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Abstract

Abel’s problem is the question how to solve the equation dy/dx = ay
where a is an algebraic function in x. Suppose that the solution y is
an algebraic function. The topic of this paper is how to calculate the
minimum polynomial of y over C(z) without computing an expression for
y in terms of a and z.

1 Introduction

Let a be an algebraic function in z. Let P be its minimum polynomial; P(Z) €
C(z)[Z] is a monic irreducible polynomial such that P(a) = 0. Consider the
first order differential equation

dy _

e (1)

and let y = exp([ a) be a solution of this equation. If y is an algebraic function,
then [a =log(y) is an elementary function, so then [ a can be calculated be-
cause the problem of elementary integration of algebraic functions is solved, see
[4, 6]. Implementations exist as well, for example Maple has an implementation
of Trager’s algorithm. However, this algorithm would take a very long time for
the example in section 2; the result would be an expression for y in terms of a
and z that would most likely be very large and hence hard to compute. The
topic of this paper is how to circumvent this computational difficulty, i.e. how
to calculate this minimum polynomial without first calculating an expression
for y in terms of a and z.
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2 Example from differential Galois theory

In [3], van der Put and Ulmer give an explicit construction for the inverse prob-
lem in differential Galois theory for finite groups. Starting with a finite group G
and a representation of G on a vector space (effectively this means: one starts
with a set of matrices that generate a finite group under multiplication), they
show how to find a linear differential equation L(y) = 0 that has as differential
Galois group the group G, which acts on the solution space of L(y) = 0 in the
same way as the representation of G' one started with.

Their method is very effective; for many groups this calculation is feasible
on a computer. We used their method to find an operator L with differential
Galois group G = H7S2L (3), a group with 3 - 72 = 216 elements. We chose a
representation and generators of G that have some properties of symmetry that
could be exploited to facilitate the calculation of L. This way we found the
operator

L= 0383 + 0282 + a18 + ag

where
as = 432(x — 1)(3z% +1)®

ay = 432(2122 — 24z — 1)(32% + 1)?
ay = 9(3z% 4+ 1)(44372° — 597322 + 171z — 683)
ap = 26676x* — 4529423 + 39662> — 14594z — 1474
and the corresponding differential equation is

"t

L(y) = azy""' + azy" + a1y’ + apy = 0.

The differential Galois group of L must be the group G = H752L ® that we
started with because of the results of van der Put and Ulmer. Any solution
y of L will be an algebraic function for which the minimum polynomial has
Galois group G over C(z). From [5] we know that for this group there must
exist a solution y that is algebraic over C(z) of degree 27 (the degree of
the minimum polynomial is 27) and furthermore a = y'/y will be algebraic
of degree 9 over C(z). Note that if one takes a random solution y of L
then these degrees are most likely much higher. The algorithm given in [2]
allows us to find the minimum polynomial of degree 9 of a = y'/y. The result is:

P(Z) = Z° 4+ 30z/(3z2+1)-2Z% + 1/4- (159922 + 1)/(32> +1)2 - Z7
+ 1/72 - (2235872 + 1522 + 441z + 5)/(3z% + 1) - Z5 +
1/1152 - (17855019z* + 4800z% + 7396222 + 1600z — 21)/(3z> + 1)* - Z°
+ 1/3456 - (178134957z° + 119907z* + 129011423 + 4006222 — 1071z +
31)/(3z2 + 1)° - Z* 4+ 1/248832 - (284206226852° + 38312352x° +
323581833z* + 12864960z° — 524073z + 31392z + 67)/(3z% + 1)¢ - Z3 +
1/497664 - (8093110650327 + 191139507z° + 1350862263z° + 64704555z* —
3559875z% + 330129x2 + 1349z — 111)/(3z2 + 1)7 - Z2 4 1/47775744 -
(64498573139132% + 2439576921627 + 1502007845402° + 8354150784x° —



580059306z* + 738581762 + 437148z — 72576z + 505)/(3z2 + 1)8 - Z +
1/644972544 - (321120555628862° + 182329225533z° + 100536492740427 +
63398867400z° — 5314028328z + 869144634z + 66829322 — 166982422 +
23490z — 127) /(322 + 1)°.

Let a be a root of P(Z). Then the algebraic function a is of the form
y' [y for some solution y of L that is algebraic of degree 27. Hence, for this
algebraic function a we know that equation (1) has an algebraic solution y
of degree 27. If we can calculate the minimum polynomial of the solution y
of equation (1), then we have obtained a polynomial with Galois group G
over C(z). Take d = 27/9 = 3, so § = y? must be in C(z,a), see section 3.
Now ¢ is a solution of §' = da §, and once § is computed we find y = /2.
If we can calculate the minimum polynomial Q(Z) of §, then Q(Z?) is the
minimum polynomial of y. However, calculating in C(z,a) ~ C(z)[Z]/(P(Z))
is clearly very costly because P(Z) is so large. So obtaining the polynomial
@ below would be hard if we would first have to to compute the solution
of ' = da § in terms of a and =z, i.e. if we had to find an expression for
7 in € (z,a). The following is the minimum polynomial of a solution y of y' = ay.

Q(Z°%) = 7% —168/(32>+1)°- Z'® +405(1+z) /(32> +1)" - Z'5 — 636/ (32> +
1)10.2°-324(1+41z) /(322 +1)12. 26 —243/4-(1+2)?/ (322 +1)14- Z3 -8/ (322 +1) 5.

We verified that the Galois group of this polynomial over C(z) is indeed
H752L ) using the monodromy command in Maple V Release 6.
An alternative method to calculate the minimum polynomial of an algebraic

solution for such a differential equation is given in [1], section 5.1.7.

3 Review of the problem

Since y = exp( [ a) we will make some remarks about the Risch/Trager integra-
tion algorithm for [a. At some point in this algorithm the residues (see also
section 6) of a are computed. In our case a = y'/y where we assume y to be an
algebraic function, so these residues must be rational numbers. So the Z-basis
of the residues will contain only 1 element, so in our case there will be only 1
divisor D in the integration algorithm. A difficult problem in the integration
is how to decide if D is a torsion divisor, and if so, how to bound the torsion
index. The solution of this problem involves reducing of the curve modulo two
prime numbers and computing the torsion index on the reduced curves. If y is
algebraic, then [ a = log(y) is an elementary function, and since the integration
algorithm can find elementary integrals it will find an elementary expression for
J a, which will be of the form [a = r-log(A) where r € Q and A € C(z,a). If
r =n/d then y¢ = A" € C(z,a). So we see that when y is an algebraic function,
then y? € C(z,a) for some integer d. The denominator d of r depends on the
torsion index of the divisor D, see also section 6. So it can be calculated and
implementations exist, but it is nevertheless a difficult problem. In fact, Risch



was able to give a complete decision procedure for elementary integration once
the problem of bounding this torsion index was solved.

In this paper we will not show how to calculate an upper bound for d or
even how to check if the solution y of equation (1) is indeed algebraic. We will
simply assume that y is algebraic and that d is already known, which is true
in the application in sections 2 and 8. Under these assumptions, § = y? is a
solution of 4

=daj (2)
and § € C(z,a), so § can be expressed in terms of z and a. If Q(Z) € C(z)[Z]
is the minimum polynomial of §j then the minimum polynomial of y is Q(Z4).
Now C(z,§) C C(z,a), but since a = y'/y = }—ig]’/gj € C(z,7) the inclusion is
an equality, so

C(2)[2]/(Q(2)) ~ C(z,7) = C(z,a) ~ C(2)[Z]/(P(Z))-

Suppose P is not just defined over C, but over a smaller field of constants
C C C. In this paper we take C' = @, but our method applies to other fields
C of characteristic 0 as well. So assume that P is defined over €, in other
words: P(Z) € Q(x)[Z] instead of in C(z)[Z]. Then the function A that can
be computed by Trager’s algorithm will also be defined over §. So A € Q(z,a),
and hence for the corresponding y we have § = y? € Q(z,a). So if P is defined
over @), and if equation (1) has an algebraic solution, then it must also have an
algebraic solution which has a minimum polynomial over C(z) that is defined
over .

If ¢ € C* and Q(Z) is the monic minimum polynomial of § over C(z),
then denote by Q.(Z) = ¢"Q(Z/c) the monic minimum polynomial of ¢§ over
C(z). Here n is the degree of @, which is the same as the degree of P. Non-
trivial solutions ¢ of equation (2) are unique up to constant factors in C*. So
if P is defined over @, and Q(Z) € C(z)[Z] is the monic minimum polynomial
of some solution § of equation (2), then there exists a constant ¢ such that
Q.(2) € Q)[Z].

So if we would have a minimum polynomial ) of some a solution ¢, then it
is easy to find a minimum polynomial @), of another solution ¢g of equation (2)
such that @), is defined over @), as follows. If the polynomial Q(Z) can be written
as a polynomial @’ (Zd') with d’ > 1 then replace Q by Q'. After that, the set
S of all i from 1 to n for which the coefficient of Z"~% is not zero is a set of
integers for which the greatest common divisor equals ¢ = 1. For ¢ € S, the
coefficient of Z"~% in Q. is of the form c!B;R; with 3; € C* and R; € Q(z).
Now take i1,...,4 € S and integers my,...,m; for which mqi; + ---myi; = 1.
Such m; € Z exist because g = 1. Then the product of (c¢% Bi; )™ equals cy
for some v € C*, and we can take ¢ = 1/v. For example, the polynomial on
page 88 in [1] can be transformed in this way into a polynomial defined over @.

Note that for the minimum polynomial Q(Z) of § can in fact not be written
as Q'(Z%) with d' > 1, because then if z is a root of Q'(Z) we would have
a = 552'/z € C(z,z) but C(z,z) can not contain a because its degree over
C(z) is the degree of Q'(Z), which is smaller than the degree of a.



Now Q. is defined over a smaller field of constants than @ and so it will
be a smaller expression, which usually means that it can be computed more
quickly. Therefore, if § is a solution of equation (2), we want to compute the
minimum polynomial Q. of ¢fj without computing ). Now the question is, given
a solution ¢, how to compute ¢ when we do not yet have . A solution § can be
represented by calculating a power series expansion for it at a point z = b, so §
is expressed as a (truncation of) an element of the ring of formal power series
C[[z — b]]- Then the condition on c is that Q. is defined over . This condition
will make ¢ unique up to factors in Q*.

So the main problem is the following: Given an algebraic solution § € C[[z—
b]] of equation (2), how to find a constant ¢ € C* such that the minimum
polynomial of ¢ over C(z) is defined over . Our method for finding ¢ will
at the same time find rational functions Pi,..., P, € Q(z) from which the
minimum polynomial of ¢ can be constructed using elementary polynomials.

4 Elementary polynomials

Let z1,22 ...,z, be variables and consider the polynomial
F=(Z—-11)(Z —x2)--(Z — ).
We can write F' as
F=27"+(-1)'E, 2" 4+ (=1)’E2 2" 2 + - .- + (-1)"E, 2°

where E;(z1,...,2n) is the i’th elementary polynomial in the variables
T1,...,Tn. Now define the i'th power polynomial P;(x1,...,z,) as 2t + x} +

..zt . Tt is a classical result that Ei,...,E, can be expressed in terms of
Py, ..., P, and vice versa, and it is also known how to compute these expres-
sions. For example, E; = P; and Ey = (P2 — P,)/2. A particularly short and
efficient method to compute these expressions is given by the following Maple

commands:

F:=Z"n+add((-1)"i*E[i]*Z~ (n-i),i=1..n);
evala(Trace( RootO0f(F,Z)"i ));

When ¢ and n are integers and 1 < ¢ < n then the above commands give P;
as an expression in terms of E,..., E;. By back substitution we can then also
express F; as a polynomial in P, ..., F;.

The minimum polynomial ) that we are looking for is of the form

Q=(Z-y1) - (Z—yn) € C(2)[Z]

where § = y; is an algebraic solution of equation (1) and where y1, . . ., ¥, are the
conjugates of y; over C(z). The coefficient of Z"~% in this polynomial @ equals
(=1)*E;(y1, - - - ,yn)- However, instead of calculating the E; we will calculate the
rational functions P;(yi1,...,yn) = yi + -+ +y4 € C(z). As explained above,
the E;(y1,--.,Yn) can be expressed in terms of these P;(y1,---,¥n), and so we
obtain Q. Note that P;(yi,...,yn) € C(z) is the trace of §* taken over the
algebraic extension C(z) C C(z, 7).



5 Taking the trace, continuation of the example.

Let § be an algebraic solution of equation (2), so § € C(z,j) = C(z,a). Let
y1 = ¢ and let yo, ..., yn be the conjugates of y; over C(z). Then P;(y1,...,Yn)
is a rational function, it is the trace of §* over the algebraic extension C(z) C
C(z,a). How to calculate this trace?

To do this we would need to have some representation for § that we can
compute with. As mentioned before, an expression for ¢ in terms of a and z is
costly to compute, so we will use a power series expansion for § instead. Take
a point b € C such that £ = b is not a branch point nor a pole of the algebraic
function a. After substituting z + b for £ we may assume that b = 0. So then
2 = 0 is not branch point of a, in other words = divide the discriminant of
the monic minimum polynomial P of a. And x = 0 is not a pole of a, which
means that z = 0 is not a pole of any of the coefficients of P. Then, when we
calculate the Puiseux expansions at x = 0, we obtain n power series expansions
ai,-..,an € C[[z]] for the algebraic function a. These ay,...,a, are the roots
of P as a polynomial in Z,i.e. P=(Z —a1)---(Z — a,).

In the example in section 2 we get

0 1 2
a1 =a10% +a11T +a122" +---

where a1 9 = a, where «a is a root of

1289945088z° + 32248627227 + 89579520x% — 235146242° + 11570688z* +
347328z3 — 28771222 + 13635z — 254.

The coefficient a; ; of 2! is:

a1 = 576008 — 960a” + 1320a° + 440/3 - a® — 3605/18 - ot + 225/4 - a3 —
18037/2592 - o — 4705/1944 - o — 6463/1944,

and for the next coefficients a; 2, ... we find similar expressions. The expansions
az, - - .,ag in this example are the conjugates of a; over Q.
Now for each i we need a solution y; € C[[z]] of the equation

y; = da; y;.

Recall that d = 3 in this example. We can find solutions by calculating a series
expansion for y; = exp(d [ a;). But this expression is only determined up to a
constant factor. Simply choosing a value for that constant factor does not work,
as will be explained below. Suppose for example we choose this constant factor
by taking the constant term of the y; to be 1. Then we have

1
y1 =1+ dal,o."l,'l + §(da1,1 + (da1’0)2)x2 + .-

and then ys,...,y9 will be the conjugates of y; over €, which means that
to obtain these ys,...,y9 one has to replace the algebraic number « with
its conjugates over ). However, for this choice of y;,...,y9 the product
(Z —y1)--(Z — yo) will not be an element of C(z)[Z]. The reason is the
following: The minimum polynomial Q(Z) of y; over C(z) can be calculated



(although it is not efficient to do so) and the result will be defined over Q(«)
because y; is defined over Q(a). It is unlikely that it will be defined over @, and
indeed, in this example it is not. Hence Q(Z) is not equal to (Z—y1) ---(Z —y9),
because the latter is defined over @. So (Z —y1)--- (Z — yo) is not equal to the
minimum polynomial Q(Z) of y;, even though it has y; as a root and is of the
right degree. This implies that it is not an element of C(z)[Z]. And this in
turn implies that the P;(yi,...,yq) are not elements of C(z), at least not all of
them.

So if we calculate P;(yi,-..,¥9), which is the trace of yi over the extension
Q((z)) C Q(a)((z)), we will get a power series in P; € @[[z]] and not all of these
(for i =1,...,9) will be rational functions. Most likely none of them will be
a rational function. So we see that simply taking the constant term of the y;
to be 1 did not work. The y; need to be multiplied by constants in such a way
that the P; will be rational functions, and this is the condition we will use to
determine the constant c.

Since Q(Z) is defined over Q(«), the number ¢ we need to have Q.(Z) €
Q(z)[Z] is an element of Q(a), so we can write

c=koa® +---kga®

where (ko,...,ks) is an unknown element of @°, and it is unique up to factors
in @. Now Q.(Z) has cy; as a root, and since Q.(Z) is defined over @, the
conjugates of cy; over @ are roots of Q.(Z) as well. To find the coefficients of
Q.(Z) we need to compute P;(cyi,- . .), where the dots stand for the conjugates
over @. This P;(cyi,...) is the trace of (cy;)? taken over @ C Q(c).

We can calculate, see section 6, rational functions B; € @(x) and integers N;
such that P;(cyi,...)/B;, which is a priori an infinite power series in z, will be
a polynomial in z of degree at most ;. So the coefficients of powers of x higher
than N; in this power series should vanish. For each i this gives us infinitely
many homogeneous polynomial equations of degree i in the unknowns ky, . .. , ks.
Combined, they are necessary and sufficient conditions, because these P; are
rational functions if and only if all of those excess powers of z have coefficient
0. Since every polynomial ideal is finitely generated, we can find a sufficient
equations by only computing the coefficients of 7 for N; < j < M when M is a
sufficiently large integer (just keep increasing M until sufficient conditions are
obtained to determine (kg, ..., ks) up to a constant factor). In most examples,
including this one, we already obtain sufficient equations if we only consider
the equations for ¢ = 1, which are linear equations. So in this example we
do not need to solve non-linear equations, because the linear equations already
determine (ko, - .., ks) up to a constant factor. This constant factor can simply
be chosen in . Then we find ¢ = kga® + ---kga® € Q(a), and after that we
only need to compute the coefficients of 27 of P;(cyi,...)/B; for j =0,...,N;
to determine the value of P;/B; € Q[z]. Multiplying these polynomials by B;
gives P;, and then Q.(Z) can be determined as explained in section 4.

If the case i = 1 would not determine (kg,...,ks) up to a constant, we
can usually still avoid having to solve non-linear polynomial equations. Write



¢ = c;0a’+---c; 308, Then ¢; j can be expressed as a homogeneous polynomial
in ko, ..., ks of degree i. Now the condition that P;(cyy, .. .) is a rational function
translates in homogeneous polynomial equations of degree ¢ in the variables
ko, ..., ks, but can also be presented as linear equations in ¢;, .. ., c;g. Suppose
that these linear equations determines (c;,...,¢;8) up to a constant factor for
two coprime values of i. This is very likely to happen. Take for example i = 3
and i = 5. Then we can, solving just linear equations, determine c® up to a
factor in @, and ¢® up to a factor in @, so then ¢ = (c®)?/c® can be determined
up to a factor in @. We can choose that factor and we find again a value for ¢ in
Q(a). Then we can calculate P;(cy1,...) like before by calculating the trace of
(eyr)t over Q((z)) C Q(a)((z)). Like before, P;/B; is then a polynomial in @[z]
of degree at most N;. To determine that polynomial we need to calculate P; up
to accuracy N; + 1 (which means modulo z™¥i*1). From that we can calculate
P;/B; modulo z™i*1. This gives us the polynomial P;/B;, multiplying by B;
then give us P; € Q(x).

Note that in our example all the Puiseux expansions ay,...,ay9 were con-
jugated over . So the number m in the algorithm in section 7, which is the
number of conjugacy classes, equals 1. For most points b € ), the number of
conjugacy classes for the Puiseux expansions at £ = b will be m = 1. However,
if we choose a point £ = b where m > 1, the method still works in more or less
the same way. In that case we have one value for ¢ in each conjugacy class,
and then P; is a sum over traces, one trace for each conjugacy class. The total
number of unknowns in @ in these ¢’s will still be n, the degree of P(Z). See
section 7 for more details.

6 Bounds on the rational functions P,

Let y be an algebraic function with minimum polynomial Q(Z%), and let a =
y'/y. Let b be a point in €. The splitting field of Q(Z¢) can be embedded in
C(((z—b)'/¢)) for some positive integer e. The roots of Q(Z?) in C(((z—b)'/¢))
are called the Puiseux expansions of Q(2?). Each of these expansions is of the
form

y=3580(x—b)" +s1(x—b)"+---

Here the s; are in C and the rg < r; < ry--- are elements of %Z.
Then a = y'/y is a Puiseux series (a power series with fractional powers) in
z — b of the form
a=ro(x—b) L4

so the term of a with the lowest power in z—bis ro(z—b)~!. Given the minimum
polynomial for a, we can calculate the Puiseux expansions at ¢ = b. If the lowest
power in x — b is smaller than —1 in any of these Puiseux expansions, or if the
coefficient ro of (z — b) ™' is not a rational number, then y = exp( a) can not
be an algebraic function. The coefficients of (z —b)~! in the Puiseux expansions
are called the residues of a at the point x = b. If r is the smallest residue at
x = b, the smallest power of x — b is at least r in every Puiseux expansion of



y at £ = b. So the smallest possible power of x — b in §* = y*? or any of its
conjugates is rid. Therefore, the smallest possible power of z — b in the series
expansion of the rational function P; must be at least [rid]. Here the brackets
denote rounding up to an integer.

Let B; € C(x), or B; € Q(zx) if P(Z) is defined over €, be the rational

function '
B; = H(m —b) [rid]
b

where the product is taken over all b € C at which a has a pole. Then, for
every b € C the rational function P;/B; must have lowest power at least 0 when
presented as a power series in  — b. In other words: P;/B; has no poles in C,
therefore it is a polynomial. We can find a degree bound N; for this polynomial
by calculating the residues of a at the point = oc.

Consider again the Puiseux series

a=ro(z—b)""+---

Take the smallest positive integer e for which this series is an element of C (((z—
b)'/¢)). Then the corresponding Puiseux series for §j = y? is an element of the
same field because C(z,a) = C(z,§). So the Puiseux expansion

§ = silw =)t + -

must also be an element of C(((z — b)'/¢)), which implies that drq € 1Z. This
implies that the denominator of ro must divide de. For each residue of a we
can find a lower bound for d in this way. These lower bounds are combined by
taking the least common multiple. The lower bound for d obtained in this way,
multiplied by the torsion index of the divisor D in the integration algorithm,
gives the actual value for d. However, it is not easy to calculate this torsion
index. It is 1 (resulting in d = 3 - 1) in the example from section 2, and it is 2
(resulting in d = 1-2) in the example from section 8.

7 The algorithm

Input: A polynomial P € Q(z)[Z] that is irreducible in C(x)[Z], and a positive
integer d such that 4y’ = ay has an algebraic solution of degree dn.

Here n is the degree of P, and a is an algebraic function with P as minimum
polynomial.

Output: The minimum polynomial over C(z) of a solution y of y' = ay. This
minimum polynomial Q(z¢) will be an element of Q(x)[Z4].

Step 1. If x = 0 is a pole or a branchpoint of a then remedy this by substituting
z + b for z in P for some b € Q.

Step 2. Calculate the bounds B; and N;.
Step 3. Let M be the maximum of the numbers Ny +1, No+1,..., N, +1 and



n + max(0, Ny + 1).

Step 4. Calculate the Puiseux expansions (up to conjugacy over @) of a at the
point £ = 0 up to accuracy M — 1. If there are m conjugacy classes, then we
have truncations of m Puiseux expansions ay,...,am,. Denote a;; = a; and let
ai1,Q1,2,-- . ,0;m, denote the conjugates of a;1 over Q. Let @(oq) be the field
over which a;; is defined. Then {a;;} is the set of n Puiseux expansions at
z=0.

Step 5. For [ from 1 to m, calculate a series expansion of accuracy M (i.e.
modulo M) of y;,1 = exp([ a;), such that y;1 has constant term 1.

Step 6. For [ from 1 to m, Let ¢; = Z;nz’o_l kyja.
Step 7. Let P, ; be the trace of ¢ja;,1 taken over @ and let P; = Z;ll P ;.
Step 8 Calculate P;/B; modulo M for i from 1 to n.

Step 9 Equate the coefficients of 27 in P;/B; for N; < j < M to zero. If we are
not able to find a unique (up to a constant factor) solution for (k1 ,...) € Q"
from this then increase M and go back to step 4. Otherwise, substitute a
solution in @ for the variables k1 o, .. ..

Step 10 Now P;/B; modulo 2 are elements of Q[z] of degree at most N;.
Multiply these polynomials by B; to find P; € Q(x).

Step 11 Compute Q(Z) as in section 4 and return Q(Z%).

8 Another example.

" 21(x2 —z+1) , 212z -1)(2®> —2+2)

25(x2 — x)? v 50(z2 — z)3 y=0.

The minimum polynomial of a = y'/y for some solution y has been given in
example 4.4 in [2]:

P(Z) = 75 — 42z - 1)/(2® — x) - Z° + 1/5 - (13322 — 133z + 33)/(2® — z)? -
74 ~12/25- (Te — 4)(2z — 1)(Tz — 3) /(2> — 2)3 - Z% +1/125 - (351 — 116622° +
869322 + 5831z — 2862) /(2 — z)* - 22 — 4/3125 - (22 — 1)(9604z* — 1920843 +
1427502 — 46712 + 567) /(2% — )° - Z+1/12500 - (16807 — 3361423 + 2490722 —
8100z + 972)(2z — 1)%/(2? — z)°

but the minimum polynomial of y itself had not yet been determined. The
method in this paper can do this very efficiently. Starting with P(Z) and d = 2
it only took 5 seconds of CPU time on a Pentium 266 to find the following
minimum polynomial for y: Q(Z?) =

Z'? 4+ 40(z? — )*Z% — 64(2® — 2 + 1)(2® — 2)822 + 80(2? — x)8.
The example in section 2 took about 18 seconds CPU time using the code

given on the following URL:
http://www.math.fsu.edu/"hoeij/files/issac2000_H72
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