it is hard to reconstruct f because not all roots

of f and be read from the singularities. We will discuss it in Section 4.5.

Now we will analyze the irregular singularities. LB has only one irregular singularity

x = ∞ and f maps ±2 to ∞. So we expect ±2 to be irregular singularities of M .

At x = 2:

>gen_exp(M, T, x = 2);

[[− 2

T 2
− 15

8T
+ 1, T = x− 2], [

2

T 2
+

15

8T
+ 1, T = x− 2]]

Note the exponent difference is ±( 4
t22

+ 15
4t2

). According to Definition 26, it is an

irregular singularity. The exponent difference is in the form of a series in tp, we can

write f as a series in tp to see the relation. We use Maple series command to find

the Laurent series of f at x = 2:

>series(sqrt(x^2*(x-1)^3/((x-2)^4*(x+2))), x = 2,1)

1

(x− 2)2
+

15

8(x− 2)
+O((x− 2)0)
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To see the relation (See Theorem 8 for exact formula), for t−22 , the coefficient of

exponent difference is 2 times of the product of the degree -2 and the coefficient of

Laurent series of f at x = 2. For t−12 , a similar relation also holds. So in essence,

the generalized exponent difference gives us the polar parts of Laurent series of f at

x = 2.

At x = −2, the situation is more complicated. The Maple computation gives us:

>gen_exp(M, T, x = -2);

g := [[
1

T
+

1

4
,− 27

256
T 2 = x+ 2]]

So the two generalized exponents are ± 16i

3
√
3t

1/2
−2

+ 1
4
, and the exponent difference at

x = −2 is ± 32i

3
√
3t

1/2
−2

. Now we have a series with half integer order. It still satisfies

the formula from Theorem 8. But to avoid a half integer pole, we will consider the

Laurent series of g = f 2 ∈ K, which is a rational function. We can find the match in

this way. First, the exponent difference is ± 2
T

, we square that we get 4
T 2 = − 27

64t−2
,

which should match the Laurent series of g after applying Theorem 8 (ii) in Section

3.3.4.

>series(x^2*(x-1)^3/((x-2)^4*(x+2)), x = -2,1)

−27

64

1

(x+ 2)
+O((x+ 2)0)

Here we get a match of the polar part. In this example, we get all of the polar part

of f at x = −2, this is only because the polar part of g has only one term. In general,

the generalized exponents give half (round up) of the terms of the polar part of g.

The details will be explained later in Remark 12

So to summarize, by analyzing the exponent differences at each regular and irregular

singularities, we can get 0 or more zeros of f , half (round up) of the polar part of

g = f 2 and some information about Bessel parameter ν. We will use this information

to reconstruct the change of variable f . This reconstruction is not unique; we will
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find a finite set of candidates for (f, ν)

3.3.3 An Analogy

An analogy between solving polynomials in terms of radical and solving differen-

tial equations in terms of Bessel is helpful to understand the nature of our problem.

1. Solving x6 − 12 in terms of radicals (give one solution) is trivial. x = 6
√

12 is

by definition a solution. In analogy, if we solve differential equations in terms

of Bessel allowing only −→C , then it is easy. See example 2.

2. Solving x6 − 6x5 + 15x4 − 20x3 + 15x2 − 6x − 11 is not obvious but it is also

trivial, because the coefficient of x5 suggests x 7→ x+ 1, that leads to x6 − 12.

So we have a solution 1 + 6
√

12. In analogy, if we solve using only −→C and

−→E, that is a similar (i.e easy) problem.

3. x6−24x3−108x2−72x+132 also has a solution in Q( 6
√

12), but it is less obvious

than case 1 and 2. Note: once we know it has a solution in Q( 6
√

12), then we

are almost done1. Likewise, we solve differential equations under −→CEG. If

we know −→C , then we are almost done.

3.3.4 Change of Variables and exponent difference

By studying the example, we have an intuitive idea how ∆(L, p) and f are related.

In this section, we will give the precise link between ∆(L, p) with f and in next

section, the relation with ν.

Lemma 9. If f 2 ∈ K, and f =
∑

i ait
i
p, where i ∈ 1

2
Z and tp are local parameter at

x = p, then the set {i|ai 6= 0} is either a subset of Z or a subset of 1
2

+ Z.

1there exists a program to compute roots over a number field
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Proof. Assume the initial term is ait
i
p and then check the coefficient of each terms of

f 2 and use f 2 ∈ K.

Theorem 8. Let K = CK(x), and LB
f−→C M −→EG L, where f 2 ∈ K. (Note: L

is the input to our algorithm, and f and M are to be computed.)

(i) if p is a zero of f with multiplicity mp ∈ 1
2
Z+, then p is an removable singularity

or p ∈ Sreg, and ∆(M, p) = 2mpν.

(ii) p is a pole of f with pole order mp ∈ 1
2
Z+ such that f =

∑∞
i=−mp

fit
i
p, if and

only if p ∈ Sirr and ∆(M, p) = 2
∑

i<0 ifit
i
p.

If p ∈ Sreg, then ∆(L, p) ≡ ∆(M, p) mod Z which means that we can compute 2mpν

mod Z.

If p ∈ Sirr, then ∆(L, p) ≡ ∆(M, p) mod 1
m
Z, where m = 1 or 2 is the ramification

index. Then
∑

i<0 fit
i
p can be computed from ∆(L, p) by dividing coefficients by 2i

(the congruence only affects the t0p-term of ∆, but that term does not depend on f

when p ∈ Sirr).

Proof. We can use the same proof in [14], we just need to replace integers with half

integers and combine it with Lemma 9.

Definition 28. Let f = Σ∞i=Naix
i, N ∈ Z, aN 6= 0. We say that we have a k-term

truncated power series for f when the coefficient of xN , ..., xN+k−1 are known.

Remark 12. If a k-term truncated series for f is known, then we can compute a

k-term truncated series for f 2.

According to Theorem 8 (ii), from ∆(M, p), we can get a dmpe-term truncated

series of f at x = p. In [15], f was assumed to be in K, in which case the truncated

series is exactly the polar part of f at x = p. But in this thesis, we have to compute

g = f 2 ∈ K. Theorem 8 (ii) gives us the polar part of f , i.e. a truncated series for
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f . We square it to obtain a truncated series of g. But this truncated series for g has

dmpe terms (the same number of terms as the one for f , see Remark 12). So it is

only half (rounded up) of the polar part of g. For instance, if f has a pole of order

3 at x = 0, then from ∆(L, p) we can obtain a truncated series Σ−1i=−3aix
i of f at

x = 0. Squaring this series, we can get the coefficients of x−6, x−5, x−4 of g, but not

more. So we have:

Corollary 1. If LB
f−→C M −→EG L and g = f 2 then:

(i) if p ∈ Sreg then p is a zero of g.

(ii) p ∈ Sirr if and only if p is a pole of g. We can also get a dmpe-term truncated

series of g from ∆(L, p), where mp is the pole order of f .

Remark 13. For ∞, we can apply x 7→ 1
x

and then study the point x = 0, or just

treat it like other points. If g = f 2 = A
B

and A,B are polynomials with no common

factors and B is monic, then:

(i) if ∞ ∈ Sirr this means that deg(A) > deg(B), and the truncated series, which

we get from the exponent difference with the same method that as for the other

points, gives half of the terms of the quotient of A divided by B.

(ii) if ∞ ∈ Sreg this means that deg(A) < deg(B), and if the multiplicity of f at

x = ∞ is m∞, then the multiplicity of g at x = ∞ is 2m∞, which means that

deg(B)− deg(A) = 2m∞.

(iii) if ∞ is a removable singularity then deg(A) ≤ deg(B).

(iv) if ∞ /∈ Sreg ∪Sirr, then it is either an removable singularity or a ‘disappearing’

singularity (see section 3.3.2 and section 4.5).

The goal in this section is to collect local information for f from exponent

differences. If we assume f 2 = g = A
B

and A,B are polynomials with no common

factors and B is monic, Corollary 1 gives the poles of g as well as pole order, hence
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we get B. Remark 13 tells us we know the degree of A or at least a bound for the

degree of A. To be precise:

Lemma 10. We can retrieve B from Sirr.

Proof. According to Theorem 8 (ii), if p ∈ Sirr then p is a pole of f . Let

mp ∈ 1
2
Z+ be the pole order of ∆(M, p). g has a pole order 2mp. Theorem 8

implies B =
∏

p∈Sirr\{∞}(x− p)
2mp .

Lemma 11. Let

dA =

{
deg(B) + 2m∞ if ∞ ∈ Sirr
deg(B) otherwise

(i) If ∞ ∈ Sreg then deg(A) < dA;

(ii) if ∞ ∈ Sirr then deg(A) = dA;

(iii) otherwise deg(A) ≤ dA.

Proof. According to Corollary 1 (i), if ∞ ∈ Sreg then deg(A) < deg(B). If ∞ ∈ Sirr
with pole order m∞, then deg(A) = deg(B)+2m∞ (see Corollary 1 (ii)). If∞ /∈ Sirr
then f does not have a pole at x =∞, so that deg(A) ≤ deg(B).

Corollary 1, Lemma 10 and Lemma 11 will be used to reconstruct f in Chapter 4.

3.4 The Parameter ν

The exponent difference is also associated with the Bessel parameter ν. From the

example, we can see it is related to Sreg. We have:

Theorem 9. If L
√

B −→CEG L, then

(i) if Sreg = ∅ then ν ∈ Q \ Z.

The following holds for any p ∈ Sreg:

(ii) L logarithmic at x = p if and only if ν ∈ Z.
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(iii) if ∆(L, p) ∈ Q then ν ∈ Q \ Z.

(iv) ∆(L, p) ∈ CK \Q if and only if ν ∈ CK \Q.

(v) ∆(L, p) /∈ CK if and only if ν /∈ CK.

Proof. Follows directly from Theorem 8(i). Details can be found in [14].

We will divide our algorithm into different cases by different situations in

Theorem 9. We call (ii) logarithmic case. (i) and (iii) rational case, and (iv) and (v)

irrational case. We also have easy case which will be defined in Section 4.2 (for easy

case, ν can be any number, but as the name suggest, it is easy to get solutions).

With the properties of Bessel functions, we can give more restrictions on ν. For the

logarithmic case, we have

Remark 14. If any p ∈ Sreg is logarithmic then by Theorem 9 (ii), ν ∈ Z, then

by again Theorem 9 (ii), every p ∈ Sreg must be logarithmic. If not, then L has no

Bessel type solutions. Also by the fact C(x)Bν(x) + C(x)B′ν(x) is invariant under

ν → ν + 1 and ν → −ν, for the logarithmic case, we can let ν = 0.

For the rational case:

Remark 15. C(x)Bν(x) + C(x)B′ν(x) is invariant under ν → ν + 1 and ν → −ν.

Those transformations are special case of a gauge transformations. Since the last

step for our Algorithm is to compute projective equivalence which includes gauge

transformations. It suffices to compute ν up to < ν 7→ ν + 1, ν 7→ −ν >. Hence we

may assume Re(ν) ∈ [0, 1
2
]. If ν = 1

2
, then the operator will be reducible, it is easy to

solve the operator by factoring. So we do not consider ν = 1
2
.

According to Theorem 8 (i), ν is related to the multiplicity at each regular

singularity. So if we know f , then we know exactly the multiplicity at each point in

Sreg so that we can get a finite list of ν. We have:
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Lemma 12. Let Z be the set of all zeroes of f , for p ∈ Z let mp be the multiplicity

at x = p.

(i) If ∆(L, p) ∈ CK, then let

N′p :=

{
∆(L, p) + i

2mp

| 0 ≤ i ≤ 2mp − 1, i ∈ Z
}

We can make the rational part of each element in N′p belong to [0, 1
2
] by using

maps < ν 7→ ν+1, ν 7→ −ν >. Let the new set be Np. Then ν ∈ N := ∩p∈SregNp.

(ii) If ∆(L, p) /∈ CK, we can write ∆(L, p) as a1
√
k + a2 where k ∈ CK and a1,

a2 ∈ CK. Then ν = a1
√
k

2mp
(if for different p, we get different ν then there are

no Bessel type solutions.)

Proof. The lemma follows from the fact that we know the number ∆(M, p) ≡ 2mpν

mod Z (See Theorem 8), the fact that ν2 ∈ CK (See Lemma 2), and the fact that

C(x)Bν(x) + C(x)B′ν(x) is invariant under ν → ν + 1 and ν → −ν.

In chapter 4, we use this lemma to get a list of ν for the easy, logarithmic and

irrational cases. For the rational case, the list of candidate ν’s is constructed along

with the list of candidate f ’s.

3.5 Algorithm to collect local information from p

This following algorithm summarizes this chapter: (The combination of ‘singInfo’

and ‘singSeries’ in my online code is an implementation of this algorithm)
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Input : A differential operator L
Output: Sreg with exponent differences, Sirr with truncated series, B, dA and

information about ν

Find all singularities of L;
foreach singularity p of L do

Compute exponent difference ∆(L, p);
if ∆(L, p) ∈ Z and L is not logarithmic at x = p then

p is removable singularity or ‘disappearing’ singularity;
else if ∆(L, p) is a constant or L is logarithmic at x = p then

Add p to the list of Sreg with ∆(L, p);
if L is logarithmic at x = p then

Store information: “ν = 0”;
else if ∆(L, p) ∈ Q then

Store information: “ν ∈ Q \ {0}”;
else

Store information: “ν /∈ Q”;
end

else
Adjust the coefficients of ∆(L, p) with the method in Corollary 1 (ii) to
get a truncated series ;
Add p to Sirr with the truncated series;

end
Compute B resp. dA with Lemma 10 resp. Lemma 11 ;

end
Output Sreg with exponent differences, Sirr with truncated series, B, dA and
the information about ν. (If conflicting information about ν was stored, then
there are no Bessel type solutions.)

Algorithm 3: Local Information
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CHAPTER 4

SOLVING DIFFERENTIAL EQUATIONS IN

TERMS OF BESSEL FUNCTIONS

In this chapter, we will discuss the details of the algorithm to find Bessel type

solutions. In the last chapter, we have given an algorithm to compute the local

information from a differential operator L. In this chapter, our main goal is using

the local information to find a list of candidates of the change of variables f and the

Bessel parameter ν. Note f and ν are related. If we can fix f then we can get a finite

list of candidates of ν by Lemma 12. On the other hand, if we know ν, we can identify

‘disappearing’ singularities and it will give us the information about multiplicities of

factors of f . So in our algorithm, in different cases, we fix one parameter first, and

use that information to determine the other parameter. So finally, we can get a a

finite list of the pairs (f, ν). In this chapter, for the input differential operator L, we

assume LB
f−→C M −→EG L. We want to get information about f (hence M) from

L, so that we can compute the projective equivalence between M and L. If such

relation exist, we find Bessel type solutions. So the main question is how to find f .

Since f might not be in K, but g = f 2 is in K, we can assume g = A
B

, A,B ∈ CK [x],

B is monic and gcd(A,B) = 1. We want to get information about A,B from L. In

the last chapter, Algorithm 3 gives us a method to compute local information about

f and B and degree of A or at least a bound for the degree of A (denoted by dA ).

We will use the information to reconstruct f and ν. For the rational case, we also

assume A = CA1A
d
2 where C is a constant, A1 represents the zeroes from Sreg and

Ad2 represents the part contributed by ‘disappearing’ singularities. Also we will use
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mp as the multiplicity (resp. pole order) of f at x = p if p ∈ Sreg (resp. p ∈ Sirr).

We will use these notations throughout this chapter.

4.1 Linear equations

To reconstruct f , we need to find A. In this section, we will introduce a

straightforward way to find linear equations satisfied by the coefficients of A from

the information of Algorithm 3 in section 3.5. For each p ∈ Sreg, by Corollary 1 (i) in

section 3.3.4, we can get a zero of A, and for each p ∈ Sirr, we can get the truncated

series of g at x = p. Our linear equations are based on this information.

First we know a bound for the degree of A which is computed in Algorithm 3, and

is denoted by dA. So we can write A = ΣdA
i=0aix

i. Then we have dA + 1 unknowns.

Lemma 13. Assume p ∈ CK, if p ∈ Sreg, we will get one linear equation for the

coefficients of A. If p ∈ Sirr with mp as pole order of ∆(L, p), we will get dmpe linear

equations.

Proof. According to Corollary 1 (i), if p ∈ Sreg, p is a zero of A. Then we will get a

linear equation of {ai}i=0,...,dA by setting rem(A, x− p) = 0.

In addition, for each p ∈ Sirr with pole order mp, by Corollary 1 (ii) we will have a

dmpe-term truncated series of g at x = p. Then we can get the truncated series of

A = gB. On the other hand, we can rewrite A = ΣdA
i=0aix

i as a truncated series at

x = p (by Taylor or Laurent series). Since the terms in a Taylor series or Laurent

series depend linearly on the coefficients of A, by comparing the coefficients, each

term will give a linear equation about ai’s.

Example 3. 1 2

1the data is from examples at http://www.math.fsu.edu/∼qyuan
2the example will be continued in example 10 in section 4.5
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L = ∂2 +
10x3 − 21x2 + 12x− 4

x(x− 1)(x− 2)(5x− 2)
∂

− 1

36

(28x4 − 89x3 + 105x2 − 59x+ 16)(5x− 2)2

x2(x− 1)2(x− 2)6

Then we can compute Sreg = {0}, Sirr = {2} and the truncated series of g at x = 2

is 6t−42 + 21t−32 + O(t−22 ), so B = (x − 2)4 and dA = 4. We assume A = Σ4
i=0aix

i.

Then rem(A, x) = a0 = 0 gives us one linear equation. And since we can rewrite

A
B

= (a0 + 2a1 + 4a2 + 8a3 + 16a4)t
−4
2 + (a1 + 4a2 + 12a3 + 32a4)t

−3
2 + O(t−22 ).

By comparing the coefficient of two truncated series, we can get 2 linear equations

a0 + 2a1 + 4a2 + 8a3 + 16a4 = 6 and a1 + 4a2 + 12a3 + 32a4 = 21. For this example,

we have 5 unknowns and we only have 3 linear equations. But we can still solve it (

see Example 10).

For p ∈ CK , p /∈ CK , we have:

Lemma 14. If p /∈ CK, let l(x) be the minimal polynomial of p over CK. If p ∈ Sreg,

we will have deg(l) linear equations. If p ∈ Sirr, we will have deg(l) · dmpe linear

equations.

Proof. If p ∈ Sreg, then p is a zero of g. Then all the conjugates in CK of p are zeroes

of g. There are deg(l) conjugate zeroes and by setting rem(A, l(x)) = 0, we will get

deg(l) linear equations with coefficient in CK .

If p ∈ Sirr with mp as pole order of ∆(L, p), we can first consider it in the

field CK(p). Then according to lemma 13 we will get dmpe linear equations with

coefficients in CK(p). Let c +
∑n

i=0 ciai = 0 be such an equation, where {ai}

are unknowns and {ci} are coefficients in CK(p). We can rewrite the equation as∑deg(l)−1
i=0 eip

i = 0 where {ei} are linear functions with coefficients in CK . Now p is

algebraic over CK of degree deg(l), so 1, p, ..., pdeg(l)−1 are linearly independent over

CK . Hence the ei’s are 0; we get deg(l) linear equations over CK . We can do this for

all dmpe linear equations. Then we get deg(l) · dmpe equations.
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Example 4. Suppose
√

2 ∈ Sreg. If
√

2 ∈ CK, we get one equation by rem(A, x −
√

2) = 0. If
√

2 /∈ CK, we get two equations by rem(A, x2 − 2) = 0.

Suppose
√

2 ∈ Sirr, and that one of the dm√2e linear equations is 3+(1−
√

2)a1+(1+
√

2)a2 = 0. If
√

2 /∈ CK, we can rewrite that equation as (3+a1+a2)+(a2−a1)
√

2 = 0.

Then we can get two equations {3 + a1 + a2 = 0, a2 − a1 = 0}.

The straightforward method to get linear equations can be used to solve the easy

case, the irrational case and the logarithmic case.

4.2 the Easy Case

So far, we get at least ]Sreg + 1
2
dA linear equations for the coefficients of A by the

method introduced in Section 4.1. If this number is greater than dA, then we can

solve them and find A, then we can find ν by Lemma 12. We call this case the easy

case. This case is very similar to the case in [15]. We summarize the easy case as

Algorithm 4. (‘sqrtEasy’ of my codes is an implementation of this algorithm.)

Input : Sreg, Sirr with truncated series, B, dA
Output: a list of candidates of (f, ν)

Find all linear equations described in Lemma 13 and Lemma 14;
Solve linear equations to find f ;
if there is no solution then

output ∅
else

Use Lemma 12 to get a list N of candidate ν’s
end
foreach ν ∈ N do

Add (f, ν) to output list
end

Algorithm 4: the Easy Case
Let us illustrate it by an example:

Example 5.
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L := ∂2 +
(−1 + x8 − x7 − 21x6 − 16x5 + 2x4 + 19x3 − 3x2 − 16x)∂

(x+ 1)(x− 1)(x3 + x+ 1)(x4 − 4x2 − 1− 2x)

− 1

144(x3 + x+ 1)2(x− 1)3(x+ 1)3(x4 − 4x2 − 1− 2x)
(36x15 − 5x14

− 450x13 − 574x12 + 678x11 + 1281x10 + 1170x9 − 779x8 − 2310x7

− 5183x6 − 7124x5 − 6960x4 − 3720x3 − 817x2 − 66x− 41)

We can input L into Algorithm 3, we get the following information:

1. The roots of x4 − 4x2 − 1− 2x are removable singularities.

2. The roots of x3+x+1 are non-removable regular singularities with the exponent

difference 1
3
.

3. Sirr = {1,−1,∞} and the truncated series are { 1
t∞
, 3
2t1
, 1
2t−1
} respectively.

4. B = (x− 1)(x+ 1), and degree of A equals dA = deg(B) + 1 = 3.

Since dA = 3, we can rewrite A =
∑3

i=0 aix
i. So we have 4 unknown variables to

solve. But according to Lemma 13 and Lemma 14, we can have 6 linear equations

from Sreg and Sirr, enough to solve {ai}’s.

For Sreg, we use Lemma 14. The remainder of A divided by x3 + x + 1 equals

a2x
2 + (a1 − a3)x + a0 − a3. Take it to zero, then we have three equation

{a2 = 0, a1 − a3 = 0, a0 − a3 = 0}.

For Sirr, at x = 1 the truncated series is 3
2t1

and the truncated series of A
B

is

a1+a2+a3+a4
2t1

so by comparing the coefficients we get a linear equation a1+a2+a3+a4 =

3. Similarly, at x = 1, we will get a1− a0 + a3− a2 = 1. and at x =∞, the quotient

A divided by B is a3x + a2, comparing with truncated series 1
t∞

= x, we have a

equations a3 = 1. Now we can solve {ai}’s, and the solutions is A := x3 + x+ 1. so

f =
√

x3+x+1
x2−1

We still need to figure out the value of ν. By Lemma 12, we can compute ν from

Sreg and exponent differences. Since we have three zeroes and each has exponent
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difference 1
3
. So the only possible ν in (0, 1

2
) is 1

3
. Now we can compute LB

f−→C M ,

then we find the projective equivalence. we will find the general solutions is:

C1

I 1
3

(√
x3+x+1
x2−1

)
(x− 1)

1
4

+ C2

K 1
3

(√
x3+x+1
x2−1

)
(x− 1)

1
4

Remark 16. For the easy case, ν can be an integer, rational or irrational. We do

not use information from exponent differences of Sreg to compute ν. We compute ν

by lemma 12, since it is easy to compute f first in this case.

Remark 17. In some unlikely events, the linear equations from Sreg are not

independent from linear equations from Sirr. In that case, even if we have enough

equations, we still can not get f . We need to run algorithms for other cases depend

on the value of ν.

Example 6.

L := ∂2 +
3x4 − 12x2 + 5

x(x− 1)(x+ 1)(3x2 − 5)
∂ − 1

4

(x2 − 1 + 2x5)(3x2 − 5)2

(x− 1)2(x+ 1)2x7

In this case, we have Sreg = {1,−1,∞} and Sirr = {0}. The truncated series of

g at x = 0 is −t−50 + t−30 + O(t−20 ). So we have three equations from Sreg and three

equations from Sirr. If we solve the linear system, then we find g = a4x4−(a4−1)x2−1
x5

,

here a4 is free. But we only have solutions when a4 = 1. Since ν /∈ Q, we can run

Algorithm 6 for the irrational case (in section 4.4) to get two independent solutions:

I√2

(
x2−1
x5

)
and K√2

(
x2−1
x5

)
4.3 the Logarithmic Case

For the logarithmic case, we have:

Lemma 15. In the logarithmic case we know all zeroes of A.
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Proof. By Theorem 8 (i) in section 3.3.4, a change of variables can transfer a regular

singularity to a removable singularity only if ν ∈ Q \ Z. So in the logarithmic case,

Sreg contains all zeroes.

After we know all zeroes, we have to do a combinatorial search: try all possible

combinations of multiplicities of zeroes of A. After that the only unknown is the

leading coefficient of A. We have enough equations to find it.

Once we get f , we can set ν = 0 by Lemma 12 and Remark 14 in section 3.4.

We can summarize the process to Algorithm 5. (‘sqrtLog’ of my codes is an

implementation of this algorithm.)

Input : Sreg, Sirr with truncated series, B, dA
Output: list of (f, ν)

if not every singularity p ∈ Sreg is logarithmic then
output ∅

else
Let ν = 0, A = aΠp∈Sreg\{∞}(x− p)mp ;
if ∞ ∈ Sreg then

m∞ = 0;
else

m∞ ≥ 1 is an integer;
end
foreach {mp} such that Σp∈Sreg\{∞}mp = dA−m∞, mp ≥ 1 are integers do

Use linear equations described in Lemma 13 to solve a ;
if the solution exists then

Add (A
B
, 0) to output list

end

end

end

Algorithm 5: the Logarithmic case

Example 7.
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Dx2 +
(9x3 + 55x2 − 35− 5x)Dx

2(x+ 5)(x− 1)(x+ 1)x

+
−9x6 − 181x5 − 236x4 − 144x3 + 740x2 + 200x− 500 + 45x8 + 325x7

16(x+ 5)(x− 1)(x+ 1)x7

Input this operator to Algorithm 3, we can get the following information.

1. Sreg = {1,−1} they both have logarithmic solutions locally. (Note since they

are logarithmic, the exponent difference will be integer, which is not useful for

our algorithm.)

2. Sirr = {0} and the truncated series is −t−50 + t−40 + 2t−30 +O(t−20 ).

3. ∞ and −5 are removable singularities.

4. B = x5 and since ∞ is removable, so deg(A) = deg(B). So dA = 5.

If we assume A =
∑5

i=0 aix
i, then we have 6 unknowns, but from local information

we only have 5 linear equations. But according to Lemma 15, Sreg contain all the

zeroes and we know deg(A) = 5. (Note here since∞ is not in Sreg, so we do not need

to try A with degree less than 5. If ∞ is in Sreg then, for combinatorial search we

need to try degree of A from 2 to 5). So the candidates of A are a5(x − 1)(x + 1)4,

a5(x− 1)2(x+ 1)3, a5(x− 1)3(x+ 1)2, a5(x− 1)4(x+ 1). By comparing the truncated

series of A
B

at x = 0. We get a5 = 1 and f =
√

(x−1)3(x+1)2

x
is the only candidate.

Then we can compute LB
f−→C M and compute the projective equivalence. We get

the general solutions are:

C1

x
5
4

I0

(
(x− 1)3(x+ 1)2

x3

)
+
C2

x
5
4

K0

(
(x− 1)3(x+ 1)2

x3

)

4.4 the Irrational Case

For the Irrational Case, we have:

Lemma 16. In the irrational case, we know all zeroes and their multiplicities as

well.
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Proof. By Theorem 8 (i) in section 3.3.4, a change of variables can transfer a regular

singularity to a removable singularity only if ν ∈ Q \ Z. So in the irrational cases,

Sreg contains all zeroes.

For each p ∈ Sreg, let ap be the coefficient of the irrational part of the exponent

difference. Since −→EG only change the exponent difference by integers, so −→EG

does not change the irrational part of exponent difference. Then there exists k, such

that kΣp∈Sregap = dA. Then ap
k

will give the multiplicity of p.

After we get all zeroes and their multiplicities, there is only one unknown

coefficient, the leading coefficient of A. But we have 1
2
dA linear equations, enough to

get A.

Once we get f , we can get a list of candidate ν’s by Lemma 12 and Remark 14

in section 3.4.

Example 8.

∂2 +
(x4 − 6x3 + 22x2 − 32x+ 16)∂

x(x− 2)(x− 1)(x2 − 8x+ 8)

+
1

4((x− 1)2(x− 2)2x6(x2 − 8x+ 8)
(2x10 + 11x9 − 235x8 + 1008x7

− 660x6 − 5408x5 + 17312x4 − 25600x3 + 21760x2 − 10240x+ 2048)

To analyze the generalized exponents, we get the following information:

1. Sreg = {1, 2,∞} and the exponent differences are {−
√

2,−2
√

2,
√

2} respec-

tively.

2. Sirr = {0} and the truncated series is −4t−40 + 8t−30 −O(t−20 ).

3. so B = x4 and dA = 4.

Since the coefficient of the irrational part of exponent differences at x = 1,x = 2, x =

∞ are 1, 2, 1 resp. The only possible multiplicities such that m1 : m2 : m∞ = 1 : 2 : 1

and m1+m2+m∞ = dA is m1 = m∞ = 1 and m2 = 2. (Note the multiple of∞ equal
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m∞ means that deg(A) +m∞ = deg(B)). So g = a(x−1)(x−2)2
x4

= − 4a
x4

+ 8a
x3

+ O(x−2).

By comparing the coefficients, we get a = 1.

After we get f , we can use Lemma 12 to compute that ν can be either
√

2 or
√

2 + 1
2
.

By apply the projective equivalence, we get the general solutions is:

C1

I√2

(√
(x−1)(x−2)2

x4

)
x

+ C2

K√2

(√
(x−1)(x−2)2

x4

)
x

The Algorithm (‘sqrtIrrat’ is an implementation of my code) is described as:

Input : Sreg, Sirr with truncated series, B, dA
Output: list of (f, ν)

Use Lemma 15 find all zeroes and multiplicities;
Use linear equations given by Lemma 13 to get the leading coefficient;
Use Lemma 12 to get a list of candidates for ν’s;
Add solutions to output list;

Algorithm 6: the Irrational case

Remark 18. If we only apply −→C, then Lemma 2 proved that ν2 ∈ CK. But if we

apply −→EG as well, then the exponent differences will shift by integers. Then it is

possible that ν2 /∈ CK. By analyzing the conjugates, we can get (ν − n
2
)2 ∈ CK for

some n ∈ Z. (if n
2
∈ Z we may assume ν2 ∈ CK)

Example 9.

L := ∂2 +
x+ 2

x(x+ 1)
∂ − 7

16
· 4 + 7x2 + 7x3

(x+ 1)x2

Using our implementation and input “BesselSolver(L)” produces two independent

solutions:
−(9 + 4

√
2)x+ (4− 8

√
2)

x
I√2− 1

2

(
7

4
x

)
+ 7I 3

2
−
√
2

(
7

4
x

)
and

(9 + 4
√

2)K√2− 1
2

(
7

4
x

)
− 7K 1

2
+
√
2

(
7

4
x

)
Note in this example, L ∈ Q(x)[∂]. But ν =

√
2− 1

2
and ν2 /∈ Q.
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4.5 Linear Equations for the Rational Case

The hardest case is the rational case. This case is hard because in the rational

case, if the multiplicity at x = p of g is multiple of denominator of ν, then the change

of variable will send regular singularities to removable singularities. Removable

singularities may become regular under −→EG. Those ‘disappearing’ singularities

will not give us any useful local information. Note those ‘disappearing’ singularities

is not a trouble in [14] because it just consider the unramified case, in which f itself

is a rational functions. In that case, we will have enough information from Sirr. But

for more general cases, we only have g = f 2 is a rational function. To reconstruct

g we need double information than [14]. So roughly Sirr only give us about half

information we need to construct g. For example, in Example 3, we do not have

enough information to construct g. So we have to consider other method.

The first thing we notice is that the denominator of ν (denoted by d = denom(ν))

is important, because d along with the multiplicities will determine whether the

singularities ‘disappear’. We also notice that d > 2 because the case ν ∈ Z has

already been treated (the logarithmic case) and if ν ∈ 1
2
Z then LB is reducible,

which can be solved by factoring the operator. We will compute a finite set of

possible values of d. (see Lemma 17 and 18 on next page)

Now assume ν is found. Let p be a root of A and ∆(L, p) ≡ 2mpν mod Z. If

d | 2mp, change of variables x 7→ f will send p to a removable singularity. Again

this is hard because if p is removable, then p /∈ Sreg, which means that not all roots

of A are known (not all roots of A are in Sreg). But if a zero p of A becomes an

removable singularity, the multiplicity3 2mp must be a multiple of d. So we can

rewrite A = CA1A
d
2, where A1, A2 ∈ CK [x] and C ∈ CK , A1 is monic and the roots

of A1 are the known roots of A (the elements of Sreg).

3If mp is multiplicity of f at x = p, then 2mp is multiplicity of A.
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For Sreg = ∅, since we don’t know any singularities we can let A1 = 1 and find

the list of d by the following lemma:

Lemma 17. If Sreg = ∅, then d | dA.

Proof. Since Sreg = ∅, if p is a root of g, then it is a disappearing singularity. So

d | 2mp. So A = C · Ad2.

For Sreg 6= ∅, we have:

Lemma 18. If Sreg 6= ∅, we can find a list of candidate pairs (d,A1) by solving

Diophantine equations.

Proof. We assume N = #Sreg, Sreg = {p1, ..., pN} and ∆(L, p) is the exponent

difference at x = p. Let A1 = ΠN
i=1(x−pi)mpi , 1 ≤ mpi < d and dp = denom(∆(L, p)).

For each point p ∈ Sreg, dp | d. So we have l | d where l := lcmp∈Sregdp. So d can

only be a multiple of l, and it must be less or equal than dA. So there are bdA/lc

possibilities for d. Once we fix d, then for each p ∈ Sirr we have d
dp
| mp. So solve

(
∑N

i=1mpi) + deg(A2)d = dA, 1 ≤ mpi < d and d
dpi
| mpi . It will give finitely many

candidates for A1.

After we fixed A1, we need to compute C. Assume g =
CA1Ad

2

B
. By remark 24

in section 4.10, g ∈ K. By the construction of A1 and B, A1

B
∈ CK(x). Now

CAd2 ∈ CK [x]. It does not imply that A2 ∈ CK [x]. To get A2 ∈ CK [x] we choose

C ∈ CK by the following methods.

Case 1: (CK ∪ {∞}) ∩ Sirr 6= ∅

Let p ∈ (CK ∪ {∞}) ∩ Sirr. Then ∆(L, p) ∈ CK(tp). From ∆(L, p), we can compute

a truncated series for f 2 =
CA1Ad

2

B
. From it, we can compute a truncated series for

f 2B/A1 (which equals CAd2). Let C be the coefficient of the first term of this series.

Now the first term of truncated series of Ad2 is 1 at x = p. 1 ∈ CK is always a dth

root of 1. When we try to find truncated series of A2 at x = p, we can let the first
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term be 1 (or other roots of 1 in CK) and construct other terms by Hensel Lifting.

By the way of the construction, A2 will be in CK [x].

To proof the method to choose C is correct, we still need to prove that if we choose

other Ĉ such that A2 is in CK [x], then it will lead to the same candidates of g.

Definition 29. We say C1 and C2 are equivalent (C1 ∼ C2), if C1 = C2 · cd where

c ∈ CK.

Let C1 = cdC2. Suppose g =
C1A1Ad

2

B
is a candidate we find from the local data.

Then g = C2A1(cA2)d

B
. So if we can get g from C1 we can also get it from C2. So if

C1 ∼ C2 then they lead to the same candidates.

Lemma 19. Assume (CK ∪ {∞}) ∩ Sirr 6= ∅. A1 and B, which are monic and in

CK [x], are fixed. Let p ∈ (CK∪{∞})∩Sirr and C and A2 be computed by the method

we introduced in case 1 above and Theorem 10 below. Then if g = ĈA1Â2
d

B
, Ĉ ∈ CK

and Â2 ∈ CK [x], then C ∼ Ĉ.

Proof. According to the assumptions, CAd2 = ĈÂ2

d
. So C

Ĉ
= Â2

d

Ad
2
∈ CK . Then the

difference between A2 and Â2 is a scale multiplication. Assume A2 = c · Â2 and

c ∈ CK , then C · cd = Ĉ. So C ∼ Ĉ.

Since all C’s in this case are equivalent. So our method is sufficient in this case.

Case 2: (CK ∪ {∞}) ∩ Sirr 6= ∅

In that case, we can temporarily extend the field CK to CK(p), for some p ∈ Sirr.

Recompute the local data over the new field and compute all candidate g ∈ CK(p)(x)

as in case 1. Then discard all g’s that do not simplify to an element of CK(x). (See

Remark 24 in Section 4.10).

Remark 19. In case 2, sometimes we can still use the way in case 1 to guess the

value of C. But it might not lead to the correct candidates, because C might not be
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unique up to ∼. So we need to introduce the algebraic extensions. More details and

examples are discussed in section 4.7.

Now the only unknown part of A is A2. We can assume A2 =
∑deg(A2)

i=0 bix
i. Since

deg(A2) ≤ 1
d
dA ≤ 1

3
dA, we have

Lemma 20. For the rational case, we only need 1
3
dA + 1 equations to recover A.

We can not get the equations by the same methods as in Lemma 13 and [14, 15].

If we do so, the equations we get for {bi} will not be linear, because we need to

evaluate the dth power (See Example 10) The solution to this problem is as follows:

Theorem 10. In the rational case, for A = CA1A
d
2, and A2 =

∑deg(A2)
i=0 bix

i, for each

p ∈ Sirr with mp as the pole order of g at x = p, we will get dmpe linear equations of

{bi}.

Proof. Since the exponent difference at x = p will give a dmpe-term truncated series

of g = A
B

at x = p, we can also write B and CA1 as a series at x = p. Then we can get

the dmpe-term truncated series of Ad2 = gB
CA1

. We assume the series is
∑

mp<i≤2mp
cit
−i
p

where tp is the local parameter at x = p. We can rewrite the series as c2mpt
−2mp
p S,

where S is a power series with the initial term 1. Let S1/d be a power series with

first term 1 such that Sd1/d = S. Write S1/d = 1 + Σi>0ait
i
p where a1, ..., admpe−1 are

computed by Hensel lifting. Let µd = {r | r ∈ CK , r
d = 1}. By the method to

construct C there should be a dth root of c2mp in CK . Let c be such a root. Then

for each r ∈ µd, let Sr = ct
−2mp/d
p rS1/d. Then Sr is a truncated series at x = p

whose dth power is the truncated series of gB
CA1

at x = p. Then we can also rewrite

A2 =
∑deg(A2)

i=0 bix
i as a truncated series at x = p. By comparing the coefficients of

Sr and A2, we will get dmpe linear equations. Doing this for every p ∈ Sirr provides

enough linear equations to find A. Note that we have to try all combinations of

r ∈ µd at every p ∈ Sirr.
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Remark 20. If p /∈ CK, we can use the results from Lemma 14 to get equations. So

we can always obtain ≥ 1
2
dA linear equations, while b1

3
dAc+1 equations are sufficient.

So we always get enough linear equations.

Remark 21. If we get a candidate (f, d), then {f}×{a
d
| gcd(a, d) = 1, 1 ≤ a < 1

2
d}

is a list of candidates for (f, ν).

Example 10. Continue with Example 3. We know Sreg = {0}, Sirr = {2} with

the truncated series of g is ∆ = 6t−42 + 21t−32 + O(t−22 ), B = (x − 2)4 and dA = 4.

Lemma 13 did not provide sufficiently many equations. But for this case the only

possible situation is A = CxA3
2, and A2 = a0 + a1x. The truncated series of A

B
is

2C(a0 + 2a1)
3

t42
+

6C(a0 + 2a1)
2a1 + C(a0 + 2a1)

3

t32
+O(t−22 )

By comparing the coefficient, we have equations {2C(a0+2a1)
3 = 6, 6C(a0+2a1)

2a1+

C(a0 + 2a1)
3 = 21}, but it is not linear. But the truncated series at x = 2 of CA3

2 is

the series of ∆ · (x− 2)4/x at x = 2, which is 3 + 9t2 +O(t22). So we can let C = 3.

Then series of gB
CA1

is S = 1 + 3t2. Since K = Q(x), the only 3rd root of 1 is 1.

So the only possible truncated series which is 3rd root of S is 1 + t2 + O(t22). And

comparing it with a0 +a1x = a0 +2a1 +a1t2, we get two linear equations a0 +2a1 = 1

and a1 = 1. Solve them we get a0 = −1, a1 = 1. So g = 3x(x−1)3
(x−2)4 .

4.6 the Rational Case

This is an example to illustrate the case when Sreg = ∅

Example 11. L = ∂2 + 2− 10x+ 4x2 − 4x4. K = Q(x)

Sreg = ∅ and Sirr = {∞} with the truncated series of g at x = ∞ is

4
9
t−6∞ − 4

3
t−4∞ +O(t−3∞ ). So dA = 6 and B=1.

It is the rational case with Sreg = ∅. d can only be the factor of dA, so d ∈ {3, 6}.

Since we do not know zeroes for A, let A1 = 1. We can write A = CAd2. If d = 3
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then A = CA3
2, A2 = a0 + a1x+ a2x

2. Since B = 1, then the truncated series of gB

is the same as g.

There is only one singularity and the coefficient of the term with lowest degree is 4
9
.

So we can let C = 4
9
. Since ∞ is the only singularity, so C is the leading coefficient

of A.

The truncated series of A3
2 = gB/C is t−6∞ + 3t−4∞ + O(t−3∞ ) = t−6∞ (1− 3t2∞ + O(t3∞)).

Since the only 3rd root of 1 in CK is 1, then the only 3rd root of 1 − 3t2∞ + O(t3∞)

is 1 − t2∞ + O(t3∞). So by comparing coefficients of t−2∞ (1 − t2∞ + O(t−3∞ )) and

A2 = a0 + a1t
−1
∞ + a2t

−2
∞ , we can get A2 = x2 − 1 and then g = 4

9
(x2 − 1)3.

We can do this process for d = 6, in this case, there are no solutions. So we have

(2
3

√
x2 − 1)3, 1

3
) as the only possible candidate.

We compute LB
f−→C M , and then the projective equivalence from M to L.

Combining these transformations produces the following solutions of L:

C1

(
2(2x4 + x3 − 3x2 + x+ 2)√

x2 − 1
I 1

3

(
2

3

√
(x2 − 1)3

)

+ 2(2x+ 1)(x2 − 1)I 4
3

(
2

3

√
(x2 − 1)3

))

+ C2

(
2(2x4 + x3 − 3x2 + x+ 2)√

x2 − 1
K 1

3

(
2

3

√
(x2 − 1)3

)

− 2(2x+ 1)(x2 − 1)K 4
3

(
2

3

√
(x2 − 1)3

))

Here is an example to illustrate how to find d and A1 if Sreg 6= ∅.

Example 12. Consider the operator:
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L := ∂2 − 15x4 − 30x3 + x2 + 8x− 4

x(x− 1)(15x3 − 10x2 + 9x− 4)
∂−

1

36x2(15x3 − 10x2 + 9x− 4)(x− 1)2
(30375x20−

212625x19 + 733050x18 − 170595x17 + 3034305x16−

435055x15 + 5166936x14 − 5172228x13 + 4401369x12−

3189159x11 + 1962738x10 − 1016622x9 + 434943x8−

149229x7 + 38844x6 − 3933x5 − 4554x4 + 3789x3−

1612x2 + 432x− 64).

Sreg = {1, 0}, with the exponent difference 5
3

and 4
3

respectively. We also have

Sirr = {∞} and the truncated series of g at x =∞ is t−15∞ −5t−14∞ + 13t−13∞ −25t−12∞ +

38t−11∞ − 46t−10∞ + 46t−9∞ − 38t−8∞ +O(t−7∞ ). So B = 1 and dA = 15.

We can easily verify that this is a rational case. The exponent difference at x = 0 and

x = 1 both have denominator 3, so d is a multiple of 3. If d = 3 thenA = Cx2(x−1)Ad2

or A = Cx(x − 1)2Ad2. If d = 6, then the multiplicity at both 1 and 0 should

be a multiple of 6
3

= 2. Then the degree of A is even which will contradict with

deg(A) = 15. If d = 9 then the multiplicity at both 1 and 0 should be a multiple of

9
3

= 3. Then the only possible case is A = Cx3(x−1)3A9
2. Similar to d = 6, if d = 12,

there are no possible cases. If d = 15, then A = Cx5(x− 1)10 and A = Cx10(x− 1)5

are candidates as well. So the list of candidates of A is:

{Cx2(x− 1)A3
2, Cx(x− 1)2A3

2, Cx3(x− 1)3A9
2, Cx5(x− 1)10, A = Cx10(x− 1)5}

Next we compute each candidate by the method in Theorem 10 to find C and linear

equations to solve A2. Finally, we find f =
√
x4(x− 1)5(x2 + 1)3 and ν = 1

3
is the

only remaining candidate .

Let LB
f−→C M . Now M is already equal to L. So the general solution is:

C1I 1
3

(√
x4(x− 1)5(x2 + 1)3

)
+

C2K 1
3

(√
x4(x− 1)5(x2 + 1)3

)
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If we assume d = denom(ν) and f 2 = g =
CA1Ad

2

B
. Algorithm 7 gives the sketch

for the rational case. (See Appendix 1 for corresponding codes)

Input : Sreg, Sirr with truncated series, B, dA
Output: list of (f, ν)

if Sreg = ∅ then
Let the list of candidates for d be the set of factors of dA;
Let A1 = 1;

else
Use Lemma 18 to get a list of candidates for d and A1

end
foreach candidate (d,A1) do

Fix C by method on Page 53;
Use linear equations given by Theorem 10 to compute A2 ;
If a solution exists, add {f} × {a

d
| gcd(a, d) = 1, 1 ≤ a < 1

2
d} to output list

end

Algorithm 7: the Rational case

4.7 Algebraic Extension

So far, all of our examples have base field K = Q(x). This section we will

discuss how to deal with algebraic extension, in the previous section, we have already

discussed some methods to deal with algebraic extension. In this section, we will

discuss the more details with examples.

There are three types of algebraic extensions we need to deal with. The easiest one

is the case that the singularities or Bessel Parameter ν is not in the base field. Those

two cases cause no trouble. If ν /∈ CK , we simply enter the irrational case. The

algorithm will work, because we only use coefficient of irrational part of ν to find f .

If a singularity p is not in CK , there is no trouble because by using Lemma 14, we

can still get the linear equations we need.

The second type of algebraic extension is CK 6= Q(x). In this scenario, we use

the same algorithm because our algorithm works for all CK of characteristic 0.

But we might need more computations in the rational case. A example is when
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ξ3 = 1
2

+
√
−3
2
∈ K and ν = 1

3
. When we try to find the 3rd roots of truncated series,

instead of one series, we will get three different series, which will triple the number

of candidates. But the idea of the algorithm is the same.

Example 13. Consider the operator:

L := x∂2 + (1−
√
−6x− 2x2)∂ +

36x2 + 10
√
−6x− 1

36x

There is one regular singularity 0 with difference 1
3

and one irregular singularities

at x = ∞ with the power series, 1
2
(
√
−6x + x2)2. B = 1 and degree of A is 4. So

the only possible change of variable is g = f 2 = Cx(a1x + a0)
3. Since ξ3 = 1

2
+
√
−3
2

is not in CK . So we only get one series when we take the 3rd root. Finally we find

g = 1
4
(2
3

√
−6 + x)3x and we find the general solution:

C1
e

1
2
x2+ 1

2

√
−6x√

2
√
−6 + 3x

(
− 3(3x2 + 3

√
−6− 8)I 2

3

1

2

√(
2

3

√
−6 + x

)3

x


+
√

3

√
(2
√
−6 + 3x)3xI 3

4

1

2

√(
2

3

√
−6 + x

)3

x

)

C2
e

1
2
x2+ 1

2

√
−6x√

2
√
−6 + 3x

(
− 3(3x2 + 3

√
−6− 8)K 2

3

1

2

√(
2

3

√
−6 + x

)3

x


+
√

3

√
(2
√
−6 + 3x)3xK 3

4

1

2

√(
2

3

√
−6 + x

)3

x

)

This example shows how algebraic extension affect the behavior of the solver.

Example 14.
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L := Dx2

− 2

(2x2 + 2x− 1 +
√
−3)(−2x3 + 4x+ x2 + 3 + 2x

√
−3)(x+ 1)(x− 1)

(−6x6

− 2x5 + 16x4 + x4
√
−3 + 4x3 − 16x2 − 4

√
−3x2 − 10x− 8x

√
−3 + 2−

√
−3)Dx

− 1

9

1

(2x2 + 2x− 1 +
√
−3)2(−2x3 + 4x+ x2 + 3 + 2x

√
−3)(x+ 1)4(x− 1)4

(477

+ 10185x7
√
−3 + 72

√
−3− 462x11

√
−3 + 756x12

√
−3− 3129x4

√
−3

− 2502x2
√
−3− 144x15 − 4278x9

√
−3− 4947x4 + 531x2 − 3578x11 + 1468x13

+ 2281x7 + 216x13
√
−3 + 16804x8 − 10214x10 + 963x− 20831x5 + 2982x12

+ 2413x3 + 4857x8
√
−3− 4497x10

√
−3− 4527x3

√
−3 + 4443x6

√
−3

− 1143x5
√
−3 + 9x

√
−3− 21545x6 − 216x14 + 2452x9)

After collecting the local information, we find that there are no regular singular-

ities and there are three irregular singularities at x = ∞, at x = ±1, the truncated

series are 2t∞, −1
2
t2−1, and 10+9

√
−3

2
t21 respectively. B = (x− 1)2(x+ 1)2 and dA = 6.

Since dA = 6 and no regular singularities, so d (denominator of ν) can only be 3 or

6. Let us look at the case d = 3. We notice here the 3rd unit root is in the field. So

if we take the third root of the power series, we will get three instead of one power

series. For example, we assume A = CA1A
3
2 and A2 = a2x

2 + a1x1 + a0. We can

fix C = 2 and A1 = 1. Then we can get the at x = ∞, the truncated power series

of A3
2 is t6∞, when we take the 3rd root of this series, we can get three series: t2∞,

−1
2

+
√
−3
2
t2∞ and −1

2
−
√
−3
2
t2∞. We have 3 irregular singularities, at each point, we

will have 3 series as well. So we will have to try 27 combinations to obtain the list of

candidate of f when ν = 1
3

(there are no solutions when denominator of ν equal 6):

2(x2 + x+ 1
2

+
√
−3
2

)3

(−1 + x2)2
,
2(1

2
+
√
−3
2
x+ x2)3

(−1 + x2)2
,
2(−1−

√
−3 + (−1

2
−
√
−3
2

)x+ x2)3

(−1 + x2)2
,

2(−1−
√
−3
2

+ (−1
2
−
√
−3)x+ x2)3

/(−1 + x2)2
,
2(−7

4
− 2

√
−3
4

+ (1
4
− 3

√
−3
4

)x+ x2)3

(−1 + x2)2
,

2(−7
4

+
√
−3
4

+ (−5
4

+ 3
√
−3
4

)x+ x2)3

(−1 + x2)2
,
2(−7

4
+ 3

√
−3
4

+ (−5
4

+
√
−3
4

)x+ x2)3

(−1 + x2)2
,
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2(−5
2

+ (
√
−3
2

+ (−1
2

+
√
−3
2

)x+ x2)3

(−1 + x2)2
,
2(−1

4
+
√
−3
4

+ (7
4

+
√
−3
4

)x+ x2)3

(−1 + x2)2

We can see the algebraic extension makes the problem more complicated, we need

check more candidate. If we try this list, we find the general solution is:

C1I 1
3


√

2
(

1
2

+
√
−3
2
x+ x2

)3
(x2 − 1)

+ C2K 1
3


√

2
(

1
2

+
√
−3
2
x+ x2

)3
(x2 − 1)


The third type of the algebraic extension is that the algebraic extension is introduced

by the algorithm itself. It happens when C is not unique (up to multiplication by a

dth power) over CK (only happened in case 2 on page 54, all the irregular singularities

are not in the base field). Although it is possible to compute all C’s up to ∼ directly,

it is a complicated algebraic problem. In stead, to find proper C’s in that case, we

add one irregular singularity p into CK . So now we work over CK(p). This action

required that we compute the exponent difference over the new field CK(p), because

some algebraic singularities might factor now. Once we extend the base field, we

only need to deal with the other two types of algebraic extension. And C is unique

(up to multiplication by a dth power) in the new field according to Lemma 19.

This example give us the idea why we need to introduced the algebraic extension.

Example 15.

L := Dx2 − 3(4x10 − 2x8 + 11x6 − 13x4 − 5x2 + 1)Dx

x(4x6 − 6x4 − 5x2 + 3)(x4 + 1)
+

x2(12x18 + 18x16 − 83x14 + 83x12 + 534x10− 714x8 − 299x6 + 315x4 + 224x2 − 58)

(4x6 − 6x4 − 5x2 + 3)(x4 + 1)4

Let ξ8 be one of the roots of x4 + 1. L has no regular singularities and 4 irregular

singularities at four root of x4 +1. Since every point in Sirr is not in Q, it is case 2 on

page 54. So we temporarily extend the constant field to Q(ξ8). Now it reduced to case

1 on page 53. At x = ξ8, we have the truncated power series − ξ28
2
tξ8 . B = (x4 + 1)2

and dA = 8. So the denominator of ν can be 4 or 8. Let us assume ν = 1
4
. We can
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compute the truncated series of A = CA1A
4
2 at x = ξ8 is −8t0ξ8 . So let C = −8.

Then we find the following candidates of g:{
− 8

(x4 + 1)2
,

8x4

(x4 + 1)2
,− 8x8

(x4 + 1)2
,
2(x2 − 1)4

(x4 + 1)2
,
2(x2 + 1)4

(x4 + 1)2
,

−1

2
· (x2 + (ξ38 − ξ8)x− 1)4

(x4 + 1)2
,−1

2
· (x2 − (ξ8 + ξ38)x+ 1)4

(x4 + 1)2
,

−1

2
· (x2 + (ξ8 − ξ38)x− 1)4

(x4 + 1)2
,−1

2
· (x2 + (ξ8 + ξ38)x+ 1)4

(x4 + 1)2

}
Note here we have C ∼ 2 ∼ −1

2
∼ 8 in Q(ξ8).

Using Remark 24 in Section 4.10, we can discard those candidates not defined in

Q(x). So we get the list of candidates of g:{
− 8

(x4 + 1)2
,

8x4

(x4 + 1)2
,− 8x8

(x4 + 1)2
,
2(x2 − 1)4

(x4 + 1)2
,
2(x2 + 1)4

(x4 + 1)2

}
Then we compute it under −→EG. We find the general solutions:

C1

√
1

(x2 − 1)

(
I 1

4

(√
2(x2 − 1)2

(x4 + 1)

)
+
√

2(x2 − 1)I 5
4

(√
2(x2 − 1)2

(x4 + 1)

))

+C2

√
1

(x2 − 1)

(
K 1

4

(√
2(x2 − 1)2

(x4 + 1)

)
+
√

2(x2 − 1)K 5
4

(√
2(x2 − 1)2

(x4 + 1)

))

If we do not introduce the algebraic extension and work the problem over Q(x)

instead of Q(ξ8)(x), then we will get fewer candidates from C = −8.4 Since C 6∼ 2

over Q then we will not find the solutions from C = −8. If we can find C = 2 when

we work over Q, then we can find the solutions. But there is no obvious way to find

such C. The example also suggests that C = 8 might lead to solutions. If we work

over Q and we want to find the solutions, then we need to find all candidates of C,

i.e {−8, 8, 2} in this example, and we need to find which candidate of C will lead to

the final solutions. It is not a easy problem.

4this was what an old version of the program did, it can only find the candidates − 8
(x2+1)4 and

− 8x8

(x2+1)4

63



The reason we choose algebraic extension instead of compute C direclty is the

following:

If we apply the algebraic extension we reduce our problem to a relatively easy case,

which has been handled in our program. And we can discard the candidates which

not in CK by remark 24 in section 4.10. By contrast, if we deal with the algebraic

problem directly, we will meet the problem with uncertain complexity.

4.8 The Algorithm

The input of the algorithm is a differential operator L of order 2. We want to

find whether there exist solutions can be represented in terms of bessel functions. If

they exist, then find the solutions. Otherwise the algorithm outputs ∅. Algorithm 8

on next page gives the sketch.(‘BesselSolver’ is an implementation of my code. )

Here we also want to compare our algorithm with the old Bessel solver in [14].

Any operator which is solvable in old algorithm can be solved in our algorithm. The

old solver can not solve the square root case. For those cases that can be solved by

both solver, it is natural that we want to choose the faster one. So we can compare

our algorithm and the old algorithm for those cases. To find the list of f ’s, the old

one need to try all the possible sign of each exponent difference, since we square the

exponent differences, we do not need to deal with the signs, instead, we need to find

the dth root of power sires. In general, if no algebraic extension exist, both algorithm

run very fast. If we need algebraic extension, the old solver works a little bit faster.

Example 16. We can find Example 15 can be solved in both solver. In my computer,

the old one runs 1.81 second and our solver runs 1.93s

Although the old code can be fast, we should always run the new code, because

even if the generalized exponents are not ramified, it might only be solved in the

square root case. Here is the example:
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Input : an irreducible differential operator L
Output: solutions represented in terms of Bessel functions if they exist

Use Algorithm 3 to compute local information;
Compute the number of linear equations N ;
(N ≥ #Sreg + 1

2
dA) ;

if N > dA then
go to the easy case, Algorithm 4

else if L logarithmic at some p ∈ Sreg then
go to the logarithmic case, Algorithm 5

else if there is p ∈ Sreg with ∆(L, p) /∈ Q (i.e ν /∈ Q) then
go to the irrational case, Algorithm 6

else
go to the rational case, Algorithm 7

end
/* It will give us a list of candidates for (f, ν), where f is the

function of the change of variables, and ν is the parameter of

Bessel functions */

foreach (f, ν) in list of candidates do

Compute an operator M(f,ν) such that LB
f−→C M(f,ν);

Use Algorithm 1 to compute whether M(f,ν) −→EG L and compute the
transformation;
if such transformation exists then

Add the solution to Solutions List
end

end
Output the solutions list;

Algorithm 8: Main Algorithms

Example 17. The generalized exponent of Example 11 are not ramified. The only

singularity is ∞ with truncated series 4
9
t−6∞ − 4

3
t−4∞ + O(t−3∞ ). It is not ramified. But

it can not be solved by the old solver. It can be solved by our solver.

4.9 Examples

Here we list more examples:

This example is very short but have complicated solutions.

Example 18.
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L := ∂2 +
4 + 3x+ x2

3x
∂ − x+ 1

9x
;

It has one regular singularity at x = ∞ with truncated series 1
144
t−4∞ + 0t3∞ and

one regular singularity at 0 with exponent difference 1
3
. Download our program and

input ‘BesselSolver(L)’ produces

C1
e−

1
12
x2− 1

2
x

√
4 + xx

1
6

(
(x2 + 6x+ 16)I 1

3

(
1

12

√
(4 + x)3x

)
+ I 4

3

(
1

12

√
(4 + x)3x

))
+C2

e−
1
12
x2− 1

2
x

√
4 + xx

1
6

(
(x2 + 6x+ 16)K 1

3

(
1

12

√
(4 + x)3x

)
+K 4

3

(
1

12

√
(4 + x)3x

))
Example 19. The example occurred in [16], was solved in [17]. It shows how to

solve higher order equations in terms of Bessel functions:

L := x∂4 + 2∂3 − 9M + 8x2

xM
∂2 − −9M + 8x2

x2M
∂ − λ2x(λ2M + 8)

M

We can use Maple command DFactorLCLM to factor L into two factor L1 and

L2, so L = LCLM(L1, L2). Here

L1 := ∂2 +
(x2λ4M2 + 8λ2x2M + 16x2 − 48M)∂

x(x2λ4M2 + 8λ2x2M + 16x2 − 16M)

− 4M3λ4 + 32λ2M2 + 16x2λ4M2 + 80λ2x2M + 128x2 + λ6x2M3

M(x2λ4M2 + 8λ2x2M + 16x2 − 16M)

L2 := ∂2 +
(x2λ4M2 + 8λ2x2M + 16x2 − 48M)∂

x(x2λ4M2 + 8λ2x2M + 16x2 − 16M)

− 4M3λ4 + 32λ2M2 + 16x2λ4M2 + 80λ2x2M + 128x2 + λ6x2M3)

(M(x2λ4M2 + 8λ2x2M + 16x2 − 16M))

Now both L1 and L2 are order 2 operator so we can call BesselSolver: We solve L1,

we get:

C1

x

(√
λ2M + 8

M
x(λ2M + 4)I0

(√
λ2 +

8

M
x

)
+ (−2λ2M − 16)I1

(√
λ2 +

8

M
x

))
C2

x

(√
λ2M + 8

M
x(λ2M + 4)K0

(√
λ2 +

8

M
x

)
+ (−2λ2M − 16)K1

(√
λ2 +

8

M
x

))
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We solve L2, we get:

C1

x
(λx(λ2M + 4)J0(λx)− 2J1(λx)λ2M)

+
C2

x
(λx(λ2M + 4)Y0(λx)− 2Y1(λx)λ2M)

V (L1) and V (L2) will generate the solution space V (L).

4.10 Proof of Uniqueness

In this section, we want to prove that the change of variables f =
√
g is unique.

In this section, we prove it only for K = Q(x) and K = Q(x) and ν ∈ Q. We also

exclude the case ν = 1
2

+ n, n ∈ Z, because LB is reducible in that case.

Theorem 11. If L
√

B has a solution exp(
∫
r)(r0Bν(

√
g) + r1(Bν(

√
g))′) where

r, r0, r1, g ∈ Q(x) and ν ∈ Q, then g = x, r1 = 0 and exp(
∫
r)r0 is a constant.

Remark 22. Using a standard argument, the theorem implies a similar statement

with Q replaced by C.

To prove Theorem 11, we need several lemmas:

Lemma 21. Let r, r0, r1, g be as in Theorem 11. Then exp(
∫
r) ∈ Q(x). Thus we

can rewrite the solution in Theorem 11 as r̃0Bν(
√
g) + r̃1(Bν(

√
g))′, r̃0, r̃1 ∈ Q(x).

Proof. The Wronskian of two functions y1, y2 is W (y1, y2) := y1y
′
2 − y2y′1. Define the

Wronskian of an operator L as the Wronskian of two independent solutions of L.

Then if y1, y2 are independent solutions of L := ∂2 +a1∂+a0, then W (y1, y2) satisfies

the differential equation W ′ = −a1W . (See [35] and [32]).

If L
√

B has solutions exp(
∫
r)(r0Bν(

√
g) + r1(Bν(

√
g))′), then we have

L
√

B

g−→C M1
r0,r1−→G M2

r−→E L
√

B (4.1)

One can compute formulas for the effect of
g−→C ,

r0,r1−→G and
r−→E on the Wronskian.

Applying those to (4.1) gives exp(
∫
r) ∈ Q(x).
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Let r̃0 = exp(
∫
r)r0 and r̃1 = exp(

∫
r)r1. L

√

B has solutions r̃0Bν(
√
g) + r̃1(Bν(

√
g))′,

where r̃0, r̃1 ∈ Q(x).

So from this point, it is sufficient to consider the form r0Bν(
√
g) + r1(Bν(

√
g))′.

To continue our proof, we need to use the p-curvature. (see Section 3.2 and [35]).

Lemma 22. For u ∈ Fp(x):

(i) χp(∂ − u) = T − u(p−1) − up, where u(n−1) is the derivative of order p− 1.

(ii) u(p−1) + up = 0 if and only if u is a logarithmic derivative of an element of

Fp(x).

Proof. See [33].

Lemma 23. The minimal operator of I 1
2
+n(x) (an element of Q(x)[∂]) has two

independent solutions: y1 = e−x

x1/2
Pn( 1

x
) and y2 = ex

x1/2
Pn(− 1

x
), where Pn(x) are

Bessel Polynomials satisfying P0(x) = 1, P1(x) = 1 + x, P2(x) = 1 + 3x + 3x2

and Pn(x) = Pn−2(x) + (2n− 1)xPn−1(x)

Proof. See A001498: Coefficients of Bessel polynomials in [42].

Lemma 24. If ν ∈ Q, then χp(LB) = T 2 − 1 for infinitely many primes p.

Proof. By Chebotarev’s density theorem, there are infinity many p, such that

ν ≡ 1
2

+ n mod p, for some n ∈ Fp.

According to lemma 23, for such p,

LB ≡ LCLM

(
∂ + 1− 1

2x
− (Pn(1/x))′

Pn(1/x)
, ∂ − 1− 1

2x
− (Pn(−1/x))′

Pn(−1/x)

)
mod p.

Note that (Pn(1/x))′

Pn(1/x)
is a logarithmic derivative, and so is 1

2x
mod p. According to

Lemma 22, these parts have no effect on the p-curvature. So:

χp(LB) = χp(LCLM(∂ + 1, ∂ − 1)) = T 2 − 1
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Lemma 25. If ν ∈ Q, and r0Bν(f) + r1(Bν(f))′ is a solution of LB where

r0, r1, f ∈ Q(x), then f = ±x+ c, where c is a constant.

Proof. Let p > deg(f) be some prime (not 2), for which ν reduces to an element

of Fp. According to Chebotarev’s density theorem, there are infinite many such

p. According to the assumptions in the lemma, we have LB
f−→C M

r0,r1−→G LB.

According to Theorem 7 and Remark 9 in section 3.2, M
r0,r1−→G LB implies

χp(LB) = χp(M). According to Lemma 24, we have

χp(M) = χp(LB) = χp(LCLM(∂ + 1, ∂ − 1)) = T 2 − 1. (4.2)

We can also compute χp(M) from LB
f−→C M , and find

χp(M) = χp

(
LCLM

(
d

df
+ 1,

d

df
− 1

))
= χp

(
LCLM

(
1

f ′
d

dx
+ 1,

1

f ′
d

dx
− 1

))
= χp (LCLM (∂ + f ′, ∂ − f ′))

= χp(∂ + f ′)χp(∂ − f ′)

= (T + (f ′)p + (f ′)(p−1))(T − (f ′)p − (f ′)(p−1))

= (T − (f ′)p)((T + (f ′)p))

= T 2 − (f ′)2p (4.3)

Here f (p) = 0 for any f , see Remark 9 in section 3.2.

Comparing χp(M) in (4.2) and (4.3) gives (f ′)2p = 1, thus (f ′)p = ±1 for infinitely

many p. So for infinitely many p, f ′ = ±1. So f = ±x+ c, for some constant c.

Lemma 26. The constant c in Lemma 25 is equal 0.

Proof. We only prove for f = x+ c, same proof can be used for f = −x+ c. Suppose

LB
x+c−→C M

r0,r1−→G LB.

Case 1: If r0, r1 ∈ Q(x), according to Lemma 8,
r0,r1−→G only shift generalized
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exponents by integers. If ν ∈ Z, then LB has only one regular singularity x = 0

and it is logarithmic at x = 0. M has only one regular singularity x = c and it is

logarithmic at x = c, so c = 0. If ν /∈ Z (the assumption also exclude the case that

ν ∈ 1
2
Z), LB has only one regular singularity and ∆(LB, 0) = 2ν /∈ Z. Since −→EG

only shift exponent difference by integer so ∆(M, 0) /∈ Z. So 0 is a regular singularity

of M . But M has only one regular singularity at x = c. So c = 0.

Case 2 (general case): If r0, r1 ∈ Q(x), then let G be Galois group Q(x) over Q(x).

Note that x+ c is invariant under G. We claim the map r0 + r1∂ : V (M)→ V (LB)

is unique up to scalar multiplication. If it is not, then r0 + r1∂ has a 1-dimensional

eigenspace5, which gives us an order one factor of M in Q(x). But it is not possible,

according to differential Galois theory6, LB and M are irreducible even over C(x).

Hence r0 + r1∂ only changes by scalar multiplication under the action of G. So r0, r1

can only change by the same scalar factor under the action of G. Assume r0 6= 0.

Then r̃1 := r1
r0

is G-invariant and hence in Q(x).

Now r0 + r1∂ = r0(1 + r̃1∂). Since 1 + r̃1∂ is G-invariant, so r0 can only change

by scalar multiplication under G. So r :=
r′0
r0

is G-invariant. So r ∈ Q(x) and

exp(
∫
r) = r0.

Now the solution can be written as exp(
∫
r) (1 + r̃1∂) and r, r̃1 ∈ Q(x). It is reduced

to case 1. So we get c = 0.

If r1 6= 0, then we can use r := exp(
∫
r1) and r̃0 := r0

r1
. We can use the same argument

to show c = 0.

Proof of Theorem 11. Since exp(
∫
r)(r0Bν(

√
g) + r1(Bν(

√
g))′) is a solution of

L
√

B , g, r, r0, r1 ∈ Q(x) and L
√

B

x2−→C LB, so exp(
∫
r(x2)2xdx)(r0(x

2)Bν(
√
g(x2)) +

r1(x
2)(Bν(

√
f(x2)))′) is a solution of LB. According to Lemma 25 and Lemma 26,

We have
√
g(x2) = ±x. So g(x2) = x2. Hence, g = x.

5After a choice of basis of V (M) and V (LB) as Q-vector space, the map r0 + r1∂ corresponds
to a 2x2 matrix.

6If the Kovacic’s algorithm [22] find no solution of a second order L ∈ C(x)[∂], then L is
irreducible in C(x)[∂]
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Now exp(
∫
r)(r0 +r1∂) gave us a map from V (L

√

B) to itself. The map is unique up to

scalar multiplication. Otherwise we can get a 1-dimension eigenspace of V (L
√

B), i.e a

first order factor of L
√

B . But L
√

B is irreducible over C(x). Since id : V (L
√

B)→ V (L
√

B)

is a such map, we get our conclusion.

Theorem 12. (Uniqueness) If L has a solution exp(
∫
r)(r0Bν(f1)+r1(Bν(f1))

′) and

exp(
∫
r̂)(r̂0Bν(f2)+ r̂1(Bν(f2))

′) where r, r0, r1, r̂, r̂0, r̂1, g1 = f 2
1 , g2 = f 2

2 ∈ Q(x), then

f1 = ±f2.

Proof. Let g ∈ Q(x) and g = N
D

, where N,D ∈ Q[x]. Then we define an inverse

(denote by g−1) of g over Q(x) as a solution in Q(x) of N(T )−D(T ) · x ∈ Q(x)[T ].

According to the assumptions, we have

L
√

B

g1−→C M1 −→EG L

and

L
√

B

g2−→C M2 −→EG L.

Since −→EG are equivalence relations, we have

L
√

B

g1−→C M1 −→EG M2

g−1
2−→C L

√

B .

If we write the solution space of L
√

B following the diagram, its solutions can be written

as

exp

(∫
r(g−12 )(g−12 )′dx

)(
r0(g

−1
2 )Bν(g

−1
2 g1) + r1(g

−1
2 )(Bν(g

−1
2 g1))

′)
According to Theorem 11 we have g−12 g1 = x. So g1 = g2, thus f1 = ±f2.

Remark 23. Theorem also holds if we replace Q(x) by Q(x). The proof is essentially

the same, but definition of g−1 is more technical.

Remark 24. Let Q ⊆ CK ⊆ Q. Let K = CK(x) and L ∈ K[∂] order 2. Suppose L

has a solution of the form exp(
∫
r)(r0Bν(f) + r1(Bν(f))′), where r, r0, r1, f ∈ Q(x).
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The uniqueness of f 2 implies f 2 ∈ K. In the algorithm any candidates g for f 2 that

is not defined over K can thus be discarded without further computation. In some

complicated examples, it significantly reduces CPU time.

Although some steps of the algorithm involve filed extension of CK , we may keep

track of the original field CK so that we can use Remark 23 to eliminate as many as

possible candidate g’s
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CHAPTER 5

SOLVING DIFFERENTIAL EQUATIONS IN

TERMS OF 0F1 AND 1F1

In this chapter, we extend our algorithm to Airy and Kummer/Whittaker

function. So we get a complete solver for all 0F1 and 1F1 functions (defined in

Section 2.3.3)

5.1 Airy Functions

According to Lemma 3 or Example 20, Airy functions are a special case of Bessel

function with square root. So we do not need a another solver for Airy functions, we

can just add some restrictions to our original solver to obtain an Airy solver. If an

operator L can be solved by Airy functions, then it can be solved by Bessel functions

as well. But the solution might shorter in terms of Airy than Bessel.

Example 20. If we input Airy operator, LA = ∂2 − x into Algorithm 8, we find

C1

√
xI 1

3
(
2

3
x

3
2 ) + C2

√
xK 1

3
(
2

3
x

3
2 )

Suppose L has Bessel type solutions Bν(f). If it is also Airy solvable, then ν must

be in 1
3

+Z or 3
2

+Z and each factor in f 2 = g must have multiplicity 3 or a multiple

of 3. So for each candidate pair (f, ν) in Algorithm 8 in Section 4.8, we can check if

it satisfies these two conditions. If so, then we can apply the change of variable to

LA
3
√
g
−→C M and then compute −→EG transformation.
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Example 21.

L = ∂2 − (3x4 + 3x3 + 5x2 + 5x+ 8)∂

x(x− 1)(x+ 1)(x+ 3x2 + 2)

+
1

4x8(x− 1)(x+ 1)(x+ 3x2 + 2)
(108x19 − 216x18 − 288x17 + 688x16

+ 192x15 − 464x14 − 176x13 − 560x12 + 568x11 + 783x10 − 359x9

− 137x8 − 345x7 − 38x6 + 368x5 − 16x4 − 4x3 − 40x2 − 48x+ 32)

Use Bessel solver, we get the candidate ν = 1
3
, f := 2

3
(x−1)

9
2 (x+1)3

x3
. The

denominator of ν is 1
3

and f
2
3 = (x−1)3(x+1)2

x2
. So L may be solvable in terms of

Airy functions. So we apply LA
f

2
3−→C M , then compute the projectively equivalence

between M and L, and find:

C1

Ai
(

(x−1)3(x+1)2

x2

)
√
x

+ C2

Bi
(

(x−1)3(x+1)2

x2

)
√
x

Example 22. L = ∂2 + 2− 10x+ 4x2 − 4x4.

This is also Example 11. If we solve it in terms of Bessel functions, we get ν = 1
3

and f = (x2 − 1)
3
2 . So L should be Airy-solvable. So we apply LA

x2−1−→C M , then

compute the projectively equivalence. We find:

C1((x+ 1)(2x− 1)Ai(x2 − 1) + (1 + 2x)Ai(x2 − 1))

+C2((x+ 1)(2x− 1)Bi(x2 − 1) + (1 + 2x)Bi(x2 − 1))
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This solution is shorter than the one given in Example 11.

We summarize it as the following algorithm

Input : an irreducible differential operator L
Output: solutions represented in terms of Airy functions if they exist

Use Algorithm 3 to compute local information Sreg with exponent difference,
Sirr with truncated series and B, dA ;
Enter different cases to compute Bessel pair (ν, f);

if at any point denom(ν) 6= 3 or f
2
3 is not rational then

drop that case;
end
foreach (ν, f) left do

compute Ai
f

2
3−→C M ;

Use algorithm described in [4] to compute whether M −→EG L and
compute the transformation;
if such transformation exists then

Add the transformation along with f
2
3 to Solutions List

end

end
Output the solution list;

Algorithm 9: Airy Solver

5.2 Kummer\Whittaker Functions

The Bessel solver can be used to solve differential equation in terms of Whittaker

functions. The same method can be found in [15] section 3.5. We include it here fore

completeness.

The Whittaker operator is:

LW := ∂2 − 1

4
+
µ

x
+

1
4
− ν2

x2

It has two independent solutions:

Mµ,ν(x) := exp

(
−1

2
x

)
x

1
2
+νM

(
1

2
+ ν − µ, 1 + 2ν, x

)

Wµ,ν(x) := exp

(
−1

2
x

)
x

1
2
+νU

(
1

2
+ ν − µ, 1 + 2ν, x

)
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Here M(µ, ν, x) and U(µ, ν, x) are the Kummer functions.

Whittaker operator has two singularities, x = 0 and x = ∞. The generalized

exponents are 1
2
± ν at x = 0 and ±(1

2
t−1∞ + µ) at x =∞. Recall that

M(α, γ, x) := 1F1(α; γ;x)

exp(−x
2

)1F1(α; 2α;x) = 0F1(;
1

2
+ α;

x2

16
).

Jv(x) = (
x

2
)ν

1

Γ(ν + 1)
0F1(; ν + 1;−x

2

4
)

and

Iv(x) = (
x

2
)ν

1

Γ(ν + 1)
0F1(; ν + 1;

x2

4
)

With these equations, we can prove that with projective equivalence, any 0F1 and

1F1 functions can be written in terms of Whittaker functions or Bessel functions (the

latter with square root).

Now we can build a similar algorithm for Whittaker solver. Recall that in Bessel case,

we have only one parameter ν and We can only find ν modulo Z. For Whittaker

case, we have:

Lemma 27. Suppose some combination of the following transformation:

(i) ν 7→ ν + 1

(ii) µ 7→ µ+ 1

(iii) µ 7→ µ+ 1
2

and ν 7→ ν + 1
2

changes LW to L, then LW and L are projectively equivalent.

Hence it is sufficient to compute one parameter modulo 1
2
Z and the other modulo

Z. Now we can study the generalized exponents to find the parameters and change

of variables, like we did for Bessel. Although Whittaker has two parameters, when

we fix µ, its generalized exponents behaviors like Bessel functions. In fact, we have

similar results for Whittaker function as Theorem 8 for Bessel functions.
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Theorem 13. Let K = CK(x), and LW
f−→C M −→EG L, where f ∈ K. Note:

Similar as Bessel case, L is the input to our algorithm, and f and M are to be

computed.

(i) if p is a zero of f with multiplicity mp ∈ 1
2
Z+, then p is an apparent singularity

or p ∈ Sreg, and ∆(M, p) = 2mpν.

(ii) p is a pole of f with pole order mp ∈ 1
2
Z+ such that f =

∑∞
i=−mp

fit
i
p, if and

only if p ∈ Sirr and ∆(M, p) = 2mpµ+
∑

i<0 ifit
i
p.

Proof. The proof is analogous to the proof of Theorem 8. The only difference is

at x = ∞. We just need to adjust the generalized exponents of Bessel function to

Whittaker function. We will get the extra term 2mpµ.

The only difference of generalized exponents between Bessel case and Whittaker

case is the constant terms 2mpµ of exponent differences of irregular singularities. The

parameter µ only appears in the constant terms of exponent differences of irregular

singularities. So we can find a potential list of µ modulo 1
2
Z. Once we get µ then

we can remove 2mpµ for the exponent difference so that we have exactly the same

exponent differences as Bessel case. We then can run Algorithm 8 or the algorithm

in [14] for Bessel case to find ν and f and the projective equivalence. For µ, we have:

Lemma 28. Let LW
f−→C M −→EG L and Sirr be the set of all irregular singularities

of L, for p ∈ Sirr let mp be pole order at x = p and let cp be the constant term of the

exponent difference ∆(L, p) at x = p. then let

N′p :=

{
cp + i

2mp

| 0 ≤ i ≤ 2mp − 1, i ∈ Z
}

We can make the rational part of each element in N′p belong to [0, 1
2
] by the

transformation µ 7→ µ+ 1
2
. Let the new set be Np. Then µ ∈ N := ∩p∈Sirr

Np.
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Proof. The lemma follows from the fact that we know the number cp = 2mpµ mod

1
2
Z, and Lemma 27.

For the Whittaker case, we do not need the square root case. So it is substantially

easier than the Bessel case. If f /∈ K and LW
f−→C M −→EG L, then L /∈ K[∂]. For

operators with ramified exponent difference, there are no Whittaker type solutions.

So we can use the algorithm in [14] for the Whittaker case, because it runs a little

bit faster.

Example 23.

L :=
∂2

(6x2 + 5)2
− 12x∂

(6x2 + 5)3
+

1

4

−4x6 − 20x4 − 7x3 − 25x2 − 35
2
x− 17

18

(2x3 + 5x+ 3)2

There is only one irregular singularity at x = ∞, the exponent difference is

∆(L,∞) = −6t−3∞ − 5t−1∞ + 15
4

. So the constant term is c∞ = 15
4

and m∞ = 3.

According to Lemma 28, the candidate µ’s are:

N = {5

8
,

5

24
,

1

24
,
1

8
,

7

24
,
11

24
}.

So we can try each µ and then remove the constant term in the exponent difference.

Apply the data to Algorithm 8 or (the algorithm in [14]) to get a list of ν and f . We

try all combinations, and find:

C1M 5
8
, 1
3
(2x3 + 5x+ 3) + C2W 5

8
, 1
3
(2x3 + 5x+ 3)

Example 24. This example is from W. Koepf’s and M. Foupouagigni’s research

about orthogonal polynomials:

L := (4x4 − 12x2 + 3)∂2 − 2x(4x4 + 4x2 − 21)∂ + 64x4 − 96x2 + 8nx4 − 24nx2 + 6n
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They suspected the existence of a closed form solution but could not find

it. Downloading our implementation at http://math.fsu.edu/∼qyuan and typeing

BesselSolver(L) produces:

C1((−9n− 33 + 4nx4 + 4x4 − 4nx2 − 4x2)M−2− 1
2
n, 1

2
(x2)

−4(2x2 − 3)(4 + n)M−1− 1
2
n, 1

2
(x2))+

+C2((−9n− 33 + 4nx4 + 4x4 − 4nx2 − 4x2)U−2− 1
2
n, 1

2
(x2)

−4(2x2 − 3)(4 + n)U−1− 1
2
n, 1

2
(x2))

Where M and U are Kummer functions.

We summarize the Whittaker solver in the following algorithm:

Input : an irreducible differential operator L
Output: solutions represented in terms of Whittaker functions if they exist

Use Algorithm 3 to compute local information Sreg with exponent difference,
Sirr with truncated series and B, dA ;
For each s ∈ Sirr, find a possible list of µ, then find a possible set for µ
according to Lemma 28;
For each µ in list, use Algorithm 8 (Bessel Solver), to find a list of (ν, f) ;
foreach (µ, ν, f) do

compute LW
f−→C M ;

Use algorithm described in [4] to compute whether M −→EG L and
compute the transformation;
if such transformation exists then

Output the solution
end

end

Algorithm 10: Whittaker Solver
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CHAPTER 6

HEUN FUNCTIONS

As an application of our Bessel solver, we investigate which Heun function can be

written in terms of Bessel functions. The relations we find that involve a nontrivial

−→G gauge transformation are new. Previously, only −→E, −→C solvable examples

were known.

6.1 Heun Operator and functions

The general Heun operator is:

HG := ∂2 +

(
γ

x
+

δ

x− 1
+

ε

x− a

)
∂ +

αβx− q
x(x− 1)(x− a)

where ε = α + β + 1− γ − δ. The solutions of the general Heun operator are Heun

functions. The general Heun operator has no Bessel type solutions, because it has no

irregular singularities. We can try to solve it in terms of 2F1 functions, but that is

beyond this thesis. The other four Heun equations are confluent cases, obtained from

the general Heun equation above through confluence processes. The Heun Confluent

operator:

HC := ∂2 +

(
γ

x
+

δ

x− 1
− ε
)
∂ +

(
q − αβ
x− 1

− q

x

)
has regular singularities at x = 0, x = 1 and one irregular singularity at x = ∞.

The solutions of confluent operators are Heun confluent functions denoted by

HeunC(α, β, γ, δ, ε;x).

The Biconfluent operator:

HB := ∂2 +

(
−2x− β +

1 + α

x

)
∂ +

(
γ − α− 2− 1

2

(1 + α)β + δ

x

)
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has one regular singularity at x = 0 and an irregular singularities at x = ∞.

The solutions of Biconfluent operators are Heun Biconfluent functions denoted by

HeunB(α, β, γ, δ;x).

The Doubleconfluent operator:

HD := ∂2 − (α + 2x+ x2α− 2x3)∂

(z + 1)2(z − 1)2
+
δ + (2α + γ)x+ βx2

(z − 1)3(z + 1)3

has no regular singularities and two irregular singularities at x = ±1. The

solutions of Doubleconfluent operators are Heun Doubleconfluent functions denoted

by HeunD(α, β, γ, δ;x).

The Triconfluent operators:

HT := ∂2 + (−γ − 3x2)∂ + (α + βx− 3x)

has no regular singularities and one irregular singularities at x =∞. The solutions of

Triconfluent operators are Heun Triconfluent functions denoted byHeunT (α, β, γ;x).

Those four operator are solvable in terms of Bessel functions, if the parameters satisfy

some conditions. For example, Example 11, Example 13 are also Heun operators,

but they can be solved in terms of Bessel functions.

Example 25. (See also example 11.) L = ∂2 + 2− 10x+ 4x2 − 4x4.

We know it is solvable in term of Bessel. But it is solvable in terms of

HeunT

(
62/312

(−1 +
√
−3)4

,−15/2,− 61/34

(−1 +
√
−3)2

,

(
−6−1/3

√
−2 + 2

√
−3

)
x

)
It was not previously known that a HeunT function with such parameter values can

be expressed in terms of Bessel functions.

Example 26. (See also example 13.)

L := x∂2 + (1−
√
−6 · x− 2x2)∂ +

36x2 + 10
√
−6 · x− 1

36x

This operator is Heun Biconfluent operator with α = 1
3
, β =

√
−6, γ = 3 and

δ = −14
9

√
−6. We saw in example 13 that L can be expressed in terms of Bessel

functions. And this relation was not previously known either.
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6.2 Solving Heun operator in terms of Bessel Functions

6.2.1 Method to find relations

In this section, we introduce our method of finding Heun functions that can be

written in terms of Bessel functions in a non-trivial way (involving −→G). Our

method works well for Triconfluent Heun function and Biconfluent Heun functions.

We use Heun Triconfluent functions to illustrate the idea: If HeunT function can be

expressed in terms of Bessel functions, then we have:

LB
f−→C M −→EG HT (6.1)

Here LB has parameter ν and HT has parameter α, β, and γ.

Before we introduce our method to find relation, we can consider the analogy to a

linear system: 
a11x1 + a12x2 + a13x3 = 0
a21x1 + a22x2 + a23x3 = 0
a31x1 + a32x2 + a33x3 = 0

(6.2)

Does (6.2) have a non-zero solution? For generic values of aij the answer is no. But

if a relation (in this case det(aij) = 0) is satisfied, then the answer is yes. Likewise,

for HeunT (α, β, γ;x) to be written in terms of Bessel functions, whether (6.1) exists

depends on equations in the parameters α, β, and γ. (6.1) does not hold for generic

values α, β, and γ. But for some specific values, (6.1) holds similar to the way (6.2)

depends on determinant. However, the number of equations in (6.2) was fixed, but

for (6.1), the number of equations also depends on the parameters (in particular, the

parameters must satisfy not only polynomial conditions similar to det(aij) = 0 in

(6.2), but must also satisfy a Diophantine condition).

Our idea to find the relation between HeunT (α, β, γ;x) and Bessel functions is to

treat α, β, and γ as unknown variables not as transcendental constant1. Then we

break down Algorithm 8 step by step to find equations for parameters.

1if we input HT into Algorithm 8 directly, then it will try to solve it over Q(α, β, γ)
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Let us find parameters of LB
f−→C M first. We can input HT into Algorithm 8

in section 4.8, follow it step to step, but treat α, β, and γ as unknown variables.

Then Algorithm 8 will produce candidates for ν, f in terms of α, β, and γ (hence

it produces the middle operator M), and some conditions of α, β, and γ (this only

happens for HB). We can also get one or more (depends on how many irregular

singularities we have) Diophantine equations from generalized exponents, because of

Lemma 29 and Lemma 31 below:

Lemma 29. We denote const(e) as the constant term of series e. If a Heun operator

H (one of HC , HB, HD, HT ) is solvable in terms of Bessel functions, then for each

irregular singularity s of H, const(∆(H, s)) ∈ Z.

Proof. It follows directly from Theorem 8 in Section 3.3.4. We have const(∆(H, s)) ∈
1
m
Z, where m = 1 or 2 is ramification index. But if we compute the generalized

exponents of all four cases of Heun operators, none of them are ramified. So

m = 1.

Once we find ν and f (hence M), we can try to find some specific values for α, β,

and γ such that (6.1) holds. We can determine whether M is projectively equivalent

to HT in two steps. First we compute possible −→E (this process will remove some

apparent singularities), M −→E M̃ . Then we need to determine whether M̃ is gauge

equivalent (−→G) to HT . This can be reduced to computing rational solutions of a

4th order operator Ls (namely the symmetric product of HT and the adjoint of M̃ ,

see Lemma 30). Ls still contains the parameters of HT .

Definition 30. We say Ls is the symmetric product of L1 and L2 (denoted by

L1sL2), if Ls is a monic operator with lowest order, such that, if y1 ∈ V (L1) and

y2 ∈ V (L2), then y1y2 ∈ V (Ls).
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Lemma 30. {G ∈ K[∂]|G(V (L1)) ⊆ V (L2)} correspond to solutions of Ls := L∗1sL2.

If L1 and L2 are projectively equivalent, then Ls has an exponential solution. If L1

and L2 are gauge equivalent, then Ls has a rational solution. See [35].

According to the following lemma, finding an exponential solution (i.e finding a

first order right hand factor) of Ls can be reduced to a diophantine equation (6.3)

and computing polynomial solutions (denoted Q in Lemma 31) of an other operator.

Computing polynomial solutions reduces to solving a set of linear equations for the

coefficients of the polynomial Q in Lemma 31. Similar to (6.2), this produces on or

more polynomial equations for the Heun parameters.

Lemma 31. Let r ∈ Q(x). If ∂ − r is a first order right hand factor of L ∈ Q[∂],

and let const(e) denote the constant term of series e. Then for all each singularity

si, there exists a generalized exponents esi ∈ Q[t−1si ] of L such that

r = S +
Q′

Q
where S =

∑
si

esi
tsi
− t∞const(e∞) and Q ∈ Q[x]

and

deg(Q) +
∑
si

const(esi) = 0 (6.3)

See [13].

We will illustrate this process by an example in next section. For more details,

see http://www.math.fsu.edu/∼qyuan/Heun.mw

6.2.2 Triconfluent Heun functions

We start with Triconfluent Heun functions because it has fewer parameters.

If HT is solvable in Bessel functions, then we have a relation LB
f−→C M −→EG HT .

So we need to find some ν, f for LB to compute M and then find when M and HT

are equivalent.

First, let us find f . We can find f by examining the generalized exponents. There
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is only one singularity ∞ of HT . If we compute the generalized exponent at x =∞,

we get −1
3
β + 1 and −3t3∞ − γt∞ + 1 + 1

3
β. According to Lemma 29, if it is Bessel

Solvable, then the constant term of generalized exponents should be an integer. Here

the constant term is 2
3
β, it must be an integer. Assume it is. Then we can use

Algorithm 8 to find candidates of f and ν. We find the only candidate is that ν = 1
3

and f = 1
2

√
(2
3
γ + x2)3.

So we apply the transformation LB
f−→C M and find

M := ∂2 − −3x2 + 2γ

x(2γ + 3x2)
∂ − 3

4

(8γ3 + 36x2γ2 + 54x4γ + 27x6 + 12)x2

(2γ + 3x2)2

Notice that there are several apparent singularities of M . We can compute2

M̃ = Ms(∂ − 3x
3x2+2γ

− 3
2
x2 − γ

2
). M̃ is an equivalent operator with fewer apparent

singularities.

M̃ := ∂2 − γx+ 3x3 + 1

x
∂ +

xγ2 + 2γ − 6x2

4x

Now let us consider when M̃ will be gauge equivalent to HT . If so, there exist

a rational solution for LS := M̃∗sHT . Hence some generalized exponents of the

symmetric product are integers. We compute the generalized exponents at x = ∞,

two of which contains t∞, which can not be integers. The other two are ±1
3
β+ 3

2
. So

±1
3
β + 3

2
must be an integer, combine it with 2

3
β is integer. We get:

Lemma 32. If HeunT (α, β, γ;x) can be written in terms of Bν(f). Then we have

β = 3k + 3
2
, k ∈ Z, ν = 1

3
and f = 1

2

√
(2
3
γ + x2)3.

Note that it is not a sufficient condition. We need restrictions for γ and α to get

the −→G equivalence. Here we show how we can get some specific examples:

Let k in Lemma 32 be 1. So β = 9
2
. Then LS has generalized exponents 0 and

-3 at x = ∞. So a polynomial with degree 3 might be a solution of LS. Write

Q(x) = a3x
3 + a2x

2 + a1x + a0. Computing LS(Q) and equaling it to 0 produces

some polynomial equations for γ, α and the ai’s. There exist two solutions of those

2the symmetric product also compute −→E
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equations. One is trivial3. The other is γ = 0, α = 04. So we plug it into HT . We

get

L = ∂2 − 3x2∂ +
3

2
x

So this Heun equation L must be Bessel solvable. Our Bessel solver implementations

find:

C1

x
exp

(
1

2
x3
)(

(−3x3 + 4)I 1
3

(
1

2
x3
)

+ 3I 4
3

(
1

2
x3
)
x3
)

+
C2

x
exp

(
1

2
x3
)(

(−3x3 + 4)K 1
3

(
1

2
x3
)

+ 3K 4
3

(
1

2
x3
)
x3
)

We could also choose other values for k, for example, If k = 2 then L = ∂2−3x2∂−15
2
x;

If k = 3 then L := ∂2 + 1
10

(5 + 3
√

5)(−5 + 4x2 + 3
√

5)∂ − 1
4
(5 + 3

√
5)(4x−

√
5 + 3);

If k = 4 then L := ∂2 − 3x2∂ + 21
2
x. They are solvable in terms of Bessel functions

and also HeunT functions. One can make more examples in the same way.

6.2.3 Heun Doubleconfluent function

We use the same idea in section 6.2.2, we want to find relation LB
f−→C M −→EG

HD. The Heun Doubleconfluent operator

HD := ∂2 − α + 2x+ x2α− 2x3

(x+ 1)2(x− 1)2
∂ +

δ + 2xα + xγ + βx2

(x− 1)3(x+ 1)3

has two irregular singularities ±1. At x = 1 the constant term of generalized

exponents is γ
2α

+ β+δ
2α

. And at x = −1, it is γ
2α
− β+δ

2α
. They should both be

integers. So we have γ
α

and β+δ
α

must be integers for HD to be Bessel solvable.

Then we use Algorithm 8 in Section 4.8 to find ν and f . We find the only candidate

of nu is ν = 1
4

and f can be either f1 = 1
2

√
α2

(x2−1)2 or f2 = 1
2

√
α2x4

(x2−1)2 .

3all ai’s equal zero
4the value of ai’s are not important as long as they are not all zeroes
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Then we can apply the change of variable f1 and ν = 1
4

to LB. Then we can compute

−→E to remove apparent singularities. We get

M̃ = ∂2 − −3x3 + 3x+ x2α + α

(x− 1)2(x+ 1)2
∂ +

1

4

α(−2x3 + x2α + 6x− α)

(x− 1)3(x+ 1)3

Then we take the symmetric product of M and the adjoint of HD. We should

have some integer exponents at both ±1. The constant exponents at x = 1 are

7
4
± ( γ

4α
+ β+δ

4α
) and at x = −1 are 7

4
± ( γ

4α
− β+δ

4α
). then, we have one of γ

α
and β+δ

α

must be even, and the other odd.

If we apply f2, we will get something similar. So we have

Lemma 33. If HeunT (α, β, γ;x) can be written in terms of Bν(f). Then γ
α

and β+δ
α

are integers. One of them is odd and the other is even. ν = 1
4

and f = 1
2

√
α2

(x2−1)2 or

1
2

√
α2x4

(x2−1)2

6.2.4 Heun Biconfluent equations

There exists a relation between Heun Biconfluent functions and Bessel functions.

[26]

Lemma 34.

HeunB(α, β, γ, δ;x) =
I 1

4
α(x

2

2
)Γ(1 + 1

4
α)2

1
4
αe

1
2
x2

(x
2

2
)
1
4
α

If β = γ = δ = 0.

But we can find more cases beyond this lemma, especially with square root case.

We also use the same idea as in previous sections. The Heun Biconfluent operator

has one irregular singularity at x = ∞ and one regular singularity at x = 0. At

x =∞, the constant term of generalized exponents is −γ. So γ must be integer.

The exponent difference at x = 0 is α, so ν is only related to α and not to other

parameters. We can separate the cases depending on whether there is disappearing

singularities.
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If there are no disappearing singularities, then roots of f are regular singularities.

Since we only have one regular singularity at x = 0, then f =
√
cx4. Then we can

run Algorithm 85. We get c = 1
4

and β = 0. Then we can find several examples by

the same method as in sections 6.2.2. What we find in this case is either a reducible

operator, or a case related to Lemma 34. So we skip the examples of this case.

Now we assume there are disappearing singularities. In that case, since ν is only

related to α, so α must be rational. Since the degree of the numerator (dA in the

algorithm) is 4, the disappearing part can only have degree 3. So the denominator

of α (also ν) can only be 3. To find some specific examples, we will take α = 1
3
.

Now we can insert this new information into Algorithm 8. We get ν = 1
3

and

f = 1
2

√
x(x+ 2

3
β)3. Then we compute −→C , −→E and Ls as in Section 6.2.2.

Finally we get the constant exponents at x = ∞ are ±γ
2

+ 1
2
. So γ must be odd.

(This condition is only for α = 1
3
. For example, if α = 4

3
, then γ must be even). We

find:

Lemma 35. If HeunB(α, β, γ;x) can be written in terms of Bν(f(x)). then one of

the following cases holds:

(i) β = 0, γ is integer, and f = x2

2

(ii) α = 1
3

(up to some integer), γ is integer and f = 1
2

√
x(x+ 2

3
β)3

Let γ = 3, according to the exponents, we might have a degree 2 polynomial as

a solution of Ls. Write Q(x) = a0 + a1x + a2x
2. Then Ls(Q) = 0 gives polynomial

equations and we find two solutions, one of which is not trivial. It is α = 1
3
, β =

√
−6,

γ = 3 and δ = 14
9

√
−6. We plug it into the HB. We get:

∂2 +
4
3
− x
√
−6− 2x2

x
∂ +

1

2

4
3
x+ 2

9

√
−6

x

5treat α, β, γ, δ as unknown variable instead of transcendental constant
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Algorithm 8 in Section 4.8 (which can be download from www.math.fsu.edu/∼qyuan)

produces solution:

C1

exp(1
2
x2 + 1

2
x
√
−6)

x
1
6

√
2
√
−6 + 3x(6x+

√
−6)

(

− 3(6x+
√
−6)(3x2 + 3x

√
−6− 8)I 1

3

(
1

2

√
(
2

3

√
−6 + x)3x

)

+

√
3(2
√
−6 + 3x)3x(6x+

√
−6)I 4

3

(
1

2

√
(
2

3

√
−6 + x)3x

))

+C2

exp(1
2
x2 + 1

2
x
√
−6)

x
1
6

√
2
√
−6 + 3x(6x+

√
−6)

(

− 3(6x+
√
−6)(3x2 + 3x

√
−6− 8)K 1

3

(
1

2

√
(
2

3

√
−6 + x)3x

)

+

√
3(2
√
−6 + 3x)3x(6x+

√
−6)K 4

3

(
1

2

√
(
2

3

√
−6 + x)3x

))
For more examples (by taking different γ) see the Maple worksheet at:

http://www.math.fsu.edu/∼qyuan/Heun.mw

6.2.5 Heun Confluent Equations

There exist relations between Heun confluent functions and Bessel functions.

Lemma 36. [26]

HeunC(α, β, γ, δ, η;x) =
−I 1

2
β(−1

2
x)Γ(1 + 1

2
β)2

1
2
β exp(−1

2
x)

1
2
x

1
2
β(x− 1))

We can following the idea from the previous section, but since HeunC are more

general functions, most of cases are reducible or related to easy identities. We still

have the following:

Lemma 37. If HeunC(α, β, γ, δ, η;x) can be written in terms of Bν(f). Then ν = β,

f = α
2

√
x(x− 1) and 2δ

α
, γ

2
+ 3β

2
+ δα are integers.
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CHAPTER 7

CONCLUSION

In this thesis, we developed an algorithm to solve differential equations in terms of

0F1 and 1F1 functions. Given irreducible second order differential operator L ∈ K[∂],

we found solutions of the form

exp

(∫
r

)(
r0Bν(

√
f) + r1(Bν(

√
f))′

)
or

exp

(∫
r

)
(r0F (f) + r1F

′(f))

where Bν is a Bessel function with parameter ν, F (x) is Airy function, or Kum-

mer/Whittaker functions with parameter ν, µ and f, r0, r1, r ∈ K. Note that our

algorithm does not deal with reducible case (for example, Bessel case with ν = 1
2
),

because in that case, we can find solutions by factoring. Our algorithm does not deal

with operators with order more than 2, because in that case, if the operator L has

0F1 or 1F1 type solutions, it must have irreducible order 2 right factor or another

type of reduction in [37], then we can apply our algorithm to that factor.

We start with our algorithm for Bessel functions. Given operator L, we study

its local information from generalized exponents. From that we can get partial

information about zeroes and poles of f . We reconstruct a possible list of f and

Bessel parameter ν from that partial information. Then we study if the relation

LB
f−→C M −→EG L

exists, here LB is the modified Bessel operator. If we find such relation, then we can

give the solutions.
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We also discussed the algorithm for Bessel functions can be extend to Airy and

Whittaker functions, which incudes solutions in terms of Kummer functions. So we

get a complete solver for 0F1 and 1F1 functions.

91



APPENDIX

PROGRAM DESCRIPTION

We have developed all algorithms in this thesis in Maple. The programme can

be download at http://www.math.fsu.edu/∼qyuan. In this chapter, we will give the

description of important functions implemented in the programme. We will indicate

the corresponded Algorithm in thesis.

BesselSolver\BesselSolver doit

Implementation of Algorithm 8, the main programe

Input :

(i) A differential operator L and the differential domain [x,Dx];

or

(ii) A differential equation Eq and the dependent variable y.

Output : 0 or solution with type e
∫
r(r0F (x) + r1F ‘(x)), where F(x) are bessel,

Whittaker, Kummer or Airy functions.

singInfo

Implementation of part of Algorithm 3, collect information of Singularities.

Input : Differential Operator L and Base field ext

Output : Sreg, Sirr with exponents differences, and determine if it is logarithmic,

rational or irrational case.
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findWhittaker

Implementation of Algorithm 10, find Kummer/Whittaker type solutions.

Input : Differential operator L with corresponding Sreg, Sirr ,base field ext and which

case we will meet.

Output : The solution space of L if it can be written in terms of Whittaker, Kummer

functions.

Kummerequiv

Input : Operator L ∈ K[∂], two parameter ν, µ, a rational function f ∈ K

Output : M ∈ K[∂], [y1, y2], where y1 and y2 are Kummer functions of the first and

second kind with change of variable x 7→ f and M(y) is a solution of L. or 0 if such

solution does not exist.

Whittakerequiv

Input : Operator L ∈ K[∂], two parameter ν, µ, a rational function f ∈ K

Output : M ∈ K[∂], [y1, y2], where y1 and y2 are Whittaker functions of the first and

second kind with change of variable x 7→ f and M(y) is a solution of L. or 0 if such

solution does not exist.

findBesselvf

Find ν and f for Bessel non-square-root case. It is used for Whittaker solver.

Input : Sreg, Sirr, base filed ext and which case we meet

Output : A list of pair (ν, f)

findBesselvfirrat \findBesselvfK \findBesselvfln \findBesselvfrat

\findBesselvfint

Those are the implementations of different cases of Bessel non-square-root case. They

are only used by Whittaker/Kummer Solver.
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Input : Sreg, Sirr, base filed ext

Output : A list of pair (ν, f)

findBessel

Input : Differential operator L with corresponding Sreg, Sirr ,base field ext and which

case we will meet.

Output : The solution space of L if it can be written in terms of Bessel functions.

BesselSqrtequiv

Input : Operator L ∈ K[∂], a parameter ν, a function f ∈ K

Output : M ∈ K[∂], [y1, y2], where y1 and y2 are (modified) Bessel functions of the

first and second kind with change of variable x 7→
√
f and M(y) is a solution of L.

or 0 if such solution does not exist.

Airyequiv

Input : Operator L ∈ K[∂], a parameter ν, a function f ∈ K

Output : M ∈ K[∂], [y1, y2], where y1 and y2 are Airy functions of the first and second

kind with change of variable x 7→ f and M(y) is a solution of L. or 0 if such solution

does not exist.

testAiry

This functions combine with Airyequiv is an implementation of Algorithm 9.

Input : f , ν and base field ext

Output : A boolean variable indicate if Bν(f) can be written Airy functions.

singSeries

Combine this with singInfo is an implementation of Algorithm 3.

Input : Sreg and Sirr with exponents differences, base field ext.
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Output : Sreg and Sirr with truncated power series, denominator of possible change

of variable B, the boundary of degree of numerator dA and a boolean indicate if it

is easy case.

sqrtEasy

This is an implementation of Algorithm 4, find solutions for easy case.

Input : Sreg, Sirr with truncated series, B, dA, ext

Output : List of pairs (f, ν) (note, there is only possible f in this case).

findnueasyIrrat

given f and the condition ν /∈ Q, find all possible ν for easy case.

Input : f , Sreg

Output : List of pairs (f, ν).

findnueasyrat

given f and the condition ν ∈ Q, find all possible ν for easy case.

Input : f , Sreg

Output : List of pairs (f, ν).

findnuLog

given f and we have logarithmic solutions, find all possible ν for easy case and

logarithmic case.

Input : f , Sreg

Output : List of pairs (f, ν).

sqrtLog

This is an implementation of Algorithm 5, find solutions for logarithmic case.

Input : Sreg, Sirr with truncated series, B, dA, ext
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Output : List of pairs (f, ν).

searchKnlog

For logarithmic case, Try all possible multiplicities for zeroes. Input : Sreg, dA

Output : List of f .

sqrtIrrat

This is an implementation of Algorithm 6, find solutions for irrational case.

Input : Sreg, Sirr with truncated series, B, dA, ext

Output : List of pairs (f, ν).

sqrtRat

This is an implementation of Algorithm 7, find solutions for rational case.

Input : Sreg, Sirr with truncated series, B, dA, ext

Output : List of pairs (f, ν).

findnuRat

Given f , find ν for rational case.

Input : f , up to d disappearing Singularities, Sreg, B

Output : List of pairs (f, ν).

searchA1k

write f = CA1A
d
2, search possible A1 and d

Input : Sreg, dA the upper bound of disappearing singularities.

Output : List of pairs (A1, d).

searchA1k

write f = CA1A
d
2, given d and degree of A1, search possible A1
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Input : Sreg, de the degree of A1, d the upper bound of disappearing singularities.

Output : List of pairs (A1, d).

findSqrtf

find possible f for rational case. Input : Sirr, B, up to d disappearing singularities,

possible list of A1, base field ext.

Output : List of f .

equiv

Input : Two operators L1 and L2 ∈ K[∂] of degree two

Output : An operator M such that My ∈ V (L2) for every y ∈ V (L1) if such operator

exists.

poly to powerseries

Input : P ∈ CK [x], point p, accuracy acc

Output : Power series of P at x = p with acc accurate term.

dthroot powseries

Input : Base field ext, power series L with local parameter tp and an integer d

Output : All possible Power series of dth root of L with the same accuracy of L.

pow time

Input : Power series L1 and L2 with local parameter tp

Output : Power series of L1L2 with the accuracy the minimum of L1 and L2.

pow reciprocal

Input : Power series L with local parameter tp
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Output : Power series of 1/L1 with the same accuracy of L.
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