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Abstract

A black-box program for the explicit calculation of Riemann matrices of arbitrary
compact connected Riemann surfaces is presented. All such Riemann surfaces are
represented as plane algebraic curves. These algebraic curves are allowed to have
arbitrary singularities. The method of calculation of the Riemann matrix is essentially
its definition: we numerically integrate the holomorphic differentials of the Riemann
surface over the cycles of a canonical basis of the homology of the Riemann surface.
Both the holomorphic differentials and the canonical basis of the homology of the
Riemann surface are obtained exactly through symbolic calculations. This program is
included in MapleV.6, as part of the algcurves package.

1 Motivation

Integrable partial differential equations such as the Korteweg-deVries (KdV) equation and
the Nonlinear Schrédinger (NLS) equation have been widely used in the last thirty years
for the description of various physical phenomena. Especially the soliton solutions of these
equations have claimed a well-deserved niche in both theory and experiment. It is however
fair to say that their popularity has not been shared with their periodic and quasiperiodic
counterparts.

There are many issues one could point at to explain this discrepancy, but the main
one must be that the theory of the periodic and quasiperiodic solutions of these equations
invariably is connected with algebraic geometry and the theory of Riemann surfaces [2, 8].
If one manages to obtain explicit formulas for the solutions, they usually involve Riemann
theta functions, parametrized by some Riemann surface. This lack of explicitness should
be compared with the usually much simpler explicit formulas one obtains for one- and two-
soliton solutions, in terms of exponential and rational functions.

A Riemann theta function with g phases is given by

91, ..., ¢/ B) = > exp<27ri(%m-B-m+m-¢>>, (1)
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with ¢ = (¢1,...,¢,). Here B is a g x g Riemann matrix, i.e., a symmetric matrix whose
imaginary part is positive definite. Not all such theta functions appear in the solutions of
integrable partial differential equations. Only those for which the Riemann matrix originates
from a Riemann surface (as described in the next section; this is a much smaller set) result
in solutions. Essentially this means that the solutions given in terms of theta functions are
implicitly parametrized in terms of Riemann surfaces. As stated, the Riemann theta function
is very explicit. The non-explicitness arises because of the complicated nature of the map
from the Riemann surface to the Riemann matrix, which is described in the next section.

This paper presents a program to turn this map into an effective computation. The paper
is not intended for the specialist in Riemann surfaces. Rather, it is aimed at the interested
applied mathematician or physicist. For that reason, terminology is kept to a minimum and
hopefully all concepts are made sufficiently clear. The details of the program, including the
technical mathematical issues one encounters, are presented elsewhere [7].

2 Terminology and problem formulation

In this section, the required ingredients from the theory of Riemann surfaces are introduced.
More details can be found in the standard references [10, 22, 23, 24, 25] and in the review
paper [8]. An excellent place to read up on Riemann surfaces and how they relate to plane
algebraic curves is the book by Brieskorn and Knérrer [5].

Consider a plane algebraic curve, defined over the complex numbers C, i.e., consider the
subset of C? consisting of all points (z,y) satisfying a polynomial relation in two variables x
and y with complex coefficients:

F(z,y) = ap(@)y" + an_1(2)y" " + ... + a1(2)y + ao(x) = 0. (2)

Here aj(z), 7 =0,...,n are polynomials in z. Write a;(z) = Y, a;;2*, where the coefficients
a;; are complex numbers. Assuming a,(z) # 0, n is the degree of F'(z,y) considered as a
polynomial in y. We only consider irreducible algebraic curves, so F(z,y) cannot be written
as the product of two nonconstant polynomials with complex coefficients.

Let d denote the degree of F'(z,y) as a polynomial in  and vy, i.e. d is the largest i 4 j
for which the coefficient a;; of z'y’ in F(x,y) is non-zero. The behavior at infinity of the
algebraic curve is examined by homogenizing F'(z,y) = 0 by introducing an auxiliary variable
z: then F(z,y,2) = 2¢F(z/2,y/2) = 0 is a homogeneous polynomial equation of degree d.
Finite points (z/z,y/2) € C* on I correspond to triples (z : y : z) with 2z # 0. Since for
these points (z : y: 2) = (x/z : y/z: 1), we may take z = 1, so finite points can be denoted
by (z,y) instead of (z/z,y/z). Points at infinity correspond to triples (x : y : z), with z = 0,
hence, at a point at infinity, at least one of the two coordinate functions x or y (which are
the functions x/z and y/z in homogeneous coordinates) is infinite. Because F'(z,y,0) is a
homogeneous polynomial of degree d, there are at most d points at infinity. In what follows,
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I" is used to denote the set of points on the algebraic curve given by F(z,y) = 0, consisting
of both finite points (z,y), as well as points (z,y,0) at infinity.

The algebraic curve can have singular points. Finite singular points on the algebraic
curve satisfy F(z,y) = 0,F(z,y) = 0,F(z,y) = 0. Points at infinity can also be singular.
Singular points at infinity satisfy 0,F(z,y,z) = 0,F(z,y,2) = 0,F(x,y,z) = 0 (then also
F(z,y,z) = 0, by Euler’s theorem for homogeneous functions). Desingularizing I" results in a
Riemann surface, i.e., a one-dimensional complex-analytic manifold (so it is two-dimensional
over the real numbers; it is a surface). There are various ways of desingularizing algebraic
curves. The method used here is explained in Section 5. Each nonsingular point on I'
corresponds to one point on the Riemann surface, whereas a singular point on the algebraic
curve can correspond to more points on the Riemann surface. Therefore, as long as singular
points are avoided, as for instance in Section 3, it is convenient to identify [' with the
Riemann surface. All Riemann surfaces obtained this way are connected (because F(z,y)
is irreducible) and compact (because the points at infinity are included). Conversely, it is
known [2, 25| that every compact connected Riemann surface can be obtained this way. In
what follows, all Riemann surfaces considered are understood to be connected and compact.

An algebraic curve (2) defines an n-sheeted algebraic covering y(z) of the extended com-
plex z-plane. For all but a finite number of values of z in the extended complex plane
ClJ{oo} there are n values for y(z) in C|J{oo}. A value for = corresponds to a singularity
or a branch point if and only if there are fewer than n values for y(x). A branch point of this
n-sheeted covering is defined as an z-value x = b where y(z) does not return to its original
value when one analytically continues y(z) along a small circle around x = b. Labeling
the sheets of the algebraic covering y(x) with numbers 1,2,..., n defines a permutation oy,
acting on the sheet labels, giving how they interchange when y(x) is analytically continued
counterclockwise around the branch point = b. The collection of such permutations around
all branch points determines the monodromy group of the algebraic curve (2). More details
are found in [9] or [26]. In Section 3, the ingredients for a program for the calculation' of the
above permutations and hence of a representation of the monodromy group are presented.

A Riemann surface is a one-dimensional complex-analytic manifold. Hence it is a two-
dimensional manifold over the real numbers and its only topological invariant is its genus g,
since the surface is connected. The genus of the Riemann surface represented by the algebraic
covering is easily found from the Hurwitz formula [10, 25]: let ep denote the ramification
index of y(z) at a point P on the Riemann surface, which is defined as the number of sheets
of the algebraic covering y(x) that meet at P. The total branching number W of y(z) is
then defined to be the sum of ep — 1, taken over all branch points P on the Riemann surface.
Then the Hurwitz formula gives

w
g:?—n—l-l. (3)

!Throughout this paper, “calculation” is used when exact results are obtained, whereas “computation”
is used for numerical results.
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Define a cycle to be a closed, oriented, smooth or piecewise smooth curve. For the

purposes of integrating holomorphic functions in the complex plane, there are no nontrivial
cycles, because Cauchy’s theorem allows the deformation of such cycles to points, reducing
the integral around any cycle of a holomorphic function to zero. On the other hand, a
Riemann surface of genus g is topologically equivalent to a sphere with g handles; it has g
holes. On such a surface there are many cycles which cannot be deformed to points. A cycle
going around a handle or a cycle encircling a hole cannot be deformed to a point.
If two cycles can be continuously deformed into one another, they are homotopic. The
concept of homology is weaker than the concept of homotopy. A cycle is homologous to
zero if it bounds a piece of the surface I'. The sum of two cycles is defined to be the cycle
obtained by traversing one cycle after the other following the prescribed orientation (hence
a cycle can have multiple components). The negative of a cycle is the cycle traversed in
the opposite direction. Finally, two cycles are homologous to each other if their difference is
homologous to zero.

Many of the cycles around holes and handles are deformable into each other, but one
easily sees that there are 2¢g cycles which can not be deformed into each other and which are
not homologous. Fig. 1 illustrates this for the case of a g = 2 surface.

Figure 1: A genus 2 surface with a canonical basis of cycles.

The intersection index of two cycles counts the number of intersections, taking the ori-
entation of the cycles into account. If the cycles a and b do not intersect, their intersection
index a o b is zero; if the cycles a and b intersect once, a o b = 1 if £, x £, points out of the
surface, where ¢, (t;) is the tangent vector to a (b) at the intersection point. If ¢, x ¢, points
into the surface, a o b = —1. For more details, see [19].

On a Riemann surface I' of genus g, it is possible to choose the 2g nonhomologous cycles
such that their intersection indices are as follows:
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0,1'00,]':0, biobj:(), aiobj:(Sij, i,j:O,...,g, (4)
where ¢;; is the Kronecker delta: it is one if ¢ = j and zero otherwise. A basis for the
homology of the Riemann surface [' with these intersection indices is called a canonical basis
of cycles. A canonical basis for the homology of a genus 2 surface is drawn in Fig. 1. Notice
that a canonical basis for the homology is not uniquely determined. In 1984, C. L. Tretkoff
and M. D. Tretkoff [26] published an algorithm for the explicit construction of a canonical
basis of cycles of the homology of a Riemann surface. The input of the algorithm is a
monodromy representation of the Riemann surface. The implementation of this algorithm
is discussed in Section 4.

A differential on a Riemann surface is a one-form on the Riemann surface. It is globally
defined and can be integrated over paths on the Riemann surface. A holomorphic differential
is a differential with no poles. Consider the case of the extended complex z-plane, i.e., the
Riemann sphere. Let f(x) be a non-zero meromorphic function on the Riemann sphere. Since
meromorphic functions on the Riemann sphere are rational functions, f(z) = p,(z)/q¢m(z),
with p,(z) and ¢, (x) polynomials in x of degrees n and m respectively. Then w = f(z) dx is
by definition a meromorphic differential on the Riemann sphere, i.e., a differential whose only
singularities are poles. This differential has poles at the roots of ¢,,(z). Hence, in order for w
to be holomorphic, g, (z) is constant. Without loss of generality, let ¢,,(z) = 1. Furthermore,
using 7 = 1/z as a local parameter at = 0o, we can write w = —p,(1/7) d7/72 at infinity.
Hence w has a pole at infinity unless p,(1/7) has at least a double root at 7 = 0, but
this is impossible. Hence, on the Riemann sphere no non-zero holomorphic differentials
exist. However, for genus greater than zero, the situation is different; non-zero holomorphic
differentials do exist, and furthermore cycles that are not homologous to zero exist as well. In
fact, a cycle is homologous to zero if and only if the integral of every holomorphic differential
along that cycle is zero. The set of all holomorphic differentials is a C-vector space of
dimension g, where g is the genus. A basis for the cohomology of the Riemann surface
is a set of g linearly independent holomorphic differentials. Its calculation is discussed in
Section 5.

The values of the integrals of the holomorphic differentials along the cycles of the homol-
ogy are closely related to the geometry and analytic structure of the Riemann surface under
consideration [22]. The periods of the holomorphic differentials are defined as the value of
their integrals around a canonical basis of the homology. Given a canonical basis of both
the homology {a;,b;,i =1,..., ¢} and the cohomology {w;,i =1,..., g}, a period matrix 2
of the Riemann surface T is

Q= (A B), (5)

which is a g X 2g matrix, consisting of two g x g blocks:

A= (A5) 0 A= ©)

J



6 Bernard Deconinck and Mark van Hoeij

B = (By)],_,. Bj =f w. (7)
bj
As it is defined, the period matrix €2 depends on the choices of the bases of both the homology
and the cohomology. Choosing different bases results in an equivalent period matrix for the
same Riemann surface. Up to this equivalence, the period matrix completely determines
the Riemann surface (Torelli’s theorem, see [12]). Often one chooses a specific basis of the

cohomology such that
[ ®)

J

With this basis of the cohomology , A = I, the g X g identity matrix. Then B is called a
Riemann matrix. One easily sees that from any period matrix a Riemann matrix B for the
Riemann surface is determined by

B=A"'B. (9)

The Riemann matrix by definition does not depend on the choice of a basis for the coho-
mology. However, it still depends on the choice of the canonical basis of the homology. The
Riemann matrix is symmetric and the eigenvalues of its imaginary part are positive definite.
These properties are not obvious from the definition. They are consequences of the Riemann
conditions on the periods of differentials on Riemann surfaces. See [8] or [25] for proofs.
The computation of a period matrix is discussed in Section 6. From there, (9) easily gives a
Riemann matrix for the Riemann surface I". This Riemann matrix now defines a Riemann
theta function, using (1).

Notice that all concepts above are introduced using existence statements. The way these
concepts were introduced here mirrors the standard texts, such as [10, 25] or [8].

The mathematics in this paper is not new. Methods for the homology, differentials, their
integrals, and hence the period matrix are known in the literature. However, to the best of
our knowledge a complete implementation of all these ingredients had not been accomplished.
The black-box program implemented by the authors for the computation of the Riemann
matrix of a Riemann surface is written in Maple and it is included in MapleV.6, as part of
the algcurves package, as are the other programs that are presented.

Some remarks are in order:

e Other methods for the computation of Riemann matrices are found in the literature,
see [21, 11] and Chapter 5 of [2] and the references therein. Although the final output
of these methods is identical to ours, the point of view is very different. The input of
our program is a plane irreducible algebraic curve with complex coefficients. This is a
representation of a Riemann surface which arises naturally in the theory of integrable
partial differential equations. See, for instance, Section 4.6 of [2] or [6, 14]. The
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homology and the cohomology of the Riemann surface are then inferred from this
representation.

¢ Allowing singular plane algebraic curves is important for the theory of integrable partial
differential equations: in [6], a representation of the Riemann surface for solutions of
the Kadomtsev-Petviashvili (KP) equation is obtained which is generically singular.
Not allowing these singularities [20], results in the omission of many solutions which
can be expressed in terms of Riemann theta functions.

e Riemann surfaces corresponding to an algebraic curve of the form y? = P(z), with P(z)
a polynomial in z, are called hyperelliptic. The class of hyperelliptic Riemann surfaces
is an important subclass of Riemann surfaces because it is a large class for which bases
for both the homology and the cohomology can be written down explicitly. It should
be stressed that the program discussed here is in no way restricted to hyperelliptic
Riemann surfaces. Arbitrary irreducible plane algebraic curves (2) are allowed. The
genus of the Riemann surface I' and the covering degree n are not restricted. Due to
the complexity of the algorithm, practical (machine-dependent) limits on n or g do, of
course, exist.

In the theory of the KdV and the NLS equations only hyperelliptic Riemann surfaces
arise. Nevertheless, it is important from the point of view of integrable differential equa-
tions to consider more general Riemann surfaces, since they arise in the theory of other
integrable equations, such as the Boussinesq equation, where cubic surfaces appear. In
the theory of periodic and quasiperiodic solutions of the Kadomtsev-Petviashvili (KP)
equations, arbitrary Riemann surfaces appear [13].

e For now, the coefficients of (2) are allowed to be algebraic numbers. These coefficients
must be given exactly, floating point coefficients are at the moment (this may change in
later implementations) not allowed. The reason for not allowing floating point numbers
is that the geometry of the Riemann surface is highly dependent on the accuracy of the
coefficients in (2): if an algebraic curve has singularities, than almost surely, the nature
of this singularity will be affected by inaccuracies in the coefficients of the curve. This
may affect the genus, homology and cohomology of the Riemann surface. For the KdV
equation, it is known that periodic solutions are stable with respect to small changes
in the Riemann surface [17]. Hence, although the geometry of the Riemann surface
may be severely affected by small changes in the coefficients, this ultimately has only
a small effect on the solution of the KdV equation. A similar statement is known to
hold for the KP2 equation [15].

Users can consider floating point coefficients, but these need to be converted to a
different form (rational, for instance), before the program will accept the input.

e The program treats some classes of Riemann surfaces differently: shortcuts are used
for the case of algebraic curves with real coefficients, for hyperelliptic Riemann surfaces
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given as a quadratic polynomial in y, etc. Also, throughout the program, many checks
for the correctness of the answer are executed. These details will be given in [7].

3 Calculation of the monodromy group of a plane al-
gebraic curve

The monodromy group of an algebraic covering y(z) requires several ingredients. One starts
by selecting a base point x = @ in the complex z-plane. This base point is not allowed to be
a discriminant point of the algebraic covering. In other words, for z = a, n distinct y-values
exist. These n y-values are now assigned an order, (y1,¥s,...,¥,). This ordering of the n
y-values in effect labels the sheets of the algebraic covering y(x). For each branch point b
one chooses a path v, in the complex z-plane which starts and ends at * = a and encircles
only branch point z = b, counterclockwise. The n-tuple (y1, ¥y, -..,¥y,) is then analytically
continued around this path v,. When one returns to x = a, a new n-tuple is found, which has
the same entries as (y1,¥2,...,¥n), but ordered differently: (yo,(1), Yoy(2)s - - - » You(n)), Where
op is a permutation acting on the set of labels {1,2,...,n}. If x = b is indeed a branch
point, then by definition o, is not the identity.
We now discuss the steps of this procedure more systematically.

1. The problem points of the analytic continuation: To avoid difficulties during the
analytical continuation of (yi,%s,--.,¥s), the paths -, should avoid passing through
certain points, which will be referred to as problem points {b1,bo,...,by}. The roots
of the polynomial a,(z) are elements of this set. As before, a,(z) is the coefficient
of y™ in (2). The reason for including these roots in the set of problem points (i.e.,
excluding these points from the paths) is that all y-values are finite if and only if z is
not a root of a,(x).

The remaining problem points are the discriminant points of the algebraic covering
y(x), which are the z-values for which y(z) has fewer than n elements [27]. These
points are called discriminant points because they are roots of the discriminant of
F(z,y) with respect to y, which is a polynomial in z. All branch points of an algebraic
covering are discriminant points, but not all discriminant points are branch points.
Discriminant points which are not branch points are singular points. Branch points
can also be singular points.

In principle, only the knowledge of the branch points is required for the purposes of
computing the permutations. However, to avoid numerical problems during the ana-
lytical continuation of (y1,¥s, - -.,¥n), the other problem points, such as singularities,
are avoided as well. The monodromy program treats them on the same footing as the
branch points, although they are removed from the output of the program, since their
permutations o} are all equal to the identity.
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2. The choice of the base point: In order to compute the monodromy group of the
algebraic covering y(x), y(z) is analyticly continued along paths around the problem
points of the analytic continuation. For numerical accuracy, it is advantageous to keep
some distance from the problem points. To this end, with every problem point b;, a
radius r(b;) is associated: (p denotes the distance)

r(bi) = %p(b’ia {61, b2, ..., b} — {bi}), (10)

or, r(b;) is two fifths of the distance of b; to the next-nearest problem point. The
number 2/5 is somewhat arbitrary; other numbers between 0 and 1/2 might be used.
Let C(b;,r(b;)) denote the circle with center b; and radius r(b;). Then the circles
C'(b;, (b;)) do not intersect each other.

Now a base point a is chosen, such that the real part of a is smaller than the real parts
of any of the b;. By this choice, the arguments of b; — a are between —7/2 and 7/2.

3. The labeling of the sheets: At the base point £ = a there are n distinct finite
y-values. These are determined numerically as the solutions of F'(a,y) = 0. Let these
n y-values be assigned an order (yi,¥s,--.,%n), which is denoted as y(a). Assigning
such an order to these y-values labels the sheets of the algebraic covering y(x): sheet
one is the sheet containing ¥y, sheet 2 is the sheet containing s, and so on.

4. The ordering of the problem points of the analytic continuation: An ordering
needs to be imposed on the problem points. We order these points according to their
argument with respect to the base point: if arg(h; —a) < arg(b; —a), then b; precedes b;
in the ordering, where arg(-) denotes the argument function. If arg(b;—a) = arg(b; —a),
then b; precedes b, in the ordering if |b; — a| < |b; — a|. This ordering results in an m-
tuple of problem points: (b, by, ..., b,,). For convenience, the same notation as above
is used for the ordered problem points as for the elements of the non-ordered set.

5. The choice of the paths: Now paths are chosen for the analytic continuation. The
paths chosen are composed of line segments and semi-circles. The simplest path L(b;)
around b; consists of one line segment from a to b;—r(b;). This is followed by C'(b;, r(b;)),
starting at b; — r(b;). Successively, a line segment is followed from b; — r(b;), back to a.
However, in many cases, this path will intersect one of the circles C(b;,r(b;)), j # i.
This indicates that the path comes close to the problem point b;. To avoid accuracy
issues during the analytic continuation (see below), this should be avoided. This is
remedied as indicated in Fig. 2: the path takes a detour along a semi-circle around b,.
Whether this semi-circle goes above or below b; depends on the relative positions of
a,b; and b;. The semi-circle is chosen such that the new path is deformable to L(b;),
without crossing any problem points of the analytic continuation.
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Figure 2: Choosing the path from z = a to x = b;. The path around b; is indicated
in a thick black line. (a) The simplest path intersects C(bs,7(bs)). (b) This is
remedied by a new path which is a deformation of the previous one. The new
path intersects C(b;,7(b;)). (c) This is remedied by another path, which is a
deformation of both previous paths

This process is interated, until a path is obtained, which stays at least r(b;) away from
b;, for j =1,2,...,m. In itself, the iteration of this process is not sufficient to ensure
that the chosen path is deformable to the straight-line path from the base point a to
b; — r(b;). To ensure that a correct path is chosen, the program explicitly checks for
the presence of problem points between the chosen path and the straight-line path. If
such points are present, the path is modified to go around them, after which the check
procedure is re-iterated.

. The analytic continuation: Let two non-problem points x = x; and z = x5 be

given. Corresponding to z; is an ordered n-tuple y(z;). When a path is followed in
the complex z-plane from z; to o, the entries of y(z;) follow paths on the Riemann
surface to the roots of F(x,,y) = 0, which gives rise to an n-tuple y(z2), whose ordering
is induced by the ordering of y(z;). If the path between them deviates little from a
straight-line segment and does not pass through or near any problem points, then

y(z2) = y(z1) + ¢ (21) (2 — 31) + (|72 — 1]%), (11)

and the last term is small when z5 and z; are suffiently close (to make this precise
one needs to bound the second derivative of y(z) to find a bound for ¥(|z — z1|?)).
Here y'(x1) is the n-tuple of derivatives to the algebraic curve at y(z;). By implicit
differentiation,

(12)

Fp(z1,p1(21)) Fy(ar, ya(z1)) Fz(ﬂfl,yn(ml))) ’

y(o) == <Fy(x1,y1($1)), Fy(z1,y2(1))" 7 Fy(21, Ya(21))
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where a subindex x or y denotes partial differentiation and y;(x1), i = 1,...,n denotes
the i-th component of y(x1). Hence, under the above conditions, the first two terms of
(11) give a good approximation to y(z2). Having the unordered entries of y(z,) and
comparing them with the ordered approximation y(z;) + y'(z1)(z2 — 1) determines
the ordering of these entries, resulting in the ordered n-tuple y(z). Clearly, in order
to avoid matching up the entries of y(z,) with the wrong entries of the ordered ap-
proximation, the accepted size of |z5 — 1| depends on the separation of the entries of
y(x2). This process is illustrated in Fig. 3 with n = 3.

%04) e
% (%) e

[ ] - [ }
Xy X5

Figure 3: The analytic continuation of y(z) from z; to z,, using a linear approx-
imation, with n = 3. Since the path from z; to z, avoids problem points, the
paths on the Riemann surface from y(z;) to y(z2) never intersect (even though
they appear to intersect in this picture).

If |9 — x| is not small, or if the path connecting them deviates significantly from a
straight-line segment, then an analytic continuation from y(x1) to y(z2) is obtained by
iterating the above process along small segments of the path, such that the necessary
conditions above are satisfied. Note that y(z7) is dependent on the path chosen from
x1 to xo. For brevity of notation, this dependence is not made explicit.

7. The monodromy group: Consider a closed path starting from x = a and returning
there after encircling one branch point z = b. After analytic continuation of y(a) along
this path, the entries of y(a) are recovered, but they are shuffled by the permutation
Op-

The collection of all o}, generates the monodromy group, which is represented here as a
subgroup of S,,, the group of permutations of {1,2,...,n}. Note that this representa-
tion depends on the choice of the labeling of the y-values at x = a, so it is only unique
up to conjugation. More details are found in [9].
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This representation of the monodromy group is discrete in character. Because of this,
it is obtained exactly, despite the numerical nature of the analytic continuation.

. Infinity: The point £ = oo might also be a branch point. The corresponding per-

mutation 0., does not need to be computed by analytic continuation, since it can be
determined from the other o, using the following relation.

00 © 0, OO0 _, ©...00, 00y = 1. (13)

This states that analytical continuation along a closed path in the extended complex
z-plane that encircles all branch points will act as the identity permutation. Such
a path is deformable to a point and analytic continuation along this path does not

permute the entries of y(a).

The following example computes a representation of the monodromy group for the al-
gebraic covering y(z), corresponding to F(z,y) = y* — 27 + 223y = 0: the command
monodromy (f,x,y) gives a list with three entries. The first entry is the choice of the base-
point = a. The second entry is y(a), which is a list of n elements. The third entry is a list

of the branch points b; with their permutations oy,, given in disjoint cycle? notation.

>with(algcurves) : # load the algcurves package

>f =y 3-x"T+2*%x" 3%y # define the algebraic curve

>genus (f,x,y); # calculate the genus of the algebraic curve
2

># calculate the monodromy representation for y(x)
>m:=monodromy (f,x,y,showpaths) :

>m[1]; # the base point x=a
-1.44838920232
>m[2]; # the sheets y(a)

[-3.20203812254, 1.60101906127 - 1.26997391750 I,
1.60101906127 + 1.26997391750 I]
>m[3]; # the branch points with their permutations
[[-.319697769990 - .983928563571 I, [[1, 3111,
[.836979627962 - .608101294789 I, [[2, 3]11],
[-1.03456371594, [[2, 3111,
(o, C[1, 3111,
[.836979627962 + .608101294789 I, [[2, 3]11],
[-.319697769990 + .983928563571 I, [[1, 2]1],
[infinity, [[1, 3, 2]111]

2We apologize for any confusion that may arise because of the dual use of the term “cycle”. Unfortunately,

this term is standard in combinatorics as well as in the theory of Riemann surfaces.
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Thus, starting from the ordered sheets 1, 2 and 3 above the base point x = —1.44838920232
(i.e., from the ordered y-values —3.20203812254, 1.60101906127 —1.269973917503,
1.60101906127 +1.269973917507), and encircling z = —.319697769990 — .9839285635711,
one finds that sheet one has become sheet 3 and sheet 3 has become sheet 1.

The optional argument showpaths produces Fig. 4. This shows the paths followed in
the complex z-plane for the analytic continuation of y(x).

Figure 4: The complex z-plane and the paths followed in it for the analytic con-
tinuation of y(z), with y* — 27 + 223y = 0. The base point = = a is at the left of the
first circle from the left.

4 Calculation of the homology of a Riemann surface

Choosing a base point x = a results in a choice of paths around the branch points, avoiding
all other problem points. The representation of the monodromy calculated above then allows
the explicit construction of a canonical basis for the homology for the Riemann surface I'.
The algorithm to obtain such a basis is due to Tretkoff and Tretkoff [26]. Since our program
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implements this algorithm essentially without changes, the algorithm is not discussed here
in much detail. More details are available in [26] or [7]. A short geometrical sketch of the
algorithm is as follows:

1. On the Riemann surface I', indicate all points with = a and y contained in y(a).
This gives n points A; = (a,y;(a)), i =1,2,...,n on the Riemann surface, which label
the sheets of T'.

2. Let © = b denote a branch point in the complex z-plane. Denote one of the disjoint
cycles of o, by 7. Then the sheets labeled by A, with £ € 7 meet at a branch point
B on the Riemann surface, with z-value b. Similarly, each one of the disjoint cycles
of any o}, corresponds one-to-one with a branch point on the Riemann surface, with
z-value x = b. In particular, the number of branch points on the Riemann surface
with x = b is the number of disjoint cycles in 03, not including fixed points. The
total number of points on the Riemann surface with x = b is the number of disjoint
cycles in oy, including fixed points. In what follows, we denote the disjoint cycle in o}
corresponding to B by op.

Now, On the Riemann surface, indicate all branch points, including branch points at
infinity. Let ¢ denote the total number of branch points and B;, i = 1,2,...,t the
branch points on the Riemann surface.

3. Now join every branch point B; to each point A;, for which j € op, ¢ = 1,...,t,
using paths which only meet at the points B; and A;. Thus, every branch point B; is
connected to all points A; which can be reached by paths emanating from B; without
passing through other branch points B;, j # i.

This creates a non-directed graph on the Riemann surface, with n 4 ¢ vertices.

4. Reduce this graph to a spanning tree, by removing a number of edges, say r edges.
Denote these edges by e;, i1 =1,...,7r.

5. This spanning tree contains no closed paths, by definition. Adding to it the removed
edge e; gives rise to a unique closed path on the Riemann surface. Fix an orientation
on this closed path, thus defining a cycle c;.

6. Similarly, every other removed edge ey gives rise to a closed path on the Riemann
surface. If this path has any edges in common with the cycles ¢, ¢, ..., cx_1, then an
orientation is induced from these cycles on the cycle ¢;. Otherwise, an orientation is
chosen. This way, a collection of r cycles ¢y, ..., ¢, is obtained on the Riemann surface.

Tretkoff and Tretkoff [26] show that the cycles constructed above are all nontrivial, i.e.,
they can not be contracted to a point. Furthermore,

r=29+n-1 (14)
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Since n > 1 (otherwise y(z) is a single-valued function), » > 2g. The above construction
hence results in more cycles than are required for a basis of the homology: r —2g =n — 1
of these cycles are dependent in the homology of the Riemann surface.

In [26], Tretkoff and Tretkoff present an algorithmic way to cut the above-mentioned
graph on the Riemann surface across the edges eq,...,e,. This results in a planar graph
which contains cut copies of the cycles ¢y, ..., ¢,. Tretkoff and Tretkoff [26] then show how
this planar graph is used to find the intersection numbers K;; = ¢;0¢;, 4,5 = 1,...,7,
resulting in an r X 7 intersection matrix K = (Ky;)],_; = (ci o ¢;){;_,. Because only 2g of
the cycles cq,...,c, are independent, the rank of this matrix is 2¢g. Furthermore, an r x r
matrix a with integer entries and determinant £1 exists such that

0, I 9 0g,n—1
aKo'=J=| -I, 0, 04,1 |, (15)
On—l,g On—l,g On—l,n—l
with 0, the g x g zero matrix, I, the g x g identity matrix and 0,4, the p X ¢ zero matrix.
Define the cycles

T T
a; = E @;5Cy, bz = E Xt g,5Ch, 1= 1, ... 9. (16)
j=1 j=1

It is a straightforward calculation to check that these cycles satisfy (4). Hence the cycles
ai,...,0qg, b1,...,b, define a canonical basis of cycles for the homology of the Riemann
surface. The non-uniqueness of such a basis is then a restatement of the non-uniqueness
of the matrix a. This matrix is the transformation matrix from the over-complete basis of

cycles cq,...,c, to the canonical basis. Its first 2¢g rows prescribe the linear combination
of the cycles ¢y, ..., c, which results in the canonical basis. Its last n — 1 rows confirm the
dependence of the cycles ¢q,...,c¢,:
T
D e =0, i=2g+1,...,2g+n—1. (17)
Jj=1

The following example computes a canonical basis for the homology of the Riemann
surface corresponding to y* — 27 + 22%y = 0. The command homology (f,x,y) results in a
table. This table has the following entries:

e basepoint: the base point for the analytic continuation of y(z).
e sheets: the ordered n-tuple y(a).

e cycles: the cycles ci,c,...,c.. The cycle ¢, is given as a list: the first element
specifies the starting sheet y;(a), by giving i. The second element is a branch point
x = b in the complex z-plane, together with the disjoint cycle of o,, which contains
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i. The third element is a sheet y;(a), given by j. This part of the cycle ¢ is read as:
“From sheet 7 go to sheet j, by encircling x = b”. It is possible that z = b needs to
be encircled more than once, in order to get from sheet i to sheet j. Having arrived
at sheet 7, this process now repeats. The list is cyclical, meaning that after encircling
the last branch point, one arrives again at the initial sheet, so as to obtain a cycle on
the Riemann surface.

linearcombination: the first 2g rows of the matrix a.

canonicalcycles: the result of combining linearcombination and cycles. Each of
the cycles aq,. .., a4, b1,. .., by is given as a list of lists. Adding the lists in the list gives a
basis element of the canonical basis of cycles. Usually, there is only one list necessary for
each canonical-basis element. Since the canonical-basis elements are obtained from the
information in both cycles and linearcombination, their representation is usually
more complicated. Also, instead of specifying the disjoint cycle of the permutation of
the branch point, the number of times one needs to encircle the branch point in the
complex z-plane counterclockwise is given. If this number is negative, the branch point
needs to be encircled clockwise as many times as the absolute value of the number.

genus: this entry gives the genus of the Riemann surface, by halving the dimension of
the canonical basis. This topological calculation is completely independent of the one
using Puiseux expansions, used by the genus program [29].

>with(algcurves) : # load the algcurves package

>E =y 3-X"T7+2%x" 3%y # define the algebraic curve

># calculate the homology of the Riemann surface corresponding to f.
>h:=homology(f,x,y):

>h[basepoint]; # the base point x=a
-1.44838920232
>h[sheets]; # the sheet labels y(a)

[-3.20203812254, 1.60101906127 - 1.26997391750 I,
1.60101906127 + 1.26997391750 I]

>eval(h[cycles]); # the cycles cl,...,cr

table ([

6=[1, %2, 3, [.836979627962 + .608101294789 I, [2, 311, 2, %1l
1=[1, %2, 3, [0, [1, 3111

2=[1, %2, 3, [infinity, [1, 3, 2]]1]

3=[1, %1, 2, [infinity, [1, 3, 2]11]

4=[1, %2, 3, [.836979627962 - .608101294789 I, [2, 311, 2, %1l
5=[1, %2, 3, [-1.03456371594, [2, 311, 2, %1]

D
%1:=[-.319697769990 + .983928563571 I, [1, 2]1]



Computing Riemann matrices of algebraic curves 17

%2:=[-.319697769990 - .983928563571 I, [1, 31]

>eval (h[linearcombination]) ; # the first 2g rows of the matrix alpha
[1 0 0 0 0 0]
L ]
[0 0 1 0 0 0]
[ ]
[0 0 0 -1 0 1]
[ ]
[1 0 0 -1 0 0]
>eval (h[canonicalcycles]); # the canonical-basis cycles
table ([

b[2]=[[1, [-.319697769990 + .983928563571 I, 1], 2,
[.836979627962 - .608101294789 I, 11, 3, [0, -1]11]
b[1]1=[[2, [.836979627962 - .608101294789 I, 1], 3,
[.836979627962 + .608101294789 I, -11]1]
al11=[[1, [-.319697769990 - .983928563571 I, 1], 3, [0, -1]1]
al2]=[[1, [-.319697769990 + .983928563571 I, 1], 2, [infinity, 1]11]
1

Thus, the cycle ¢, is as follows: start on sheet 1; encircle branch point x = —.319697769990 —
9839285635711 to arrive at sheet 3; encircle branch point z = 0 to arrive at sheet 1. Using
the linear combination, the cycle b; is given by by = —c4+cg, which is rewritten as: start from
sheet 2; encircle branch point x = .836979627962 — .608101294789: once, counterclockwise,
ending up at sheet 3; encircle branch point x = .836979627962 + .608101294789: one time,
counterclockwise and end up back at sheet 2.

The program demonstrated above is not the first program to implement Tretkoff and
Tretkoff’s algorithm [26]. Such a program in Turbo Pascal was also announced in [3]. More
recently, this program was rewritten in C++ [4]. These programs start from a representation
of the monodromy group of a Riemann surface and construct from it a canonical basis for
the homology. To the best of our knowledge, the Maple program homology, presented here,
is the only program that calculates a canonical basis for the homology of a Riemann surface,
starting from the equation of a plane algebraic curve.

5 Calculation of the cohomology of a Riemann surface

The cohomology of a Riemann surface is specified by a basis {wy,...,w,} of holomorphic
differentials on the surface. These wy are of the form (see [5] or [18])

o Pk(xay)

= "I . 1
W 3, F (. y) dz (18)
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Here Py(z,y) = Ziﬂ'gdfs ckijz'y? is a polynomial in z and y of degree at most d — 3,
where as before d is the degree of F(z,y) as a polynomial in z and y. Clearly there are
at most (d — 1)(d — 2)/2 linearly independent polynomials Py(z,y) of this form. If T is
nonsingular, then all polynomials P(z,y) of degree < d — 3 give rise to a holomorphic
differential w = P(z,y)/0,F(z,y) dz. In other words, the genus of a nonsingular plane
algebraic curve of degree d is exactly (d —1)(d —2)/2 [5].

The denominator 0, F'(x,y) vanishes at the branch points of y(z) as well as at the singular
points, whereas the differential dz vanishes only at the branch points of y(z). Therefore, in
order for the differential wy not to have poles at the singular points, the numerator Py(x,y)
must vanish at the singular points. Noether [18] showed that at a singular point P on I'
of multiplicity mp the adjoint polynomial Py (z,y) vanishes at P with multiplicity at least
mp — 1. Imposing regularity of the differentials (18) at a point P imposes a number of
independent linear conditions on the coefficients cg;;. The number of such conditions is
called the delta invariant dp. Once the delta invariants of all points (finite and infinite) are
known, the genus is given by (d — 1)(d — 2)/2 minus the sum of all the delta invariants. A
point P is a singular point if and only if p > 0, and this holds if and only if mp > 1. Note
that the Maple command singularities finds {mp, dp} for all singular points P on the
algebraic curve.

For every singular point, there are mp(mp — 1)/2 linear conditions which are easily
computed. These arise from the fact that Pg(z,y) should vanish at P with multiplicity
mp — 1. If 0p = my(mp — 1)/2 this is a sufficient number of linear equations. Otherwise
dp > my(mp — 1)/2, and more linear equations are required. Singular points P with dp >
mp(mp — 1)/2 will be called special singularities.

In what follows, an outline is given on how to obtain the linear conditions for the case
when the curve has finite special singularities. At the end of this section, we discuss what
needs to be done if I' has special singularities at infinity. As before, the Maple command
discussed is demonstrated. The example on which the command is illustrated is also discussed
in more detail.

1. Puiseux expansions and desingularization: The polynomials Py (z,y) are called
adjoint polynomials of degree d — 3. Several methods are known for computing the
conditions on their coefficients.

Since these conditions follow from the behavior of the plane algebraic curve at its singu-
lar points, it is no surprise that these conditions are computed using a desingularizing
of I'. There are several ways to desingularize I' and obtain from it a Riemann surface.
A well-known method relies on the use of quadratic transformations to “blow-up” or
resolve the singularities [1, 5]. Another method uses Puiseux expansions: near every
x-value x = gy, one computes c;,7;,1;, ¢t = 1,..., M such that

F(z =z + t",y = n(t)) =0, (19)
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here 7;(t) is meromorphic in the parameter ¢: n;(t) = Y72y dit’, for some integer

N. The positive integer r; is called the ramification index of the Puiseux expansion
x = xy + ¢;t",y = n;(t). Such a Puiseux expansion corresponds to a point on the
desingularization of I', hence to a point on the Riemann surface. This point is a
branch point if and only if r; > 1, and r; is the branching number. The complex
number ¢; can in principle always be chosen to be one, but for computations other
choices are often more convenient. Each Puiseux expansion gives a local description of
the r; sheets that meet at one point on the Riemann surface with xz-value .

Having obtained Puiseux expansions of the algebraic curve at all the singular points,
a desingularisation of I' is obtained as the union of the set I" with all its singular
points removed, with the set of Puiseux expansions at the singular points. Imposing a
complex-analytic structure on this set makes it a Riemann surface.

So, there are two ways to compute the adjoint polynomials Py(x,y): using quadratic
transformations or (probably easier to implement) using Puiseux expansions. A third
way to determine the Py (z,y) is described below. This third way is based on computing
an integral basis. We chose to implement this method because an implementation of
the integral basis algorithm (which uses Puiseux expansions) was already available.

2. An integral basis: Consider the coordinate functions z and y on the Riemann surface.
These two functions are algebraically dependent, by F'(x,y) = 0. Denote by A the part
of the Riemann surface where both x and y are finite. Also, let O4 be the set of all
meromorphic functions on the Riemann surface® that have no poles in A. For example,
O 4 contains C[z, y], the set of all polynomials of z and y: since in A both z and y are
finite, any polynomial of x and y results in a finite value as well. If " has no finite
singularities, then every meromorphic function on the Riemann surface without poles
in A can be represented as a polynomial in z and y, hence O4 = Clz,y| if I has no
finite singularities. In general, O, is the integral closure of C[z,y] in the meromorphic
functions on A: it is the set of all meromorphic functions f on A which satisfy a monic
polynomial equation f™ + cp_1(x,y)f™ 1 +...+ci(z,y) f +co(z,y) = 0, for a certain
positive integer m and coefficients ¢;(x,y), ¢ = 0,1,...,m—1 which are in C[x, y]. Note
that m = 1 implies Clz, y] C O4, so all polynomials in z and y are in O 4. An integral
basis {01, ..., 8.} of O can be computed such that every element of O4 can be written
as a linear combination of 3y, ..., 3, with coefficients which are polynomial in z. Here
n is the degree of F(z,y) as a polynomial in y. An efficient method to calculate an
integral basis of O 4, using Puiseux expansions, is given in [28], and is already available
in Maple V.5. It turns out, using the results of [16], that the knowledge of an integral
basis reduces the problem of finding the adjoint polynomials to linear algebra.

3 All meromorphic functions on the extended complex z-plane, i.e. the Riemann sphere with coordinate
function x are rational functions in x, i.e., quotients of polynomials in . More general, on a Riemann surface
with coordinate functions = and y, all meromorphic functions are quotients of polynomials in = and y.
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3. Calculation of the holomorphic differentials using a theorem of Mnuk: De-
note the set of all adjoint polynomials by Adj(I'). The elements of Adj(I") are poly-
nomials P(z,y) € Clz,y| for which the differential w = P(z,y)/0,F(z,y) dz has no
poles in A. Then, for any element f € O4, fw also has no poles in A. In fact one
shows that in this case fP(z,y) is again a polynomial, and hence is in Adj(I"), see
[16]. Denoting by O4 - Adj(T") the set of products of elements of O4 with elements of
Adj(T"), this statement is written as O4 - Adj(I') C Adj(T") C Clz, y], since all elements
of Adj(T") are by definition polynomials in z and y. Theorem 3.3 of [16] shows that
this condition determines the adjoint polynomials completely:

Adi(T) = {P(z,9) | Ou - P(z,y) € Cla, ]} . (20)

From this the linear conditions on the coefficients c;; of P(z,y) = 32,4 57"y’
arising from the finite singularities are easily found: having found an integral basis
{B1, ..., Bn}, the above equation is equivalent to demanding that all products 5, P(z, y),
j =1,...,n are polynomials in x and y. This is done as follows: using the equation
F(z,y) = 0, powers of y™ and higher are eliminated from the quantities 3;P(z,y). Then
these quantities are all reduced to the form G;(z,y)/H,;(z), with G;(z, y) a polynomial
in z and y, and H;(z) a polynomial in z. This is rewritten as G;(z,y)/H;(z) =
Qj(z,y) + Rj(x,y)/H;(x), with the degree of R;(z,y) as a polynomial in z less than
the degree of H;(z). Condition (20) then states that all coefficients of R;(z,y) as
a polynomial in x and y are zero. These coefficients are linear combinations of the
cij, which are equated to zero. After obtaining similar conditions from the singular
points at infinity (see below), the total set of linear equations for the coefficients ¢;; is
solved. The solution set of these equations is g-dimensional, because there are g linearly
independent holomorphic differentials. By computing a set of g independent solutions
and substituting these in P(x,y), a set of g linearly independent adjoint polynomials
Py(z,y) is found, and hence by equation (18) a basis wy,...,w, of the cohomology is
found.

If I' has special singular points at infinity, then similar reasoning applies, but only after
transforming (18) such that it is expressed using the coordinate functions z, z or y, z. Here
(x : y : z) are the homogeneous coordinates introduced in Section 2. Recall that for finite
points on I', z # 0, so that finite points can be denoted by (z,y), with z = 1. Similarly, for
infinite points z = 0, but at least one of x or y is non-zero. If at a point at infinity x # 0,
then (z : y : 2) = (1 : y/x : z/z). In this case, we equate x = 1 and y and z are good
local coordinate functions near this point at infinity. Otherwise, if z = 0 but y # 0, then
x and z are good local coordinates. In the first case, the differential is transformed to the
new coordinate functions using x — 1/z,y — y/z. In the second case, the transformation
is x — z/z,y — 1/z. This transformation is now applied to the equation for the plane
algebraic curve (2) and the equation for the adjoint polynomial P(z,y) =3, .4 3 cijz'yl.
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This results in respectively an equation for the algebraic curve in the new coordinates and a
polynomial P in the new coordinates, namely the numerator of P(z,y) under the transfor-
mation. The coefficients of this new polynomial P are linear combinations of the coefficients
c;j. Finding an integral basis for the algebraic curve in the new coordinate functions and
applying Miiuk’s result (20) gives linear conditions on the coefficients ¢;;, in addition to the
ones obtained using the coordinate functions x and y.

If for some singular points at infinity « = 0, while for others ¥ = 0, then this process
may have to be repeated a total of three times, using all three sets of coordinate functions

(z,y), (z,2) and (y, 2).

Example: Using F(z,y) = y® — 27 +22%y = 0, we illustrate the concepts of this section and
construct the holomorphic differentials. The interested reader may find it helpful to check
our calculations. From (18), all holomorphic differentials are of the form w = P(z,y)/(3y*+
223)dx, with P(z,y) = D iti<a cijz'y? a polynomial in z and y of degree at most 4. This gives
rise to 15 undetermined coefficients c;;. Expressed in homogeneous coordinates (z : y : 2),
the singular points are P, = (0:0:1) and P, = (0: 1:0). The second singular point P; is
infinite and the conditions it imposes on the coefficients of P(x,y) are derived later.

The multiplicity of P, = (0 : 0 : 1) is mp, = 3, its delta invariant is dp, = 4. Since
d0p, = 4 > 3 = mp(mp, — 1)/2, the integral basis method is used. The integral basis
is found (using the integral_basis command in Maple) to be {1,y/x,y*/x3}. Hence all
elements of O, are of the form f = fi(z) + fa(x)y/z + f3(x)y?/2?, where f;(z), j = 1,2,3
are polynomials in z. We verify explicitly that y/z and y?/x® satisfy monic polynomial
equations with coefficients that are polynomials in z and y. Indeed:

(2) 420 (1) -t =0, (y_)+2(y_) =0 1)

A different way to check that y/z and y?/2® have no poles at the two points on the Riemann
surface corresponding to P; is to compute the two Puiseux expansions at P;:

T =t, -,L‘:_2t27
{y:ét‘*—%tu..., {y=4t3—4t8+..., 22)

Each of these can be substituted for x and y in y/x and y?/z?. The results have no pole
at t = 0, hence y/r and 3?/z? do not have a pole at either one of the two points on the
Riemann surface corresponding to P;. This integral basis then gives rise to the conditions
that P(x,y),yP(z,y)/r and y*P(x,y)/z* are polynomials in z and y. Clearly only the last
two of these result in any conditions on the coefficients. Demanding that yP(z,y)/z is a
polynomial in z and y, gives cgo = 0 = ;. Demanding that y?P(z,y)/z® is a polynomial in
x and y gives c;p = 0 = cy9. As expected, the singular point P; results in §p, = 4 conditions
on the coefficients c;;.
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We now turn to the singular point at infinity P, = (0 : 1 : 0). Since yp, # 0, (2, 2)
are good coordinate functions near this point. After homogenizing 3® — 27 + 223y = 0
and equating y = 1, we find 2* — 27 + 2232® = 0 and this algebraic curve now has a
singular point at (z,z) = (0,0), as expected. The transformed adjoined polynomial is
P(z,2) = Diri<a cijz'z*~ (49 Again, the integral basis method is used, since dp, = 9 >
6 = mp,(mp, — 1)/2. An integral basis is {1, z/z, 22 /2%, 2* /2°}. Imposing that zP(z, 2)/z,
2*P(z,2)/2* and 2*P(z, z)/2® are polynomials in 2 and z demands that all ¢;; = 0, except
c3o and cy1, which are undetermined. Hence the most general adjoint polynomial is

P(z,y) = enizy + 302>, (23)

Thus a basis of holomorphic differentials for the Riemann surface specified by ¢ —x7+22%y =
0is
3
Ty T
= —7 dr, wy=-—F—7dz,
3y? + 223 2 3y? + 223

which confirms again that the genus of the Riemann surface considered in this example is
g = 2. The calculation of the holomorphic differentials of the Riemann surface specified by
y3 — 27 + 223y = 0 using Maple V.6 is given below.

w1 (24)

>with(algcurves) : # load the algcurves package
>E =y 3-xX"T7+2%x" 3%y # define the algebraic curve
># calculate the holomorphic differentials
>differentials(f,x,y);

6 Computation of a Riemann matrix of a Riemann sur-
face

Having obtained a canonical basis for the homology and the holomorphic differentials of the
Riemann surface, a period matrix is found by evaluation of the integrals (6) and (7). Once

a period matrix is found, a Riemann matrix for the Riemann surface is found from (9).
From (16),

T T
f w; = E a’jk% wj, j[wi = E ag+j,k]§ W, (25)
aj k=1 Ck bj k=1 Ck
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and the computation of a period matrix is reduced to the computation of the integrals
fc w;, k = 1,...,r for every holomorphic differential w;. But by construction, every one
of the cycles ¢, consists of line segments and semi-circles in the complex z-plane lifted to
the Riemann surface. Each one of these line segments or semi-circles is parametrized by
x = v(t), with 0 < ¢t < 1. The lifting of x = v(t), denoted by y = ¥(yo,t), is obtained
by specifying a starting value of y, yo (essentially the sheet number), and by analytically
continuing this value yy along = = ~y(¢). Hence ¥(yo,0) = yo and F((t),¥(yo,t)) = 0. This
reduces the problem to evaluating integrals of the type

} st sy 0 )

These integrals are evaluated numerlcally using Maple’s numerical integration routine. This
has the advantage that the user can specify the number of significant digits to be used in
computations. If Digits is the number of significant digits the user specified, the command
periodmatrix(f,x,y) attempts to return the periodmatrix of the Riemann surface specified
by the plane algebraic curve f = F(z,y) with at least Digits—3 significant digits. The
numerical evaluation of these integrals is slow, since for every evaluation of the integrand
analytic continuation is required. Of course, requiring more significant digits takes more
computer time.

The following example computes a period matrix and a Riemann matrix for the Riemann
surface specified by F(z,y) = y® — 27 + 2x3y. The accuracy of the output is estimated by
the absolute values of the anti-symmetric part of the Riemann matrix (if the error was zero
then the Riemann matrix would be symmetric). If the absolute value of an entry of the

anti-symmetric part is greater than 10P*%3*$73 4 warning message is printed.
>with(algcurves) : # load the algcurves package
>E =y 3-xX"T7+2%x" 3%y # define the algebraic curve

># calculate a period matrix for the Riemann surface corresponding to f
>pm:=periodmatrix(f,x,y):

>evalf (pm,5) # use only 5 significant digits, for display purposes

[-.71618 + .98573 I -1.1588 - .37652 I -3.7499 -2.5911 - .37652 I]
[ ]
[-1.8496 - .60096 I 1.1431 + 1.5733 1 -1.4129 -2.5560 + 1.5733 I]

># calculate a Riemann matrix for the Riemann matrix corresponding to f
>rm:=periodmatrix(f,x,y,Riemann);
[1.690983020 + .9510565349 I 1.500000005 + .3632712707 I]

[ ]
[1.500000010 + .3632712735 I 1.309017002 + .9510565221 TI]
>with(linalg): # load the linalg package

>evalm(rm-transpose(rm)); # compute the anti-symmetric part of rm
L -8 -8 1]
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L 0 -.5610 - .28 10 1I]
L ]
L -8 -8 ]
[.510 + .28 10 I 0 ]

># increase the significant digits used in computations to 20.
>Digits:=20;

># calculate a Riemann matrix using 20 significant digits.
>rm:=periodmatrix(f,x,y,Riemann) :

>rmr:=map(Re,rm) ; # compute the real part of rm
[1.6909830056250525744 1.4999999999999999994]
L ]
[1.4999999999999999995 1.3090169943749474240]

>rmi:=map(Im,rm); # compute the imaginary part of rm
[.95105651629515357133 .36327126400268044257]
[ ]
[.36327126400268044298 .95105651629515357255]

>eigenvals(rmi); # the eigenvalues of the imaginary part of rm

.58778525229247312916, 1.3143277802978340147
># the imaginary part of the Riemann matrix is indeed positive definite.

Remark: If the roles of the coordinate functions x and y are switched, z is regarded as

an algebraic function of y, £ = x(y). This changes the monodromy and hence the period

matrix computation is very different. On the other hand, the period matrix and the Riemann

matrix are merely transformed into equivalent matrices. This equivalence is a consequence

of the freedom in choosing a canonical basis of the homology. If a new canonical basis of
!

cycles (af, ..., ay, by, ..., b)) is chosen as an integer linear combination of the elements of the

existing basis by

g

g 9 9
ai =) dija; + Y ciby, Vi=) biya;+ ) aib;, (27)
j=1 j=1 Jj=1

j=1
then the period matrix € transforms according to
Q— Q' =(Ad" + Bc" Ab" + Ba"), (28)

with @ = (ay)7 =1, b = (by)i =1, ¢ = (cy)i =, and d = (di;)],_,. Using the symmetry of

the Riemann matrix, we find that it transforms according to

BB =(@B+b)(cB+d™ (29)

Because a,b, ¢ and d transform a canonical basis of the homology into a canonical basis of
the homology, they must satisfy
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a b o, 1I, a” "\ _ (0, I, (30)
cd)\-1, 0, )\o" a )=\ -1, 0, )

which restates that the intersection indices of the elements of the new basis of the homology
are like those of the previous basis.
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