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This paper demonstrates that interesting arithmetic identities a+b = c in integers or algebraic integers
can be obtained from the t-parameter of Heun differential equations reducible to hypergeometric equation
by a pullback transformation. The pullback coverings are usually Belyi maps, and they are expected to
degenerate only a few small primes. Correspondingly, the numbers a, b, c in the arithmetic identities can
reduce to 0 only modulo those few primes.

1 Transformations of Fuchsian equations

Fuchsian differential equations are linear homogeneous differential equations with only regular singular-
ities. That typically1) means that around each singularity there is a basis of local solutions of the form
xλ (1 + a1x + a2x

2 + . . .), with λ ∈ C called a local exponent of the differential equation at that point.
Canonical Fuchsian equations with 3 or 4 singularities are, respectively, the hypergeometric equation
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and the Heun equation
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The parameters α, β, γ, δ determine the local exponents2) at the singularities x = 0, x = 1, x =∞ (and
x = t), while q is an accessory parameter for Heun’s equation. The local solutions at the singularities
for the hypergeometric equation are the well known Gauss hypergeometric series 2F1

(
α, β
γ

∣∣z). The local
solutions for Heun’s equation are more complicates series [Mai07]. Let E(a, b, c) denote a hypergeomet-
ric equation with the local exponent differences a, b, c, with the parameter order unimportant, and let
H(a, b, c, d) denote Heun’s equation with the local exponent differences a, b, c, d.

Of particular interest are pull-back transformations

z 7−→ ϕ(x), y(z) 7−→ Y (x) = θ(x) y(ϕ(x)), (3)

between Fuchsian equations with a low number of singularities. Here ϕ(x) is a rational function, and θ(x)
is a product of powers of rational functions. Geometrically, the transformation pull-backs the starting
differential equation on the projective line P1

z to a differential equation on the projective line P1
x, with
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1)Logarithmic local solutions are possible as well.
2)The local exponents of the hypergeometric equation are: 0, 1 − γ at z = 0; 0, γ − α − β at z = 1; and α, β at z = ∞.

Hence the local exponent differences are 1 − γ, γ − α − β, α − β. Similarly, the local exponent differences of the Heun

equation are 1− γ, 1− δ, γ + δ − α− β, α− β.
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respect to the covering ϕ : P1
x → P1

z determined by the rational function ϕ(x). The factor θ(x) shifts the
local exponents of the pull-backed equation, but it does not change the local exponent differences.

Classical transformations between hypergeometric functions with ϕ(x) of degree 2, 3, 4 or 6 are
known since Gauss, Kummer, Goursat [Gou81]. All transformations between hypergeometric functions
are classified in [Vid09]. Recently systematic work has been done to classify all transformations between
Heun and hypergeometric functions. In particular, Heun-to-hypergeometric transformations with a free
parameter are classified in [FRV10], and the transformations from the so called hyperbolic hypergeometric
equations are classified in [vHV11]. The hyperbolic hypergeometric equations are E(1/k, 1/`, 1/m) with
k, `,m positive integers satisfying 1/k+1/`+1/m < 1. There are 61 different parametric transformations
(of degree up to 12), and 366 transformations from the hyperbolic equations (of degree up to 60). The
transformations not completely considered yet are between the equations with a reducible, dihedral or a
finite monodromy group.

Possible pullback coverings for Heun-to-hypergeometric transformations can be worked out by con-
sidering transformation of singularities and the local exponent differences. Typically, the points above
the singularities of the original hypergeometric equation, and the branching points of the covering are
singularities of the pullbacked equation. However, a branching point of order k above a singularity with
the local exponent difference 1/k can be made non-singular. To keep the number of singularities of the
transformed equation low, we typically3) need the covering to branch only above the 3 singularities of
the hypergeometric equation, hence the covering should be a Belyi map. From Hurwitz theorem one gets
[Vid09, Lemma 2.5] that Belyi coverings of degree d have exactly d+ 2 distinct points in the 3 branching
fibers (while other coverings have more disctinct points in any 3 fibers). If we restrict the local exponents
to the inverse integers 1/k, 1/`, 1/m, we have at least

d+ 2−
⌊
d

k

⌋
−
⌊
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⌋
−
⌊
d

m

⌋
(4)

singularities of the transformed equation.
A suitable pullback covering for a Heun-to-hypergeometric transformation is defined by the rational

function

FB31(x) =
27 (3x+ 13)5 (5x− 21)3 (x− 5)2 (8x+ 35)

16 (4x6 − 210x4 − 35x3 + 3465x2 + 903x− 16415)3
. (5)

The degree is 18. One can check that the numerator of FB31(x)− 1 is a square of a degree 9 polynomial.
Together with x = ∞ we have 20 distinct points in the 3 fibers FB31(x) ∈ {0, 1,∞}, exactly enough for
a Belyi map. If we apply a pullback transformation with respect to this covering to a hypergeometric
equation with the local exponent differences 1/2, 1/3, a ∈ C at, respectively, z = 1, z =∞, z = 0, we get
a Fuchsian equation with 5 essential singularities at x = 5, x = 21/5, x = −13/3, x = −35/8 and x =∞.
The local exponent differences there are 2a, 3a, 5a, a and 7a, respectively. We can adjust the parameter
a so that one of these local exponent differences is 1 and the respective point can be made non-singular
(unless x = −35/8). Then a normalization by a Möbius transformation and a factor θ(x) in (3) gives
Heun’s equation. For example, with a = 1/7 we conclude that(

1− 3126x
74 + 5625x2

75 + 39500x3

76 + 2265x4

77 − 54x5

78 + x6

710

)−1/28

2F1

(
1/84, 29/84

6/7

∣∣∣∣ FB31

(
13x+ 147
35− 3x

))
satisfies Heun’s equation with4)

α =
3
14
, β =

13
14
, γ =

4
7
, δ =

5
7
, t = 2401, q =

3126
49

. (6)

3)Non-Belyi coverings can apply to Heun-to-hypergeometric transformations only if the monodromy group of the equations

is reducible, dihedral or finite. In particular, Klein’s theorem [Kle77] implies that any second order Fuchsian equation with

a finite monodromy group (equivalently, with a basis of algebraic solutions) is a pullback of a hypergeometric equation with

the local exponent differences 1/k, 1/`, 1/m with k, `,m positive integers satisfying 1/k + 1/`+ 1/m > 1.
4)The degree 6 polynomial in θ(x) is just the respective Möbius transformation of the numerator in (5), and the accessory

parameter q is found after a substitution of a power series into Heun’s equation (2).
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The parameter t of the transformed Heun equation is obtained after putting 3 of the 4 singularities
to the locations x = 0, x = 1, x =∞ by a Möbius transformation. It is equal to the cross ratio of the 4
singularities:

CrossRatio(a, b, c, d) =
(a− c)(b− d)
(b− c)(b− d)

, CrossRatio(∞, a, b, c) =
a− c
b− c

.

We get the following t values from the 5 points in the fiber FB31(x) = 0, and thransformations between
hypergeometric and Heun equations:
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has a logarithmic singularity.

The subject of this paper is the observation that the t-values appear to factorize nicely as rational
numbers. This is not strange, because Belyi maps are expected to degenerate only modulo a few small
primes [Bec89]. This makes the t-values reduce to 0 or degenerate to ∞ only modulo those few primes,
and often forces their factorization with high powers.

2 Relation to the ABC conjecture

The cross ratios are determined up to the Möbius transformations

z 7→
{
z, 1− z, z

z − 1
,

1
z
, 1− 1

z
,

1
1− z

}
. (7)

Correspondingly, the t-values of Heun’s equation go through an orbit of (generally) 6 values under its
fractional-linear transformations [Mai07] permuting the 4 singularities. An orbit of 6 values in Q can
be encoded by an arithmetic identity a + b = c with coprime integers a, b, c. The orbit is recovered as
{a/c, b/c, c/a, c/b, −a/b, −b/a}. The orbit of t-values is also characterized by the j-invariant

j(t) =
256 (t2 − t+ 1)3

t2 (t− 1)2
. (8)

With the possible exception for 2, the primes dividing a, b, c appear in the denominator of j(t).
Arithmetic identities a + b = c with large a, b, c ∈ Z reducing to 0 only modulo a few primes have

notable interest. In particular, existence of solutions of Fermat’s equation xn + yn = zn fascinated
people for centuries. With this equation finally settled by Wiles, a weaker general supposition is the
ABC conjecture formulated by Masser and Oesterlé. It implies that for any real η > 1 there are only
finitely many identities a+b = c with coprime a, b, c such that max(|a|, |b|, |c|) exceeds rad(a, b, c)η, where
rad(a, b, c) is the product of all primes dividing the product abc, the radical of the a+ b = c identity. The
identities with a high quality ratio

Q(a, b, c) =
log max(|a|, |b|, |c|)

log rad(a, b, c)
(9)
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are actively searched for and tabulated [Nit]. So far the identity with the highest known quality ratio
1.629911... is 2 + 310 109 = 235, due to E. Reyssat.

For this paper we looked through the list of computed Heun-to-hypergeometric transformations and
checked the quality ratio of the abc triples characterizing the t-values of involved Heun’s equations. We
also checked other cross ratios of found Belyi coverings. The results are reported in the next section.

Many coverings and t-values are not defined over Q but over an algebraic number field K. An orbit of
6 algebraic t-values can still be represented by an identity a+ b = c with a, b, c algebraic integers. There
is an extension of the ABC conjecture to algebraic number fields as well. In the algebraic generalization,
the radical is the product of the field discriminant and of the residue field sizes of the primes ideals
where a, b or c reduce to 0, but excluding the prime ideals which “divide” all three a, b, c in the same
power. The absolute value in max(|a|, |b|, |c|) is replaced by the Q-norm of an algebraic integer, divided
by the residue ring size of the ideal generated by a, b, c. More elegantly, one considers the respective point
(a : b : c) in the projective plane over K; then max(|a|, |b|, |c|) is replaced by the height of this point,
and the radical is the product of the field discriminant and of the residue field sizes of the primes ideals
where the point reduces to (0 : 1 : 1), (1 : 0 : 1) or (1 : −1 : 0). The best known algebraic example is

√
13 + 1

2

(√
13− 3

2

)5

+
√

13− 1
2

(√
13 + 3

2

)5

= 29, (10)

with the quality ratio log(49)/ log(13 · 3 · 3 · 4) = 2.029228..., due to T. Dokchitzer [Dok03].
Nitaj’s tables [Nit] lists all found integer ABC triples with the quality ration greater than 1.4, and all

algebraic ABC triples with the quality ration greater than 1.5. The t values of the found Heun equations
give several of the well known ABC identities with a high quality ratio; the best arising ABC triple is
defined over Q(

√
−7) and has the quality ratio 1.707222... We found a new example with the quality

ratio 1.581910..., defined over Q(
√
−14). This number field has the class number 4 however, and the

high powers of involved prime ideals have to distributed into principal ideals. Hence the factorized ABC
expressions for the new example do not look spectacular.

3 The coverings and ABC triples

As mentioned, there are 61 parametric Heun-to-hypergeometric transformations and 366 transformations
from hyperbolic hypergeometric functions. The parametric transformations are realized by 48 different
Belyi coverings; 38 of them occur in Herfurtner’s list [Her91] of elliptic surfaces over P1 with 4 singular
fibers. The coverings for transformations of hyperbolic equations are all different. The website with the
computed data is indicated in the reference [vHV11].

A priori, there were 89 possible branching patterns for the parametric transformations and 376 branch-
ing patterns for the hyperbolic transformations. But Belyi coverings exist not for every prescribed branch-
ing pattern above three points, neither they have to be unique. The Belyi coverings P1 → P1 with a
prescribed branching pattern are generally defined over an algebraic number field, and the Galois action
on them is the subject of Grothendieck’s theory of dessins d’enfant. Computation of Belyi coverings
of degree higher than 20 is still considered hard. We developed 2 computational methods, one of them
with modular lifting, both employing presumed existence of transformations between hypergeometric and
Heun equations. Roughly speaking, we get extra equations for undetermined coefficients of the rational
Belyi function by comparing the power series of presumed solutions of the two differential equations.
With our methods, even the coverings of the maximal degree 60 were computed in comfortable time. The
degree 60 transformations are between E(1/2, 1/3, 1/7) and H(1/7, 1/7, 1/7, 1/7). There are two cubic
Galois orbits of them, defined by the polynomials x3 − x2 − 2x+ 1 and x3 + 2x2 + 6x− 8. The highest
degree algebraic number field for defining a found Belyi covering is 15, for a degree 37 transformation
from E(1/2, 1/3, 1/7) to H(1/2, 1/3, 1/7, 1/7).

The parametric transformations are denoted by P1 to P61. The transformations from hyperbolic
hypergeometric equations are denoted as follows:
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A1–A24: the transformations with j(t) = 1728, that is t ∈ {−1, 2, 1/2};
B1–B34: the other transformations with t ∈ Q;

C1–C42: the transformations with j ∈ Q, and t in a real quadratic extension of Q;

D1–D50: the transformations with j ∈ Q, and t in an imaginary quadratic extension of Q;

E1–E25: the transformations with j ∈ Q, and t in the splitting field (of degree 6) of a cubic
polynomial in Q[ξ];

F1–F25: the transformations with j in a real quadratic extension of Q;

G1–G52: the transformations with j in an imaginary quadratic extension of Q;

H1–H53: the transformations with j in a cubic extension of Q;

I1–I33: the transformations with j in an extension of Q of degree 4 or 5;

J1–J28: the transformations with j in an extension of Q of degree 6 and higher.

The transformations are ordered so that the coverings defined over the same number field or with the
same j-invariant are next to each other. However, the coverings with the same number field for t might
be in different classes, as the extension degree from the j-field to the t-field varies. In our examples, this
extension degree is 1, 2 or 6, never 3.

In total, we have 30 different j(t) values for the parametric transformations and 266 different j(t)
values for hyperbolic transformations; all together we have 277 different j(t) values. Together with the
alternative cross ratios (not extending the field of definition of our coverings) we got 1799 different j(t)
values.

3.1 The ABC identities over integers

By far the most frequent orbit of t-values for the encountered Heun equations is t ∈ {−1, 2}, with the
j-invariant 1728. It gives the most simple ABC identity 1 + 1 = 2. This t-orbit occurs for the Heun
equations of 14 parametric and 24 hyperbolic transformations. We also counted 566 instances when this
t-orbit occurs as an alternative cross ratio of 4 points in the 3 singular fibers of our Belyi coverings (but
a small portion of cases is doubly counted.)

In total there are 19 different orbits of t-values in Q from the encountered Heun equations. They are
listed in the upper part of Table 1. Among any cross ratios of 4 points in our Belyi coverings, we found
68 different orbits of t-values in Q in total. The alternative most notable ABC identities are listed in the
lower part of Table 1; we skipped

1 + 2 = 3, 2 + 3 = 5, 1 + 5 = 6, 1 + 6 = 7, 3 + 4 = 7, 1 + 7 = 8, 3 + 5 = 8,

2 + 7 = 9, 4 + 5 = 9, 1 + 9 = 10, 3 + 7 = 10, 1 + 10 = 11, 7 + 8 = 15,

1 + 15 = 16, 7 + 9 = 16, 4 + 21 = 25, 7 + 18 = 25, 5 + 28 = 33.

As we can see, the same coverings like B31, B30, B33 tend to produce the best alternative ABC triples
as well. We already considered B31. Here are other two prominent coverings:

FB30(x) = −4
(x+ 8)

(
9x5 − 300x3 + 400x2 + 1945x− 3512

)3
(9x− 28) (5x+ 22)2 (13x− 40)5

,

FB33(x) =
16
(
108x5 − 6930x3 − 23485x2 + 7700x+ 98252

)3
6561 (8x− 77) (15x+ 22)3 (11x+ 46)4

.

Sometimes an alternative cross ratio is a t-value of a transformation between Heun and hypergeometric
functions with a finite monodromy group rather than of the hyperbolic type (as we saw with B31). We
marked these cases with dih, tet, oct, ico to indicate dihedral or the tetrahedral, octahedral, icosahedral
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monodromy groups. But the cross ratios that do not arise from a Heun-to-hypergeometric transfor-
mations can give just as good ABC triples. For example, the best cross ratios from B30 and B33 are
CrossRatio(∞,−22/5, 28/9, 40/13) and CrossRatio(∞, 77/8,−46/11,−15/22); they have an unramified
point in the same fiber with several points of the same branching order 3 or 2.

3.2 ABC identities in the quadratic fields

Among the Heun equations occurring in the parametric or hyperbolic Heun-to-hypergeometric transor-
mations, there are 64 rational values of j(t) ∈ Q with the t-values defined over a quadratic extension of
Q. The square roots are taken of these 22 numbers:

−39,−35,−15,−14,−7,−6,−5,−3,−2,−1, 2, 3, 5, 6, 7, 10, 13, 21, 105, 273, 385.

The number fields and the coverings are identified in Tables 2 and 3. The tables give also: factorization
of the Q-norms of a, b, c; the radical; the quality ratio; and the identities themselves. In the identities,
u denotes a primitive unit, and vk an algebraic integer of the norm k. The bar in u or vk denote the
conjugation a + b

√
d 7→ a − b

√
d, and the tilede in ũ or ṽk denote the conjugation composed with the

multiplication by −1: a + b
√
d 7→ b

√
d − a. The later notation is illustrative in real quadratic fields (to

keep the numbers positive), and more generally, with units (to denote the multiplicative inverse). The σ
denotes the current square root, as reminded in most entries of Tables 2 and 3.

The ABC identities for D37/D39 and C18 are well-known algebraic identities with a high abc quality
ratio; they are currently No 11 and 12 in Nitaj’s list [Nit]. The identity D42 is a new identity with the
quality ratio > 1.5.

Some of the quadratic number fields are not principal ideal domains, and factorization of their integers
is not unique. The fields Q(

√
10), Q(

√
105), Q(

√
273), Q(

√
285), Q(

√
−5), Q(

√
−6), Q(

√
−15), Q(

√
−35)

have the class number 2, while Q(
√
−14), Q(

√
−39) have the class number 4. Distributing the primes

into principal ideals reduces the arithmetic appeal of ABC identites in these fields.
Quadratic extensions from the j-field to the t-field usually arise when the rational function realizing

the covering in a minimal field has two conjugate points with the same ramification order in the same
fiber, and those 2 points are singularities of the pullbacked Heun equation. For example, the covering

FD37(x) = 64
7x2 + 7x+ 8
x5 (x− 7)2

, (11)

pullbacks E(1/2, 1/5, 1/5) to H(1/2, 1/5, 1/5, 2/5), with the t value in Q(
√
−7) equal to the cross ratio

of 0, 7 and the roots of 7x2 + 7x + 8. In the ABC identities of these cases, two of the numbers have
equal Q-norms. But those two numbers are not necessarily conjugate as units might break the symmetry;
consider C29, for example. The conjugation symmetry can be restored if the difference is by a unit that
is a square (multiplied by −1, possibly) in the number field..

There are 14 cases with both j(t) and t defined in a quadratic number field, of type F or G and also
P60, P61. They are represented in Tables 2 and 3 as well. In their ABC identities, the three numbers
have different Q-norms.

Alternative cross ratios from our Belyi coverings give 207 other rational j(t) ∈ Q with the t-values in
a quadratic extension, and 72 other quadratic j(t) with with the t-values in the same field. New square
roots appear in these identities, of −38,−21, 14, 15, 17, 19, 30, 39, 42, 70, 190, 357. The best alternative
ABC triples are:

(
√

2− 1)4 + 3 (
√

2)7 = (
√

2 + 1)4, (8−3
√

7)2 (2+
√

7)7 + (3+
√

7) = (8+3
√

7)3(
√

7−2)7,(√5− 1
2

)6

+ 23
√

5 =
(√5 + 1

2

)6

, (2−
√
−1)4 +

√
−1 (1 +

√
−1)7 (2 +

√
−1) = 1.

They have they quality ratios 1.418414, 1.235869, 1.252575, 1.219532 and come from C5/P7/P39, C29,
F13, C29, A4/B21/B22, respectively.
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Transformations The j-invariant a+ b = c Quality
Hyperb. Param. in integers factorized ratio
B31 73319334093/22325478 1 + 2400 = 2401 1 + 25 3·52 = 74 1.455673
B20/B24 P33/P34 7322873/263256 3 + 125 = 128 3 + 53 = 27 1.426565
B25 26733132713/310114 1 + 242 = 243 1 + 2·112 = 35 1.311101
B15 P27/P28 64813/3852 1 + 80 = 81 1 + 24 5 = 34 1.292030
B5/B14 P19/P24 22733/34 1 + 8 = 9 1 + 23 = 32 1.226294
B33 241067913013/3145278116 1331+9604=10935 113 + 2274 = 37 5 1.200739
B26/B28 P35 49933/223874 32 + 49 = 81 25 + 72 = 34 1.175719
B30 24181325213/3654134 1 + 675 = 676 1 + 3352 = 22132 1.092195
B34 8293304693/365678194 2401 + 3375 = 5776 74 + 3353 = 24192 1.044614
B29 2433761033/56114 4 + 121 = 125 22 + 112 = 53 1.027196
B18/B19 P31/P32 731273/223652 5 + 27 = 32 5 + 33 = 25 1.018975
A1/A24 P1/P14 2633 1 + 1 = 2 1 + 1 = 2 1.

P36 19314593/24365672 64 + 125 = 189 26 + 53 = 33 7 0.980296
B16/B17 P29 2673973/3654 2 + 25 = 27 2 + 52 = 33 0.969023
B32 492013/283652114 121 + 135 = 256 112 + 33 5 = 28 0.956215

P26 133373/3454 9 + 16 = 25 32 + 42 = 52 0.946395
P30 247573/3672 1 + 27 = 28 1 + 33 = 22 7 0.891519

B1/B4 P15/P18 24133/32 1 + 3 = 4 1 + 3 = 22 0.773706
P25 243373/52 1 + 4 = 5 1 + 22 = 5 0.698970

B31-dih3 193 313 17893/212 32 52 76 5 + 1024 = 1029 5 + 210 = 3 73 1.297214
B30 26 48049393/314 52 136 10 + 2187 = 2197 2·5 + 37 = 133 1.289752
B33 133215136373

/2103125472118 3584+14641=18225 29 7 + 114 = 3652 1.266694
B29 26 313 538813/38 58 116 81 + 1250 = 1331 34 + 2 54 = 113 1.240485
B20 133 613 4573/24 34 58 74 49 + 576 = 625 72 + 26 32 = 54 1.203969
B25 22 193 926833/36 74 116 8 + 1323 = 1331 23 + 33 72 = 113 1.172457
A14 373 1093/24 34 72 1 + 63 = 64 1 + 32 7 = 26 1.112694
B26, B31-ico 133 99733/22 32 56 76 32 + 343 = 375 25 + 73 = 3 53 1.108436
B26 24 2773 3373/310 54 76 100 + 243 = 343 22 52 + 35 = 73 1.091755
B33-tet 6732055073/263125276112 128 + 3645 = 3773 27 + 36 5 = 73 11 1.063347
C29-dih 133 1813/32 74 1 + 48 = 49 1 + 24 3 = 72 1.041242
B31-tet 133 38773/22 34 54 72 1 + 224 = 225 1 + 25 7 = 32 52 1.012903
B30-dih3 24 79 3073/38 54 132 1 + 324 = 325 1 + 22 34 = 52 13 0.969441
B33-oct 31327732833/26325276116 384 + 1331 = 1715 27 3 + 113 = 5 73 0.961545
B8, B23-dih4, C19, . . . 22 6013/32 54 1 + 24 = 25 1 + 23 3 = 52 0.946395
B30-ico 26 73 193 3673/38 56 134 81 + 169 = 250 34 + 132 = 2 53 0.925465
B17-tet 26 33 193 433/54 74 1 + 49 = 50 1 + 72 = 2 52 0.920802
B17-ico, B20-tet, B26-ico 26 129793/36 56 74 27 + 98 = 125 33 + 2 72 = 53 0.902977
B29-dih3 24 73 17233/38 56 112 44 + 81 = 125 22 11 + 34 = 53 0.832598
B29-tet 22 133 8773/38 52 114 40 + 81 = 121 23 5 + 34 = 112 0.826990
B26 22 133 3973/38 54 72 25 + 56 = 81 52 + 23 7 = 34 0.821837
B25 73 793/36 112 11 + 16 = 27 11 + 24 = 33 0.786661
B25-oct 22 111133/34 74 114 49 + 72 = 121 72 + 23 32 = 112 0.781638
B20-dih3 33613/24 32 52 74 15 + 49 = 64 3 5 + 72 = 26 0.777782
B25 26 313 3133/34 74 112 1 + 98 = 99 1 + 2 72 = 32 11 0.748932
B17 26 26713/36 52 74 5 + 49 = 54 5 + 72 = 2 33 0.746008
B26, B26-dih4 22 18013/32 54 74 24 + 25 = 49 23 3 + 52 = 72 0.727837
B26-dih3 24 22213/34 52 74 4 + 45 = 49 22 + 32 5 = 72 0.727837

Table 1: The ABC triples for rational cross ratios
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Id a b c rad quality a+ b = c

Q(
√

2) with σ =
√

2, u =
√

2 + 1, v7 = 2
√

2 + 1
C1, P37 1 1 25 2 1.25 ũ2 + σ5 = u2

C2 73 73 211 2 72 1.144080 ũ2 v3
7 + u2 ṽ3

7 = σ11

C3/C4 74 74 2934 2 3272 1.199866 ṽ4
7 + σ9 32 = v4

7

F1/F3 2 36 74 2 32 7 1.125499 ũ v4
7 + 33 = u5 σ

Q(
√

3) with σ =
√

3, u = 2 +
√

3, v2 =
√

3 + 1, v11 = 2
√

3 + 1, v13 = 4 +
√

3
P38 1 1 24 2 0.872417 1 + u2 = u v4

2

C5, P39 1 1 263 2 3 1.229344 1 + u v6
2 σ = u4

C6/C7, P40/P41 1 1 2 33 2 3 0.932732 u2 + u = v2 σ
3

C8 210 113 113 2 112 0.902160 v3
11 + u4 v10

2 = u2 ṽ3
11

C9 112 112 2833 2 3 112 0.974490 v2
11 + u2 v8

2 σ
3 = u4 ṽ2

11

C10/C11 132 132 21235 2 3 132 1.468212 v2
13 + u2 v12

2 σ5 = u8 v2
13

C12 113 113 28174 2 112172 1.237368 ṽ3
11 + u v8

2 172 = u6v3
11

C13 115132 115132 2 317 2 3 112132 1.363827 ṽ5
11 v

2
13 + v2 σ

17 = u v5
11 v

2
13

F9 27 132 36 2 3 13 0.963467 σ6 + u4 v7
2 = v2

13

Q(
√

5) with σ =
√

5, u =
√

5+1
2 , v11 = 2

√
5 + 3

C14 1 1 1 1 0. 1 + ũ = u
C15/C17, P42 1 1 24 22 0.925513 ũ3 + 22 = u3

C18 1 1 28345 22325 1.697794 ũ12 + 24 32 σ = u12

P43 1 1 53 5 1.5 u5 + ũ5 = σ3

F10 53 28 113 22 5 11 1.027220 σ3 + ũ3 v3
11 = 24 u4

F11/F12 22 112 55 22 5 11 1.149095 σ5 + 2u7 = v2
11

Q(
√

6) with u = 5 + 2
√

6, v2 =
√

6 + 2, v3 = 3 +
√

6, v5 =
√

6 + 1, ṽ2 v3 =
√

6
C19 1 1 2235 2 3 1.384228 1 + u3 = ṽ2

2 v
5
3

C20/C21 53 53 2237 2 3 52 1.108429 v3
5 + u3 v2

2 v
7
3 = u3 ṽ3

5

C22/C23 52 52 2933 2 3 52 1.164309 ṽ2
5 + u2 v9

2 v
3
3 = u2 v2

5

C24/C25 2113 56 56 2 3 52 1.179264 u2 ṽ6
5 + u4 v11

2 v3 = v6
5

Q(
√

7) with σ =
√

7, u = 8 + 3
√

7, v2 = 3 +
√

7, v3 =
√

7 + 2, 2 = u v2
2 , 100 = u2 v4

2 52

C26 1 1 28 2 1.377563 1 + u2 = u3 v8
2

C27 33 33 2454 2 3252 0.975522 ṽ3
3 + 100 = v3

3

C28 267 36 36 2 327 0.806964 u4 ṽ6
3 + u v6

2 σ = v6
3

C29 38 38 2 75 2 327 1.275964 u3 ṽ8
3 + v2 σ

5 = u2 v8
3

Q(
√

10) with σ =
√

10, u =
√

10 + 3, v6 = 4 +
√

10, v9 =
√

10 + 1
C30/C31 35 35 213 2 32 1.369596 v6 v

2
9 + v6 ṽ

2
9 = 27

C32 36 36 295 2 325 0.958366 ũ v3
9 + 24 σ = u ṽ3

9

Q(
√

13) with σ =
√

13, u =
√

13+3
2 , v3 =

√
13+1
2

C33 21213 310 310 223213 1.260828 u2 ṽ10
3 + 26 σ = ũ2 v10

3

Q(
√

21) with u = 5+
√

21
2 , v3 =

√
21+3
2 , v5 =

√
21+1
2 , v17 =

√
21 + 2, 96σ = u 25 ṽ3

3
7+
√

21
2

C34 53 53 28 2252 0.724889 ṽ3
5 + 24 = v3

5

C35 5 5 212 2252 1.087333 u2 ṽ5 + 26 = u2 v5
C36 173 173 21237 223 172 1.429819 ṽ3

17 + u3 v3
17 = 26 u2 v7

3

C37/C38 56 56 210337 223 527 1.138299 ṽ6
5 + 96σ = v6

5

F23 5 26 53 172 22 52 17 1.001129 u 23 + v3
5 v

2
17 = u4 ṽ5

Q(
√

105) with u = 41 + 4
√

105, v4 = 11+
√

105
2

, v5 =
√

105 + 10, v6 =
√

105+9
2

, 49σ = 72 v5 (21− 2σ)

C39 22 22 57 225 1.472747 v4 + u2 v7
5 = u3 v4

C40 211 211 5 75 225 7 1.181686 u2v5
4 ṽ6 + u2 v5

4 v6 = 49σ
Q(
√

273) with u = 727 + 44
√

273, v4 = 17+
√

273
2

, v22 = 19+
√

273
2

, 7203σ = u 74(2σ − 33)3(182 + 11σ)

C41 219113 219113 337913 223 7 11213 1.343253 u2v8
4v

3
22+7203σ = u2ṽ8

4v
3
22

Q(
√

385) : u = 95831 + 4884
√

385, v4 = 59+3
√

385
2

, v14 = 21+
√

385
2

, 125σ = 53(1295 + 66σ)(726− 37σ)

C42 213 213 5711 225 11 1.204205 u2v6
4v14+125σ = u2v6

4v14

Table 2: The ABC triples in real quadratic fields
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Id a b c cond quality
Q(
√
−1) with σ =

√
−1, v2 = σ + 1, v5 = 2 + σ, v13 = 2σ + 3

D1, P44 52 52 26 2 52 0.784944 v2
5 + v6

2 = v2
5

D2/D6, P45/P46 24 53 53 2 52 0.911292 v3
5 + v3

5 = −v4
2

G1 1 22 5 2 5 0.436295 1 + σ v5 = v2
2

G2 53 36 132 23 56 2 32 52 13 1.166550 v3
2 v

6
5 + σ v3

5 = 33 v2
13

P60 1 22 5 2 5 0.436295 1 + v2
2 = v5

Q(
√
−2) with σ =

√
−2, v3 = σ + 1, v11 = 3 + σ, v19 = 1 + 3σ

D7/D8 23 33 33 2 32 0.663171 v3
3 + σ3 = v3

3

D9/D11, P48/P49 34 34 27 2 32 0.976300 v4
3 + σ7 = v4

3

D12/D14, P50 22 35 35 2 32 1.105285 v5
3 + v5

3 = −σ2

D15 29 3 115 3 115 2 32 112 1.340223 v3 v
5
11 + σ9 = v3 v

5
11

D16 213 36 192 36 192 2 32 192 1.149361 v6
3 v

2
19 + σ13 = v6

3 v
2
19

D17 310 112 310 112 215 54 2 32 52 112 1.296545 v10
3 v2

11 + 52 σ15 = v10
3 v2

11

G10 112 36 28 3 2 32 11 0.901744 v2
11 + σ8 v3 = v6

3

Q(
√
−3) with σ =

√
−3, u = 1+σ

2 , v7 = 2 + σ, v13 = 2σ + 1
D18/D24, P51/P55 1 1 1 1 0. 1 + ũ = u
D25 1 1 3 3 0.500000 1 + uσ = ũ
D26 1 132 132 132 0.823616 u v2

13 + u = v2
13

D27/D29 28 3 74 74 22 3 72 1.041242 v4
7 + 24 σ = v4

7

P56 33 72 72 3 72 0.639151 v2
7 + uσ3 = v2

7

P61 7 33 24 22 3 7 0.596054 v7 + σ3 = ũ 22

G19 132 26 33 74 22 3 7 13 0.961611 v4
7 + 23 uσ3 = v2

13

Q(
√
−5) with σ =

√
−5, v9 = 2 + σ, v14 = 3 + σ, v21 = 4 + σ, v49 = 2 + 3σ, v129 = 2 + 5σ

D30/D32 28 5 38 38 2 32 5 1.172550 v4
9 + 24 σ = v4

9

D33 33 74 33 74 2 57 2 32 5 72 1.050218 v14 v
3
21 + 2σ7 = v14 v

3
21

D34 214 5 32 76 32 76 2 32 5 72 1.218253 v9 v
3
49 + 27σ = v9 v

3
49

D35 216 53 31074432 31074432 2 32 5 72432 1.390402 v2
9v

4
21v

2
129+28σ3=v2

9v
4
21v

2
129

Q(
√
−6) with σ =

√
−6, v7 = σ + 1, v25 = 2σ + 1

D36 25 37 58 72 58 72 2 3 52 72 1.387965 v2
7 v

4
25 + 3σ5 = v2

7 v
4
25

Q(
√
−7) with σ =

√
−7, v2 = 1+σ

2 , v11 = 2 + σ, v23 = 4 + σ, v29 = 2σ + 1
P57 27 27 73 227 1.106026 v7

2 + σ3 = v7
2

D37/D39 7 213 213 22 7 1.707222 v13
2 + σ = v13

2

D40 34 28 112 28 112 22 32 112 1.001525 v8
2 v

2
11 + v8

2 v
2
11 = 32

D41 36 73 2 115 2 115 22 32 7 112 1.033533 v2 v
5
11 + 33 σ3 = v2 v

5
11

G30 25 210 113 22 11 1.255421 v10
2 + v5

2 = −v3
11

G31 36 23 112 211 22 32 11 0.961815 v11
2 + v3

2 v
2
11 = 33

G32 27232 28 113 36 292 223211 23 29 0.923504 33 v2
29 + v8

2 v
3
11 = v7

2 v
2
23

Q(
√
−14) with σ =

√
−14, v81 = 5 + 2σ, v135 = 11 + σ

D42 23 73 313 53 313 53 2 32 52 7 1.581910 v81 v
3
135 + σ3 = v81 v

3
135

Q(
√
−15) with σ =

√
−15, v4 = 1+σ

2 , v6 = 3+σ
2 , v46 = 7+3σ

2

D43/D45, P58 35 29 29 22 3 1.201305 v4
4 v6 + v4

4 v6 = −33

P59 26 26 335 22 3 5 0.721110 v3
4 + 3σ = v3

4

D46 3 53 210 210 22 3 5 1.018975 v5
4 + 5σ = v5

4

D47 57 211 232 211 232 22 5 232 1.160407 v4
4v6v

2
46 + 53σ = v4

4v6v
2
46

Q(
√
−35) with σ =

√
−35, v9 = 1+σ

2 , v39 = 11+σ
2

D48 316132 316 132 214 57 7 22325 7 132 1.448172 v7
9 v

2
39 + 2753σ = v7

9 v
2
39

Q(
√
−39) with σ =

√
−39, v10 = 1+σ

2 , v16 = 5+σ
2 , v22 = 7+σ

2 , v40 = 11+σ
2

D49 33 133 219 5 219 5 22 3 52 13 1.238591 v4
16 v40 + σ3 = v4

16 v40
D50 35 133 29 56 113 29 56 113 223 5211213 1.380232 v6

10 v
3
22 + 3σ3 = v6

10 v
3
22

Table 3: The ABC triples in imaginary quadratic fields

9



Id discrim a b c cond quality a+ b = c

Q(
√

2 +
√

2) with σ =
√

2 +
√

2, ρ =
√

2, u0 = ρ− 1, u1 = σ + 1, u2 = ρ σ + ρ+ 1, v17 = 2σ + 1
F4 211 173 173 225 2 172 1.239162 u−2

1 ũ2
2v

3
17 + ũ−2

1 u2
2ṽ

3
17 = σ25u10

0

Q(
√

6 + 3
√

2) with u0 =ρ+1, u1 =3+ρ+ρ σ, u2 =3−ρ+ (2−ρ)σ, v2 =2+σ+ρ, v7 =σ+1, v9 =3+σ
F5 211 3 29 36 78 78 2 32 72 1.003989 ṽ8

7 ũ1 u
3
2 + 3 ρ4 u7

0 σ = v8
7 u1 ũ

3
2

Q(
√
−5 + 2

√
2) with u = ρ− 1, v2 = ρ−1+σ

2

F6 26 17 173 217 217 22 17 1.051009 v17
2 + u9 σ3 = v17

2

Q(
√

3 + 6
√

2) with u0 = ρ− 1, u1 = 2 + σ + ρ, v2 = σ+ρ+1
2 , v7 = 2 + σ+1

2 ρ, v9 = 3+σ
2 ρ

F7/F8 −26 32 7 26 26 36 7 22 32 7 0.617259 v6
2 u

3
1 + u−1

1 v7 v
3
9 = ṽ6

2 u
3
1

Q
(√

1+
√

5
2

)
with u = σ + 1, u2 = σ, v4 = σ3 + 1

F13 −24 52 1 1 212 22 1.127411 ũ4
1 + σ−4ũ3

1 v
6
4 = u4

1

Q(
√√

5) with u0 = ρ+1
2 , u1 = 3+ρ+σ+ρ σ

2 , v4 = σ + 1, v9 = 1 + ρ+1
2 σ, v11 = 2 + σ

F14 −24 53 28 36 112 36 112 22 34 112 0.626462 u1 ṽ
3
9 v

2
11 + 22 u5

0 = u1 v
3
9 v

2
11

F15 −24 53 38 112 38 112 212 55 22 34 5 112 0.827061 u4
1 v

4
9 v

2
11 + 40u5

0 σ = u4
1 ṽ

4
9 v

2
11

Q(
√

5 +
√

5) with u0 = ρ+1
2 , u1 =1+2ρ+2σ, u2 =σ+ 3+ρ

2 , v4 =2+σ, v5 =3σ+5, v11 =σ+1
F16 26 53 114 114 210 55 22 5 112 0.892718 u1 ũ

4
2 v

4
11 + 20u5

0 σ = u1 u
4
2 ṽ

4
11

Q(
√

4 +
√

5) with u0 = ρ−1
2 , u1 = 5 + 2σ, u2 = 5+ρ

2 + σ, u3 = σ + ρ+ 1, v4 = σ + 1, v5 = 2 + σ

F17 24 52 11 56 56 216 113 22 52 11 1.187860 u2
1 v

6
5 + u11

0 u
−4
2 v8

4 σ
3 = u2

1 v
6
5

Q(
√

9 + 4
√

6) with u0 = 5 + 2 ρ, u1 = 2 + σ + ρ, v2 = σ+1
2 , v5 = 2 + σ − ρ σ+1

2

F18/F19 −26 33 5 5 210 210 22 5 0.574754 u1 v
10
2 + u4

0 v5 = ṽ10
2

Q(
√

3,
√

7) with σ =
√

3, ρ =
√

7, u1 = ρ+σ
2 , u2 = σ + 1+ρ σ

2 , u3 = 2 + σ, v3 = 1 + ρ+σ
2

F20 24 32 72 1 1 37 3 0.772098 u2
3 + u7

1 u
2
3 = v7

3

Q(
√

5 + 2
√

7) with u0 =8−3ρ, u1 = 3+ρ−σ+ρ σ
2 , v2 = ρ−1+3σ−ρσ

2 , v3 =1+ 3σ−ρσ, v31 =2σ+ρ+2
F21 −26 3 72 2 313 312 313 312 2 32 312 1.118591 u0v2 + u10

1 v
13
3 ṽ2

31 = u11
1 ṽ

13
3 v2

31

Q(
√

2 +
√

7) with u0 = 8− 3 ρ, u1 = 18 + 7 ρ+ 9σ + 3 ρ σ, v2 = 5 + 2 ρ+ 2σ + ρ σ, v3 = 2 + σ

F22 −28 3 72 28 37 37 2 32 0.572791 u4
1 ṽ

7
3 + u2

1 u
2
0 v

8
2 = v7

3

Q(
√

3+
√

21
2 ) with u = 1+ρ+2σ

4 , 2 + σ, v5 = σ + 1, v25 = ρ−1
2

F24 −33 72 53 53 37 54 3 54 0.959523 ũ3 ṽ3
5 + σ7 v2

25 = u3 v3
5

Q(
√

2,
√
−1) with u = σ + 1, v2 = 1 + σ+ρ σ

2 , v25 = 2 + ρ, v9 = 1 + ρ σ, v17 = 1 + σ + ρ σ

G3 24 32 72 36172 36172 24 56 2 34 52 172 0.636805 v2
17 v

3
9 u

2 + v4
2 ũ v

3
25 = v2

17 v
3
9

Q(
√

1 + 2
√
−1) with u = 1−ρ+σ−ρ σ

2 , v2 = 1+ρ+σ−ρ σ
2 , v17 = ρ σ + ρ+ 1

G4/G5 26 5 1 1 24 5 2 5 0.542941 u4 + v4
2 σ = 1

G6 26 5 173 173 28 53 2 5 172 0.755131 v3
17 + ũ2 v8

2 σ
3 = u4 v3

17

Q(
√

2 +
√
−1) with u = 2− ρ+ σ − ρ σ, v2 = σ + 1, v5 = 2 + σ

G7 28 5 56 56 212 53 2 53 1.037078 v6
5 + ρ u2 v12

2 σ3 = u8 v6
5

Q(
√

3 + 2
√
−1) with u = 3−ρ+σ−ρ σ

2 , v2 = 1−ρ+σ−ρ σ
2 , v5 = 2 ρ+ ρ σ, v9 = σ + ρ+ 1

G8 26 13 36 52 36 52 24 133 2 34 52 13 0.594901 u2 v3
9 v

2
5 + I v4

2 σ
3 = u6 v2

5 v
3
9

Q(
√

1 + 8
√
−1) with u = 2 + 2 ρ+ σ, v2 = ρ+ 1+σ

2 , v5 = 3−ρ+σ−ρ σ
2 , v13 = 5+ρ−σ+ρ σ

2 , v25 = 2− ρ
G9 245 13 210 210 57 133 22 53 13 1.205664 ũ7 v10

2 + ρ v3
13 v5 v

3
25 = u5 v10

2

Table 4: ABC triples in quartic fields
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Id discrim a b c cond quality a+ b = c

Q(
√√
−2) with σ =

√√
−2, ρ =

√
2, u = 1− ρ+ ρ σ, v3 = σ + 1, v9 = ρ+ 1

G11 211 38 38 215 34 2 34 1.163578 ũ4 v8
3 + σ15 v2

9 = u4 v8
3

Q(
√
−1 +

√
−2) with u = 3 + ρ+ 2σ − ρσ, v2 = σ + ρ+ 1, v3 = 2 + σ − ρσ, v17 = 1 + ρ+ 2σ

G12 210 3 36172 36172 218 37 2 33 172 1.140309 v6
3 v

2
17 + u5 v18

2 σ7 = u8 v6
3 v

2
17

Q(
√

2 + 2
√
−2) u = 9 + 2ρ+ 6σ, v2 = 2− ρ− σ + ρσ, v3 = σ + 1, v̂3 = 1 + 2ρ+ σ + ρσ, v11 = σ + ρ+ 1

G13 211 3 36 36 211 33 2 33 0.859052 u2 v6
3 + u3 v11

2 v̂3
3 = v6

3

G14 211 3 34113 34113 231 2 32 112 1.309467 v4
3 v

3
11 + u15 v31

2 = u v4
3 v

3
11

Q(
√

1 + 4
√
−2) u = 2 + σ + ρ, v2 = 1+σ

2 , v3 = 1 + ρ σ−1
2 , v9 = 1− ρ, v11 = 1 + ρ σ−3

2 , v19 = 1 + ρ σ+1
2

G15 26 3 11 34113 223 223 22 32 11 1.169070 u6 v23
2 + u3 v23

2 = v2
9 v

3
11

I16 26 3 11 2433 225 3611 192 223311 19 0.974608 u5v2
25 + u4v4

2v
3
3 = v3

9v11v
2
19

Q(
√

7 + 2
√
−2) : u=2+3ρ+σ+ρσ, v2 = 3+ρ+σ

2 , v3 =ρ 3+σ
2 , v9 =ρ+1, v11 =ρσ+1

2 , v17 =2+σ, v19 =3+σ−ρσ+1
2

G16 263 19 229173 229173 38116193 223211217219 1.270620 u12v29
2 v

3
17+v4

9v
3
11v

3
11v

3
19 =u9v29

2 v3
17

Q(
√√
−3) with u0 = 1+ρ

2 , u1 = 1+ρ
2 + σ, v4 = σ + 1, v7 = σ + ρ+ 1

G20 24 33 72 72 212 33 22 3 72 0.933183 u7
1 v

2
7 + u0 σ

3 v6
4 = u1 v

2
7

Q(
√

3 + 2
√
−3) with u0 = 1+ρ

2 , u1 = σ+1
2 , v3 = 3+σ

2 , v7 = 1 + σ−1
2 ρ, v13 = 2 + σ

G21 33 7 132 132 216 33 7 24 3 7 132 1.008855 u0 u
15
1 v2

13 + 24 v3
3 v7 = u−5

1 v2
13

Q(
√
−2 + 3

√
−3) with u0 = 1+ρ

2 , u1 = 5−ρ
2 − ρ σ, v3 = σ + ρ+ 1, v4 = ρ+ σ, v13 = σ + 3+ρ

2

G22 24 32 7 33 33 24 73 22 32 7 0.691861 v3
3 + v2

4 σ
3 = −u0 u

2
1 v

3
3

G23 24 32 7 36 36 212 7 22 32 7 0.824713 u7
1 v

6
3 + v6

4 σ = u1 v
6
3

G24 24 32 7 310132 310132 22073 22 32 7 132 1.120945 u1v
10
3 v2

13+u0v
10
4 σ3 =u−1

0 u11
1 v

10
3 v

2
13

Q
(√

−1+
√
−7

2

)
with u = 1−ρ+σ−ρ σ

4 , v4 = 1+ρ
2 , v11 = 1 + ρ+1

2 σ

G33 23 72 112 112 215 23 112 0.809342 ũ6 v2
11 + σ7 v4

4 = u6 v2
11

Q(
√
−1,
√
−7) with u = 3+ρ+3σ−ρ σ

2 , v2 = 1 + ρ+1σ, v̂ = 1 + 1−ρ
2 σ, v9 = 2− ρ σ, v37 = 1 + ρ+ 3σ

G34 24 72 217 36 372 36 372 22 34 372 0.702370 σ u−7v3
9 v

2
37 + u4 v̂2 v

16
2 = ṽ3

9 v
2
37

Q(
√√
−7) with u= 3−ρ+σ+ρσ

4 , v2 =σ + 3+ρ
2 , v4 = 1−ρ

2 , v9 = 2σ + ρ+ 2, v11 = 3− ρ+ ρσ, v23 = 2 + σ

G35/G36 22 73 36 36 216 2 34 0.900804 v3
9 + u17 v16

2 = −u14 v3
9

I2 22 73 27232 312113 31077 23347 11 23 1.161980 u8v6
9v

3
11 + u7σ7v5

9 = v2v
3
4v

2
23

Q
(√

1+
√
−7

2

)
with u = 1−ρ+σ+ρ σ

2 , v2 = σ + 1, v7 = 1 + σ 1−ρ
2 , v11 = 1−ρ

2 + σ

G37 25 72 75 75 220 22 72 1.097128 v5
7 + u6 v5

7 = u6 σ2 v18
2

G38 25 72 113 113 215 22 112 0.767909 u2 v3
11 + u5 σ3 v12

2 = v3
11

Q(
√
−2 +

√
−7) with u = 7+ρ+3σ−ρ σ

2 , v2 = 5−ρ+σ−ρ σ
4 , v̂2 = 1+ρ

2 + σ, v23 = σ + ρ+ 1
G40 227211 28 28 2 113 23 11 0.648943 u4 v8

2 + u3 v8
2 = −v̂2 σ3

G41 227211 22011 210233 210233 23 11 232 0.886760 v10
2 v3

23 + u7 v̂20
2 σ = u6 v10

2 v3
23

Q(
√

3 + 2
√
−7) with u = 1−3 ρ+σ+ρ σ

4 , v2 = 1+σ
2 , v4 = 1−ρ

2 , v29 = 2 + σ

G43 72 37 210293 210293 212373 24 292 37 0.928698 u v10
2 v3

29 + ũ v10
2 v3

29 = −v6
4 σ

3

Table 5: ABC triples in quartic fields (continued)
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3.3 The ABC identities in higher degree fields

There are 15 rational j(t) giving t-orbits defined over splitting fields of a cubic polynomial. All three
numbers in their ABC identities have the same norms, actually 22, 29, 211, 213, 215, 216, 223, 35, 313, 2436, 57,
22257, 51175, 29137, 228310135. The quality ratio of the last case might be 1.378086. Here is the ABC triple
for the norm 223, for the coverings E10/E11. Let ζ denote a root of z6 + 4z4 − 3z2 + 2. The field Q(ζ) is
the splitting field of x3 + 2x2 + 3x+ 4, obtained by adjoining

√
−2 to the cubic field. The identity is

ζ23 +
(
ζ + ζ2

2
− 5ζ3 + ζ5

4

)23(1− ζ
2
− 3ζ2 − 3ζ3 + ζ4 − ζ5

4

)−6

=
(
−ζ + ζ2

2
+

5ζ3 + ζ5

4

)23(1 + ζ

2
− 3ζ2 + 3ζ3 + ζ4 + ζ5

4

)−6

. (12)

The numbers under the 23rd power have the norm 2, while the numbers in the (-6)th power are units.
Among alternative cross-ratios, there are 152 j(t) ∈ Q giving ABC identities in a splitting field (of degree
6) of a cubic polynomial, and 7 j(t) ∈ Q with t in a cubic field. Of them, 11 and 4 (respectively) give
unit equations. The j-values are: 293, 2103,−2103, 2932,−2833, 2933,−2933, 21033,−21135, 285,−2153·53

and 2832, 2833, 28337, 283273.
Tables 4 and 5 give some ABC identities from the encountered Heun equations with the t-values in a

quartic field. We attempted to give all cases with the trivial class group where the quartic field is either
a nested quadratic extension, or a composite field of two quadratic extensions. The towered or composite
quartic fields certainly appear in the F and G cases. In the ABC identities, σ denotes the outer square
root (or the first given square root for the composite fields) and ρ denotes the inner square root (or
the second given square root for the composite fields). Some units are indexed. The encountered tower
quartic fields with apparently a non-trivial class group are

Q
(√
−22 + 4

√
22
)
, Q

(√
9 + 8

√
−3
)
, Q

(√
5 + 4

√
−5
)
, Q

(√
3
√
−7
)
,

Q
(√

−9+
√
−7

2

)
, Q

(√√
−15

)
, Q

(√
3+
√
−15

2

)
, Q

(√
−3+

√
−15

2

)
.
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