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Abstract. In this paper we study rationality questions for differential modules and
differential operators. If a differential operator L is equivalent to its conjugates over k,
is it then equivalent to an operator defined over k? We will show how counter examples
to this question correspond to skew fields, and we will make this correspondence explicit
in both directions. Similar questions are studied for projective equivalence of differential
operators. The main tool is the study of differential modules over skew fields.

1 Introduction

1.1 Examples of descent phenomena

Let K/k be a Galois extension of differential fields of characteristic 0. The
skew ring of differential operators over K is denoted by D := K[0]. An ele-
ment o in the Galois group Gal(K/k) acts on D by o (3" 0;0%) = 3 o(a;)0".
The congjugates of an element L € D are the operators o(L). The order of
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L is the degree in 0. If L € k[0] then L is called rational. Two operators
Ly, Ly are called equivalent (or of the same type) if the two differential mod-
ules D/DL;, i = 1,2 are isomorphic. The operators are called projectively
equivalent if there exists a D-module E of dimension 1 over K such that
D/DL, = E®D/DLs,.
Abbreviations:

R  Rational, i.e. element of k[0].

Er Equivalent to an element of £[0).

Ec¢ Equivalent to all its conjugates over k.

EP  Projectively equivalent to an element of k[0].

E?,  Projectively equivalent all its conjugates over k.

The following implications are obvious:
R = Er= (Ec and E}), (Ec or E}) = EZ.

These implications leave seven possible combinations for the truth-values of
R,Eg,Ec,E}.E¢. In case k = Q(z) and K = Q(z), all seven cases occur.
The examples, given in the table below, are irreducible in D.

Case | R | Eg | Ec | ER | EL | Example
1 Y| Y| Y|Y|Y |0
2 [N/ Y | Y | Y |Y |0-1/@z—9)
3 IN|N|Y | Y|Y | @t)FP+2e+0)0+1
4 ININ|[Y|[N]Y |[P+22+1+1
5 NIN|IN|Y |Y |0+
6 N[N |N/|NJY [420°—20+2>+x+1
7 N|N|N|NJ|N [0+

Cases 1 and 7 are not of interest. Further, [H] p. 101/102 contains already an
example of a second order operator R,; for which computer computations
show that R,; is Ec but not Eg. The table can be verified by computer
computations, however, this would not explain the underlying mathematics
nor where these examples come from. That is the main theme of this paper.

Denote Ck resp. C} as the field constants of K resp. k. Suppose that K =
Ck(z) and k = Cy(x) with differentiation -£. Then the descent phenomenum
“Ec without ER” (case 3 or 4) is related to skew fields F° of finite dimension
over their center Cy. The main result in section 2 is that any such skew
field yields examples for “E¢ without Egr”. Case 6 (a descent phenomenum



up to projective equivalence) also corresponds to a skew field F', this time
of finite dimension over its center k. For second order equations this skew
field is a quaternion field and corresponds to a conic over k. The main result
in section 3 is that all skew fields of this type (all non-degenerate conics)
produce examples for case 6. For most of our constructions it will be more
convenient to use modules instead of operators. We used operators in the
above table for compactness of notation.

1.2 Descent problems

In section 2, one considers a differential module M over K which is isomorphic
to all its conjugates “M under the Galois group of K/k. The question is
whether M descends to k, i.e., M = K ®; N for some differential module N
over k. The obstruction to descent is a 2-cocycle which corresponds to a skew
field, see theorem 2.10 and proposition 2.11 for a general differential field &,
with additional results for k¥ = Ci((x)) in theorem 2.4 and for k = Cy(x)
in theorem 2.8. In section 2.4 we show how all possible examples over k =
Ck(z) can be constructed. For completeness, Amitsur’s completely different
construction (which makes a very special case of the descent problem explicit,
namely part (a) of proposition 2.11) is presented in section 2.5.

In section 3 we study the problem whether a 3-dimensional differential
module M is the second symmetric power of a 2-dimensional differential
module N. At the heart of the rationality issues in this problem is a conic,
and we show that every conic over k = Ci(x) occurs. A surprising result is
theorem 4.7 in section 4, which states that the isomorphism class of a solution
N of this problem is unique up to tensoring with 1-dimensional modules, if
the field of constants is algebraically closed. This implies that the rationality
issues in section 3 can also be viewed as a “projective descent problem”,
which is the subject of theorem 4.4. In this type of descent problem we
consider modules that are not necessarily isomorphic to their conjugates,
but only isomorphic up to tensoring with 1-dimensional modules.

1.3 Motivation and overview of the main results

In section 2.3 we follow standard Galois cohomology techniques to describe
descent phenomena for differential modules. This way one can explain the
descent phenomena in terms of 2-cocycles or skew fields, and classify descent
phenomena in one direction “a differential module that is isomorphic to its



conjugates = a skew field” but not in the opposite direction: Which skew
fields occur this way? Our goal is a thorough classification and hence we
study this question in detail for several common differential fields. In theo-
rem 2.4 in section 2.1 we show that over the field of formal Laurent series only
the trivial case occurs (there is no obstruction to descent) whereas in section
2.4 we show that over the rational functions every skew field occurs. Each
of these results require completely different techniques. The key ingredient
in our construction “skew field = differential module” is the introduction
of differential modules over skew fields, which are then viewed as differential
modules over a commutative subfield. To illustrate this idea we give explicit
examples. We then give an construction that we prove to be complete (it
provides explicit examples for every skew field, and every example can be
constructed this way). Our construction also implies an interesting complex-
ity result, namely that factoring fourth order operators in Q(z)[d] is at least
as hard as finding rational points on a conic over Q, a problem related to
factoring integers, which is generally assumed to be very hard.

One of the motivations to study the descent problem is the question which
extensions of the constants need to be considered in algorithms for solving
differential equations, and the results in section 2 are of interest for factoring
differential operators.

Section 3 is motivated by the problem of trying to reduce a third order
linear differential equation to a second order equation by determining if the
corresponding 3-dimensional differential module is the symmetric square of a
2-dimensional module. This problem requires finding a point on a conic that
is defined over the differential field k. Such a conic corresponds to a skew
field of dimension 4 over its center k. A natural question is: Can every conic
occur? For the formal Laurent series again only the trivial case occurs, but
for the rational functions k& = Cy(z) we show explicitly in section 3.2 that
every conic over k occurs. This result implies that if an algorithm tries to
reduce a third order differential equation by trying to write the corresponding
module as a symmetric square, then a high degree extension of the constants
could be necessary, see section 3.2.2. Our construction in section 3 differs
from the one in section 2, it uses skew fields over k instead of over Cj (the
field of constants of k).

In theorem 4.7 in section 4 we show that if a 3-dimensional differential
module is the symmetric square of a 2-dimensional module, then this 2-
dimensional module is unique up to projective equivalence, provided that
the field of constants is algebraically closed. Corollary 4.2 shows that this
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is then also true over Ci(z) without C} algebraically closed except in the
imprimitive case, and to complete the result we give counter examples for
the imprimitive case in examples 4.3. The conic occurs in sections 3 and
4 as 1-dimensional submodule of the symmetric square of a 3-dimensional
module. How to view the skew field that corresponds to this conic in terms
of Galois cohomology is shown in theorem 4.4 combined with 4.7.

We would like to thank J.-A. Weil and E. Compoint for sharing their
ideas in [C-W].

2 The Descent problem

2.1 Twists and descent data

Let K D k denote two fields and let M be some object over K. The descent
problem asks for an object N over k such that K ®; N is isomorphic to M.
We are interested in the case where M and N are differential modules. We
start with definitions and notations.

Definitions 2.1 The twist °V of a vector space V.

Let K be a field and ¢ an automorphism of K. For any vector space V'
over K one associates a vector space °V which is equal to V' as additive
group and has a new scalar multiplication defined by A x v := o7}(\)v for
all A\ € K and v € V. One has 7' ("?V) = 1?2V, For any K-linear map
f:V — W between K-vector spaces one denotes by 7f : °V — W the
same map f, which is K-linear for the new structures. In this way, one has
defined a functor from the category of the K-vector spaces to itself. This
functor commutes with tensor products, exterior powers, symmetric powers,
et cetera. If b is the matrix of f with respect to a basis of V' and a basis of
W, then o(b) is the matrix of ?f with respect to the same bases. Here o
acts on b by acting on the entries.

Let V, W be K-vector spaces and let ¢ be an automorphism of K. The
map f: V — W is called o-linear if f is additive and f(Av) = o(A) f(v) for
all A e K, v e V. To alinear map f: °V — W we associate a o-linear map
F:V — W by composing the set-theoretic identity V' — °V with f.

Observation: Let K D k be a finite Galois extension with Galois group G.
Let V' be a vector space over K. Then there exists a natural linear map from
K ®,V to?V, and a natural isomorphism from K @V to @scq V.



The maps are given by a ® ¥ a * v = 0 '(a)v. The map to B,eq 7V
is one to one (hence onto by comparing dimensions) because of the linear
independence of automorphisms.

Definitions 2.2 Descent data and the descent problem.

(1) k is a differential field of characteristic zero. Its algebraic closure will

be denoted by k. Let K C k be a Galois extension (finite or infinite) of
k. Then K is also a differential field. The action of the Galois group G of
K /k commutes with differentiation on K. Let D := K[J] denote the skew
ring of the differential operators over the field K. A differential module over
K is a left D-module, of finite dimension as vector space over K. Let M
be a differential module over K. For ¢ € G one defines the twist "M of
M as follows: The D-module “M is M as additive group, has a new scalar
multiplication as defined in 2.1 and has the same operator 0.

The action of G on K is extended to an action on D by imposing 0(9) = 0

for all ¢ € G. As usual, one associates to a monic differential operator L € D
the differential module M = D/DL. For ¢ € G one has that M is the
differential module associated to o(L).

(2) Descent data for M are given by:

(i) for each o € G an isomorphism ¢(o) : “M — M of differential modules,
(i) satistying ¢(o) “¢(7) = ¢(o7) for all 0,7 € G.

Let ®(0) : M — M be the o-linear map associated to ¢(c). Then the two
conditions can be formulated as follows:

(i) ®(o) : M — M is a o-linear bijection, commuting with 0,
(ii) satistying ®(o)®(7) = ®(o7) for all 0,7 € G.

The above definition coincides with the one used in algebraic geometry. In-
deed, let K/k be a finite Galois extension. The algebra K ®; K has a
left and a right K-algebra structure. Let N; := (K ®; K) ®x M and
N, := (K ®; K)®y M denote the two tensor products w.r.t. the left and the
right structure. The first part (I) of the descent data is a K ®; K-linear iso-
morphism N; — N, which commutes with 9. The second part (II) of the de-
scent data is a relation between the various structures on (K ®; K QK )®x M.
Now N, is isomorphic with the direct sum of [K : k| copies of M and
N, 2 K ®y M is isomorphic to @®,c¢ “M. Therefore (I) is equivalent to
(). Furthermore, one can show that (II) is equivalent with (ii).

(3) One says that M descends to k if there exists a differential module N
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over k such that M is isomorphic to K ®; N. If M descends to k, then M
has obviously descent data.

On the other hand, let descent data for M be given. Choose a basis my, .., m,
of M over K. This also provides a basis for ? M using the set-theoretic iden-
tity. Let b(o) denote the matrix of ¢(o) w.r.t. this basis. Then condition (ii)
translates into:

(i) b(oT) = b(o) a(b(7))

in other words o — b(0) is a 1-cocycle for G and GL,(K). Here 0 € G acts
on a matrix by acting on its entries. It is well known that H'(G, GL,(K)) is
trivial (see [S]) and that this implies that there exists a K-basis My, ..., My,
of M such that the matrices b(c) of ¢(¢) w.r.t. this new basis are 1. Now
N :=km & - ®km, ={me MV, ®(o)(m) =m} is a differential module
over k because the ®(o) commute with 9. The natural map K @, N — M
is an isomorphism of differential modules, so M descends to k.

(4) In the sequel we will study the situation where only the first part of the
descent data is given, i.e., for a differential module M over K a collection of
isomorphisms {¢(c) : M — M} is given. The descent problem is to decide
whether M descends to k or, more generally, to find the differential fields
¢ (say with K D £ D k) such that M descends to ¢. This problem can be
stated for differential operators as follows:

Assume that L is Ec (see abbreviations in section 1), is L also Eg?

(5) For any algebraic extension of differential fields K D k one can also define
descent data and a weak form of descent data, as in (4), for a differential
module over K. Let K, denote the normal closure of K. Then these data
translate into data for N := K, ® x M w.r.t. the Galois extension K./k and
with the additional information that N descends to K. Therefore we will
restrict ourselves to Galois extensions.

We start with a useful lemma. Consider an algebraic extension of dif-
ferential fields £ C K, obtained by extension of constants, and a differential
module M over K which descends to k. Then, by part (a) of the lemma, the
module N over k£ with K ®, N = M is unique up to isomorphism.

Lemma 2.3 Consider an algebraic extension of differential fields k C K,
with fields of constants Cy, Ck. Suppose that K = Ck - k.
(a) Let My, My be differential modules over K, which descend to modules



N1, Ny over k. Then
Hom g o) (M, My) = Ck ®¢, Homyg (N1, Na).

Furthermore, if My = M,, then N7 = Nj.

(b) Let N be a differential module over k and put M = K @ N. If the group
Autyg)(N) of differential automorphisms of N is C};, then Endyg)(N) = Ci,
and Endgg)(M) = Ck. Moreover, Autgs(M) = Ck.

Proof. (a) Let W := Homyg (N1, N2) denote the Cy-vector space of the
differential homomorphisms between the two differential modules over k. The
natural Cx-linear map Cx ® W — Hom g (M, M) is a bijection. Indeed,
let 1 denote the trivial differential module of dimension one over k. Then
Homyg (N1, N2) = Homyp (1, N ® N2) and the latter is the space {a €
Ny ® N3| 0a = 0} of the “rational solutions” of the differential module
N ® Ny. Similarly, Hom gs) (M1, Ms) is the space of the rational solutions of
M;®M; = K®;(Ny®N;). The bijectivity follows now from [P-S], chapter 4,
proposition 4.3. Consider a basis wq,...,wy of W. There is a polynomial
h € K[X,...,X4] (the determinant of > X;w; w.r.t. any bases for Ny, Ny)
such that the set {(A1,...,Aq) € C%| >, Ajw; is an isomorphism} is given
by h(A,...,Ag) # 0. This implies that some w € W induces an isomorphism
between M; and M,. Then w is an isomorphism between N; and N,.

(b) Put E := Endyg(N) = Homyp (N, N). This is a finite dimensional
algebra over Cj with basis eq,...,eq. For any e = > \;e; one writes det(e)
for the determinant of the matrix of left multiplication by e on N. This is a
polynomial in Aq,..., ;. The automorphisms of N are the elements e € E
with det(e) # 0. The assumption that this group is C}; implies that E = Cj.
Then, as in (a), Endgg(M) = Ck and Autge(M) = Ck. a

Remark: If K # Ck - k then the the lemma does not hold in general.
Let M = K ®; N, and assume Autgps (M) = Cj. Then M descends to a
differential module Ny over k if and only if there exists a one-dimensional
differential module L over k£ for which K ®;, L is trivial and Ny = L ®; N;.
See also lemma 2.7.1 in [Ka).

Theorem 2.4 Let Ci/Cy be a finite Galois extension with group G. Con-
sider the differential fields k = Cy((z)) and K = Ck((z)) with differentiation
x%. Suppose that the differential module M over K has the property: °M is
wsomorphic to M for all 0 € G.

Then M descends to k.



Proof. First we treat the case that M is irreducible. The proof is based on
the classification of irreducible differential modules over K as given in the
thesis [So] of R. Sommeling. The relevant information is the following:

(1) One associates to @ € |J,,; Ckx[z~1/™] the one dimensional differential
module K(Q)e over the finite field extension K(Q) of K, given by de = Qe
(recall that @ now refers to z-% instead of -£). Then K(Q)e, viewed as a
differential module over K, will be denoted as E(Q). It is irreducible and
has dimension [K(Q) : K].

(2) Every irreducible differential module over K is obtained in this way.

(3) E(Q1) & E(Q>) if and only if there exists a 7 in the Galois group of K/K
such that 7(Q1) — Q2 € 1Z, where r is the ramification index of K(Q1)/K
(or equivalently the ramification index of K(Q2)/K).

One associates to () (as above) its monic minimal polynomial fo € K[T
over K. Then (3) translates into ([So], Proposition 3.3.6):

(3") E(Q1) = E(Q-) if and only if there is a A € 1Z, where 7 is the ramifica-
tion index of K(Q1)/K, such that fo,(T) = fo,(T + A).

Now suppose that M is isomorphic to M for all 0. Choose a @} €
Cklx~Y/7] with r > 1 minimal, such that M = K(Q)e. Let fiy = fo € K[T)]
be the minimal monic polynomial of @ over K. Take 0 € Gal(Ck/Cy) =
Gal(K/k) and extend o to an automorphism & of K /k. Then ?M is seen to
be associated to 6(Q). Therefore fop; = o(far). Thus M = M translates
into o(fm)(T) = fu(T + A) for some A € 1Z. Since o has finite order,
one has A = 0. Hence fy = fo € k[T]. Now () defines also an irreducible
differential module N := k(Q)e with de = Qe over k of dimension [k(Q) : k].
Clearly K ®; N is isomorphic to M. This completes the proof in case M is
irreducible.

We now sketch the proof that the assumption that M is irreducible can
be omitted. Any differential module M can be written as a finite direct sum
®,E(Q;) ® R;, where E(Q;) 2 E(Q,) for i # j and where each R; has the
property that the matrix of 0 w.r.t. a basis is nilpotent. This decomposition
is unique (see [L]) and the @); are unique up to the equivalence stated in the
proof of 2.4. One observes that each R; descends to k. This information
suffices to prove the theorem without the assumption that M is irreducible.
O

Remarks 2.5
(1) The following example illustrates that theorem 2.4 does not hold for



positive characteristic. Let Iy resp. Fy = Fy(«r) denote the fields with 2 resp.
4 elements. Let o be the non-trivial automorphism o(a) = a? = a + 1. Let
k =Ty ((x)) and K = Fy((x)) with differentiation 2’ = 1. Let M = Ke with
Oe = Ze. Then e — e defines an isomorphism M = M, but M does not
descend to k. In the rest of this paper we will only consider characteristic 0.

(2) Let K be any finite (Galois) extension of Ci((x)). Such K has the form
Ck((t)) where t has the property t™ = czx with ¢ € C},. The above theorem
and its proof remain valid for this K and any differential module M over K.
However, in case m > 1, the differential module N over k£ with K @, N & M
is no longer unique up to isomorphism.

(3) Theorem 2.4 and (1), (2) above, answer the descent problem for formal
Laurent series fields. For convergent Laurent series field, the situation is
quite different, see [P]. In the sequel of this paper we will study the descent
problem for the global case, i.e., for differential fields which are function fields
in one variable over the field of constants. The situation k = Cy(z) C K =
Ck(z), where Cy, C C is an algebraic extension, is easier to deal with (see
theorem 2.8) than the general case. The following example illustrates this.

(4) Consider the differential fields £ = Q(z) and K = Q(t) with z =t — 7
and with differentiation ' given by 2’ = 1. Let o denote the non-trivial
1

automorphism of K/k. We note that ot = —;. Define the 1-dimensional

differential module M = Ke with 0e = ;—;e. Then °M = Ke with Je = —;—'te

and thus M is isomorphic to M. We will prove that there does not exist

h € K* such that a := ;—’t + %' € k. This implies that M does not descend to
ah! K

k. Suppose that h exists. Then oca = a and consequently % =Z2-—7. Then

t = a2 for some o € Q. This yields the contradiction —1 = o(t)t = o

2.2 Semi-simple modules and semi-simple algebras

In this subsection some known facts are collected that are useful for the de-
scent problem. It seems that proposition 2.7 is not available is the literature.
For the first standard result we omit the proof.

Lemma 2.6 Let M be a differential module over K. The following are equiv-
alent.

(1) M is a sum of irreducible submodules.

(2) M is a direct sum of irreducible submodules.
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(3) Every submodule N C M is a direct summand, i.e., there erists a sub-
module N' with M = N & N'.

A differential module M, having the equivalent properties of 2.6, is called
semi-stmple or completely reducible.

Proposition 2.7 Let K D k be an algebraic extension of differential fields.
(1) Let N be a differential module over k. Then N is semi-simple < the
differential module K ®; N over K is semi-simple.

(2) Suppose that [K : k] < oo and that M is a semi-simple differential module
over K. Then M considered as a differential module over k is semi-simple.
(3) Let A, B be semi-simple differential modules over k. Then A ®; B is
semi-simple.

(4) The collection of semi-simple differential modules is stable under all “op-
erations of linear algebra”, i.e., submodules, quotients, direct sums, tensor
products, symmetric powers,...

Proof. (1’). We suppose first that K D k is a finite Galois extension with
Galois group G.

(I’)=. We may suppose that N is irreducible. Take an irreducible K-
submodule D of K ®; N. Every o € GG acts on K ®; N in the obvious way
and this action commutes with 0. Then each o(D) is also an irreducible
K-submodule of K ®; N. Therefore E = )" _.0(D) is a semi-simple K-
submodule. Moreover, o(F) = FE for all 0 € G. Hence F = K ®; F for
some submodule of N. Since N is irreducible, one has that ¥ = N and
E=K®;N.

(I’)<=. Let F C N be a submodule. Then K ®; F' is a K-submodule of
K ®; N. There exists a K-linear P : K ®, N — K ®; N with the properties
im P =K ®; F, P> =P and P9 = §P. Define Q = %‘ Y oecoPo!. Then
Q0 =0Q, m =m for m € K ®; F, iszK@k}’andTQzQTforall
7 € G. Then Q? = Q. Let us identify any n € N with 1 ® n € K ®; N. For
any n € N one has that Q(n) is invariant under G and therefore belongs to
N. The restriction Q of Q to N has the properties im Q = F, Q9 = dQ and
Q%= Q. Then N = F @ ker Q. Thus N is semi-simple.

(17). Consider any finite extension of differential fields £ C K. Let
K. denote its normal closure. By (1), N is semi-simple over £ if and only if
K, ®N is semi-simple over K.. But, again by (1’), K.@xN = K.Qx (K®;N)
is semi-simple over K. if and only if K ®; N is semi-simple over K.
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(1). Let K D k be an arbitrary algebraic extension. Suppose that N is

semi-simple. Any K-submodule D of K ®; N comes (by tensoring) from a
K-submodule D of K ®; N for some field K C K which is finite over .
Since D is a direct summand, D is a direct summand, too.
Suppose that K ®; N is semi-simple. Let F C N be a submodule. Then
K ®; F is a direct summand of K ®, N. For a suitable finite extension
K, of k, contained in K, also K; ®; F' is a direct summand of K; ®; N.
One replaces K; by its normal closure Ky D K;. Then K, ®; F'is a direct
summand of Ky ®; N. As in the proof of (1’)<, it follows that F is a direct
summand.

(2). Let K. be the normal closure of K. Then K, ®x M is semi-simple
over K.. Further M is a k-submodule of K, @ x M. Therefore it suffices to
consider the case where K is a Galois extension of £ with Galois group G. As
in 2.1 one has K ®, M = @ °M. Each ? M is semi-simple and thus K ®;, M
is a semi-simple differential module over K. By (1), M is semi-simple as a
k-differential module.

(3) We use the notations: Cj is the field of constants of k, C}, is an algebraic
closure of Cj, and k = C, - k. By (1), A = k®; A and B := k ®; B are
semi-simple. Using differential Galois theory, see [P-S|, Exercise 2.38 (4), one
has that A ®; B is semi-simple. By (1), A ®; B is semi-simple.

(4) follows from (3). !

Let M be a semi-simple differential module over k. The isotypical decom-
position M = M; & --- & M, is defined by: each M; is a direct sum of, say,
n; copies of an irreducible differential module D;. Moreover the D; # D; for
i # j. Put Fj = Endys(D;). Then one has the following obvious results:

(a) The isotypical decomposition of M is unique.
(b) F; is a (skew) field of finite dimension over the field of constants Cj, of &.
(c) Endgs (M) is isomorphic to the product of the algebras Matr(n;, F;).

Here Matr(n, F') denotes the ring of n by n matrices with entries in F.
Let C be any field. The algebras A that we consider here are supposed to
have a neutral element, further C' lies in the center of A, and A as vector
space over C has finite dimension. A is called semi-simple if for every two-
sided ideal I, there is a two-sided ideal J with A = I & J. The semi-simple
algebras are the algebras of the form [ [, Matr(n;, F;) where the F; are (skew)
fields of finite dimension over C, with C in the center of F;. The algebra A is
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called simple if A has no two-sided ideals other than 0 and A. Equivalently,
A = Matr(n, F') for some n and some (skew) field F’ of finite dimension over
C, with C in the center of F'.

In the remainder of this section we recall some standard facts on skew
fields and the Brauer group. For more information we refer to [Bl,Bo,Rei,S].
Let C be any field. Consider a skew field F of finite dimension over its center
C. Then the dimension of F over C is a square, say n?. A field extension
C' D C is called a splitting field for F if C' ® F is isomorphic to the matrix
algebra Matr(n,C’). Any maximal commutative subfield C’ of F' satisfies
[C" : C] = n and is moreover a splitting field for F' of minimal degree over
C. This is illustrated by the example of Hamilton’s quaternion field over Q,
namely H = Q + Qi + Qj + Qk. The minimal splitting fields are Q(y/—m)
for every squarefree positive integer m that can be written as the sum of
three squares in Q.

A central simple algebra A over the field C is an algebra whose only two-
sided ideals are A and {0} and which has finite dimension over its center C.
Every central simple algebra over C' has the form Matr(d, F'), where F' is a
(skew) field with center C. The Brauer group Br(C) of a field C consists of
the equivalence classes [A] of the central simple algebras over C. Two such
algebras A; = Matr(d;, F;) are called equivalent, [A;] = [Ay], if the (skew)
fields Fi, Fy are isomorphic. The group structure on Br(C) is induced by the
tensor product.

If Ck/Cy is a finite Galois extension with group G then one defines the
following subgroup of Br(C})

BI‘(CK/Ck) = {[A] € BI‘(Ck) ‘ A is split by CK}

Let ¢ be a 2-cocycle with values in C¥, i.e. ¢(o,7) € C} for all 0,7 € G
and c satisfies the 2-cocycle relation. Now c is called normalized if ¢(1,0) =
c(0,1) = 1 for all 0. The image of ¢ in H*(G, C}) is trivial, i.e. ¢ = 1, if and
only if there exists a map f : G — C}j such that c(o,7)f(o7) = f(0)o(f(7))
for all o, 7. Now take the Cx-vector space A with basis {b, | 0 € G} where
by = 1. One turns A into an algebra (a so-called crossed-product algebra)
with multiplication rules: b, -b, = ¢(0, T)by,, and b, - A = o(A\)b, for A € Ck.
The 2-cocycle relation guarantees that A is associative, in fact, A is a central
simple algebra over Cy. Now ¢ — [A] defines an isomorphism

H2(G, C}k() = BI(CK/Ck)
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Taking the limit over all finite Galois extensions one finds
H?(Gal(Cy/Cy), Cr ) = Br(Cy).

The inflation homomorphism H?(G,C%) — H?*(Gal(Cy/Cy),Cy ) is injec-
tive, and corresponds to the embedding of Br(Ck/Cy) in Br(Cy).

2.3 The associated two-cocycle and skew fields

Theorem 2.8 The associated 2-cocycle for a special case.

Consider the differential fields k = Cy(z) and K = Ck(x) where Cx/Cy is
a finite Galois extension with group G. Assume that the differential module
M of dimension n over K has the properties:

(i) The group of the differential automorphism of M is C.

(ii) For every o € G one has "M = M.

These assumptions define a 2-cocycle class ¢ € H?*(G,C) which has the
following properties:

(a) e=1 < M descends to k.

(b) The order d of € divides n and [K : k].

(c) ¢ € H*(G,Cy) = Br(Cg/Cy) C Br(Cy) determines a (skew) field F°
with center Cj,.

(d) E := Endgg(M) is a simple algebra, of dimension [Cx : Ci]* over
its center Cy, having image ¢ € Br(Cy). In particular, E is isomorphic to
Matr(m, F°) for some m > 1. Moreover, Ck is a mazimal commutative
subfield of F.

(e) A finite field extension £ O Cy, is a splitting field for F° if and only if M
descends to £(z).

Proof. Choose an isomorphism ¢(o) : M — M for each 0 € G. By
assumption (i), ¢(o) is unique up to an element in Cj. Let ®(0) : M — M
denote the associated o-linear map. For 0,7 € G one defines ¢(o,7) =
®(0)®(7)®(07) . This is a K-linear bijection on M and commutes with &.
By assumption (i), ¢(o,7) € Cj. Further c(o, 7) satisfies the usual 2-cocycle
relation. The image ¢ € H?(G,C}) is independent of the choices for the
{#(0)}. Part (a) follows at once from definitions 2.2 part (3).

(b) Consider the case where M has dimension 1. Write M = Ke and write
de = ae. For any o one normalizes ®(0) : M — M by ®(o)e = b(o)e such
that b(o0) € Ck(z) has the form b;(0)/by(0) with b;(c) monic elements of
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Ck[z]. In other words, the first coefficient in the series expansion of b(o) at
x =00 is 1. Then ¢(o,7) € C} has this form too, which implies ¢(o, 7) = 1.
Let M of dimension n induce the 2-cocycle class ¢. Then the 2-cocycle
class of the 1-dimensional differential modules A™M is easily seen to be ¢".
Since the latter is trivial, the order d of ¢ is a divisor of n. Moreover, every
element in H?(G, C}) is annihilated by the order of G, which is [K : k]. This
proves (b). The statement in (c) is a standard fact on Brauer groups, see the
previous section.
(d) According to 2.3 (a), Endgg)(K ®r M) = Ck ®c, Endys(M). By the
observation in 2.1, K @, M = @,cq “M, which by assumption (ii) is isomor-
phic to the direct sum of [Ck : Ci] copies M. Now Endxps(M) = Ck, so
Endk[s)(K ®, M) is isomorphic to the matrix algebra Matr([Ck : Cy], Ck).
It follows that the dimension of E over Cy is [Ck : Ci]*.

Consider the algebra A C FE consisting of the L € E of the form L =
Y veq CoP(0) with ¢, € Ck. It is easily verified that L = 0 if and only all ¢,
are 0. A is a crossed-product algebra with multiplication rules (a factor set)
given by the ¢(o, 7). So A is a simple algebra that represents the image of ¢
in Br(C). By comparing dimensions one finds A = E. One concludes that
E = Matr(m, F°) for some m where F*° is the (skew) field associated to e.
Further Cx = Endgg(M) consists of all elements of £ which commute with
Ck. Hence Cgk is a maximal commutative subfield of E.

If Cr, C ¢ C Ck then part (e) follows from the statement that £ O Cy is
a splitting field for F° if and only if the image of ¢ in H?(Gal(Ck/¢),C}),
under the restriction map, is 1. If £ is not a subfield of Cx, then replace Cx
by the normal closure of £- C. Then the same proof applies; assumption (i)
still holds by lemma 2.3 (b), assumption (ii) is clear. O

Corollary 2.9 We keep the notations and assumptions of theorem 2.8.

(1) Suppose that M is irreducible as a K-differential module. Then M viewed
as k-differential module is the direct sum of m copies of an irreducible dif-
ferential module N over k with Endyp(N) = F°.

(2) Let be given:

x a skew field F° of finite dimension over its center Cy,

x m > 1 and a mazimal commutative subfield Cx of Matr(m, F°), which is
Galois over Cy,

* an rreducible k-differential module N with Endge(N) = F°.

Then M, the direct sum of m copies of N, has a natural structure of an
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irreducible K = Ck(x)-differential module that satisfies the assumptions of
theorem 2.8.

Proof. (1) Let P; € Matr(m, F°) = E = Endyg(M) denote the matrix
with all entries 0 with the exception of an entry 1 at the position (4,7). Put
N; = P,M. Then N; is a k-submodule of M and M = &;N;. An element
L € Endyg(V;) can be extended to an element L € E by prescribing L = 0
on each N; with j # i. The structure of £ implies that L is a diagonal matrix
with zeros on the diagonal, except for the position (i,7). Hence L € F°. Since
the matrices P; are conjugated in Matr(m, Cy), the k-differential modules N;
are all isomorphic. Moreover, since V; is semi-simple and Endyg)(V;) = F°
one has that NV, is irreducible.

(2) M =N&---®N has Endgg)(M) = Matr(m, F°). The embedding of Cx
in Matr(m, F°) makes M into a K-differential module. End k(M) consists
of the elements in Matr(m, F°) commuting with Cx. Thus End s (M) =
Ck. Further M is a semi-simple K-differential module since it is a semi-
simple k-differential module. Thus M is an irreducible K-differential mod-
ule. Finally, by the Skolem-Noether theorem ([Bl], Théoreme I11-4, or [Rei],
(7.21)) for every o in the Galois group of C /CY, there is an invertible ele-
ment ®(o) € Matr(m, F°) with o()\) = ®(0)\®(0)~! for all A € Ck. Then
®(0): M — M is a o-linear map which commutes with 0. a

For a general finite Galois extension of differential fields ¥ C K with group
G, the situation is more complicated; e.g. one-dimensional modules need not
descend, and lemma 2.3 no longer applies. Parts (a) and (b) of the following
proposition can be proved along the lines of the proof of theorem 2.8. Part (c)
follows from 2.11 (a) below, and part (d) follows from 2.11 (c).

Theorem 2.10 The associated 2-cocycle in the general case.

Let K/k be a Galois extension of differential fields with Galois group G. Let
Ck denote field of constants of K. Let a differential module M over K of
dimension n satisfy:

(i) the group of the differential automorphisms of M is C5;, and

(ii) for every o € G one has °M = M.

(a) These data determine a 2-cocycle class ¢ € H*(G,C3) of an order d,
dividing [K : k] if K is finite over k. Moreover M descends to k if and only
ife=1.

(b) The tensor product M ® --- ® M of d copies of M has associated 2-
cocycle €@ and therefore this tensor product descends to k. The same holds
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for sym®M, the symmetric tensor product of d copies of M.

(c) The image of ¢ under the map H?*(G,C3) — H*(G, K*) defines a (skew)
field F with center k. Let k C £ C K. Then ¢ is a splitting field for F' if and
only if there exists a module L of dimension 1 over K such that °L = L for
all 0 € Gal(K/f) and L @ M descends to £.

(d) If K = k, and F,{ as in part (c), then £ is a splitting field if and only if
M descends to £.

The condition L = L in (c) is irrelevant when M is not cyclic-imprimitive
(for a definition see section 4, see also theorem 4.4).

Consider differential modules M of dimension 1 over K such that “M =
M for all 0 € G. The isomorphism classes of these modules form an abelian
group I with the tensor product as multiplication. Let Iy denote the subgroup
of the classes of differential modules which descend to k.

Proposition 2.11 Let Ci denote the constant field of K. Then

(a) I/1y 1s naturally isomorphic to the kernel of H*(G,C}%) — H?*(G, K*).
(b) Let M = Ke represent an element of I. Then E := Endgg (M) is a
semi-simple algebra over Cy.

If K = Ck - k, then E is a central simple algebra over Cy. Moreover, M
descends to £ with k C ¢ C K if and only if the field of constants Cy is a
splitting field for E.

If K # Ck - k, then, in general, the 2-cocycle in H*(G,C%) attached to M,
does not describe a central simple algebra over Cy or k. Moreover, E is (in

general) not a central simple algebra over Cy.
(c) If K =k then I = I,.

Proof. (a) For any differential field L one writes Q(L) for the isomorphism
classes of the 1-dimensional differential modules over L. The tensor product
makes Q(L) into a commutative group and there is an exact sequence

0—L*/C; - L— Q(L)—0,

where C}, denotes the field of constants of L; the first non trivial arrow
is defined by f — fo and the second non trivial arrow maps f € L to
the isomorphism class of the differential module (Le, d) with de = fe. We
consider this exact sequence with L = K and the exact sequence 0 — C}j, —
K* — K*/Cj — 0. These sequences of G-modules induce the usual long
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exact sequences. Using that H'(G, K) = 0 and H'(G, K*) = 0 one obtains
exact sequences

0— HY(G,Cy) = Q(k) = Q(K)¢ — H'(G,K*/C}) — 0,
0— H'(G,K*/C}) — H*(G,Cy) — H*(G,K*).

Clearly I = Q(K)® and I, is the image of Q(k) — Q(K)®.

(c) If K = k, then the group K*/C} is a vector space over Q and hence
HY (G,K*/C%) = 0.

(b) The algebra {}_ .,m.®(0)| m,; € K} is equal to the algebra of all
k-linear endomorphisms of M. This follows from the K-linear indepen-
dence of the maps {o¢ : K — K| o € G}. One derives from this that
E={3,ccc®(0) c; € Ck}.

If K =Ck - k, then G is the Galois group of Cx/Cy. Again, by [BI], Propo-
sition IV-1, one has that E is a central simple algebra over C} of dimension
[Ck : Ci]?. Consider an intermediate field £. Then K = Cx - £. So K/{ and
Cx/Cy have the same Galois group H. Now M descends to £ if and only if
the restriction of the 2-cocycle ¢ to H is trivial, if and only if C} is a splitting
field for F.

Suppose that K # Ck - k. Then Ck/C} is still a Galois extension but its Ga-
lois group is different from G. The 2-cocycle in H?(G, C}), attached to M,
need not describe a central simple algebra. Consider the example (4) of 2.5.
The algebra E for this example is isomorphic to Q(¢). It is also interesting to
make part (a) explicit for this example. One has that I/l is isomorphic to
the kernel of H?({1,0},Q*) — H*({1,0},Q(#)*). One can verify that this
kernel is the group of two elements. The example describes the non-trivial
element in this kernel. |

Remarks: Assume K = C - k. Then theorem 2.8 is valid for a differential
field k precisely when I = I;. The proof of 2.8 part (b) shows I = I, for
k = Cg(x). A similar argument shows that if k£ is the function field of a
nonsingular algebraic curve with a point defined over C then I = I;.

In subsection 2.5 we will show that proposition 2.11 is related to Amitsur’s
construction.

2.4 Differential modules over a skew differential field

In the sequel of this section we will produce explicit examples for corol-
lary 2.9. More precisely, for a given finite Galois extension Cy C Ck and a
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skew field F° of finite dimension over its center C} such that Ck is a max-
imal commutative subfield of Matr(m, F°), we will produce an irreducible
differential module M over K = Cx(x) which satisfies (i) and (ii) of 2.8 and
such that Endgp (M) = Matr(m, F'°). The basic feature of the construc-
tion is the introduction of differential modules over skew differential fields.
By 2.9, M corresponds to a k[0]-module N with Endg(N) = F°. So N is
a k[0]-module as well as an F°-module. Then N is an F[0]-module where
F is defined in 2.13 below. Hence, every example for 2.8/2.9 comes from a
differential module over a skew field.

Definitions 2.12 Let k£ be a differential field and F' a skew field of finite
dimension over its center k. A differentiation f — f’ on F' is an additive map
from F to itself such that (fg)' = f'g + f¢' for all f,g € F and such that
the restriction of f +— f’ to k C F is the differentiation of k. A differential
module M over F' is a finite dimensional left vector space over F', equipped
with an additive map 0 : M — M satisfying d(fm) = f'm + fom for all
feFand me M.

Let ey, ..., e, be a basis of M over F. Then 0 is determined by the ele-
ments Oeq, ..., 0e,. Moreover, these elements in M can be chosen arbitrarily.

The next proposition together with part (2) of corollary 2.9 provides the
required examples.

Proposition 2.13 Let F° be a skew field of finite dimension over its center
Cy. On the skew field F = F°(x) := F° @¢, Ck(z) with center k = Ci(x),
a differentiation is given by (f ® a)) = f®d for all f € F° and a € k.
Let N be a finite dimensional left vector space over F'. Then N can be given
the structure of differential module over F' such that N is irreducible as a
k-differential module and End(N) = F°.

Proof. Choose a maximal commutative subfield C' of F° containing C}.
Then N is also a vector space over C(z). Write C = Cy(«) and let P € Ci[z]
denote the monic minimal polynomial of c. The completion of the local ring
Ck[z](p) is denoted by Oy. The residue field of Oy, is C. There is a unique
subfield of O containing C}, which maps bijectively to the residue field C.
We will identify C' with this subfield of Op. After this identification, the
element t = z — a € Oy, is a generator of the maximal ideal. Thus we can
identify O, with C[[t]]. The embedding Ci[z] — Oy, has dense image. Let
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L denote the field of fractions of Or. Then L is the completion of the field
k = Cg(z) w.r.t. the valuation associated to the irreducible polynomial P.

Let V = Endp(N) and W = Ende(z) (V). The natural k-algebra homo-
morphism ¢ : C(x) @,V — W is bijective. Indeed, the first algebra is simple
and the two algebras have the same dimension over k. Consider a property
(*) of elements B € W which is preserved for all B such that B is close to
B w.r.t. a metric on W induced by the embedding W C End(L ®¢(s) N).
Then, since k is dense in C(z), there exists an element in V' with property
(*)-

We identify N with F'* and define the standard differentiation on N by
n=(ny,...,ng) = n' = (n,...,n.). A structure 0 of N as a differential
module over F' has the form on = n' + A(n) with A € V. A structure 0 on
N as a differential module over C(z) = C(t) has the form dn = n' + B(n)
with B € W. Property (*) is defined by: the Newton polygon of a cyclic
element of the module C((t)) ®c(y N has slope 1, where 7 is the dimension
of N as C(x)-vector space. This property 1mp11es that N := C((¢)) Qcw) N
is irreducible and Endg )1 ]( ) C. Thus N is an irreducible differential
module over C(z) and End¢)(N) = C. Clearly (*) is preserved under a
small perturbation w.r.t. a metric on W induced by the embedding W C
End; (L ®c(z) N). We conclude that:

N can be given the structure of a differential module over F such that N
and C(x) ®c() N are irreducible differential modules over C(z) and C(z).
Moreover End 28] (C(z) ®cy N) =C.

Let C D C be the normal closure of C D Cj. Put N = C’(x) ®c() N. As
a k-differential module, N is isomorphic to a direct sum of [C : C] copies of
N. Therefore, Endya)(V) is equal to Matr([C' : C], Endyg(N)) and contains
the simple algebra A := Matr([C : C], F°) with center Cy. Further C is
a maximal commutative subfield of A (since it has the correct dimension).
By the Skolem-Noether theorem, every o € Gal(C /Ck) extends to an inner
automorphism of A. Thus the C ( )-module N satisfies conditions (ii) of 2.8.
Further N is irreducible and End E@)[o] (N) = C. Condition (i) of 2.8 holds
and we can apply the first part of 2.9. One has Endy (N) = Matr(b, F°) for
some b > 1. Now C is also a maximal commutative subfield of Endk[a](N ).
Therefore the latter algebra coincides with A and Endyg(N) = F°. Finally,
since IV is semi-simple as a differential module over £, it follows that N is
irreducible. 0
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We now give a second construction of examples for corollary 2.9 with
m = 1, which will produce nicer examples because there will be only one
irregular singularity (at x = 00). Given is a skew field F° of finite dimension
over its center C} and a maximal commutative subfield Cx of F'° which is a
Galois extension of Cy. As before F' = F°(z) = F° ®¢, Ck(z) is made into
a skew differential field by the formula (f ® a)' = f ® o’ for all f € F° and
a € Cg(z). Then K = Ck(x) is a maximal commutative subfield of F' and
the restriction of the differentiation of F' to K is the obvious differentiation
of K.

Proposition 2.14 We use the above notations. Let M be a finite dimen-
stonal left vector space over F'. Then M can be given a structure of differen-
tial module over F' such that M is an irreducible K -differential module with
the properties:

(b) °M = M for all 0 € Gal(K/k).

(c) Endyg)(M) = F° and M is irreducible as k-differential module.

(d) M := Ck(z) @k M is an irreducible differential module over C'k(z).

(

Proof. As in the proof of proposition 2.13, we identify M with F'® for some
a > 1 and define the operation ' on F by (fi,...,f.) = (fi,-.-, fl). A
structure 0 of differential module over F' on M is given by dm = m' + mD,
with D € Matr(a, F).

For D we make the choice D = Y.~ ' D;z’, with:
(1) Dy is a diagonal matrix with distinct coefficients in Cy on the diagonal,
(2) {Dy, ..., Dy_1} are generators of Matr(a, F°) over Cj,
(3) M is irreducible as a differential module over F'.
For a = 1, property (3) is obvious. Moreover in that case we may replace
(1)+(2) by: Dy, ..., Dy generate F° over Cy. If a > 1, then one could apply
the method of proposition 2.13 in order to obtain (3) and (a—e), but we will
avoid this because it leads to examples more complicated than Zfio D,z
and because (3) is easy to verify for our explicit examples.
(i) Endk[a](M) = F°.
For any algebra B we write B°PP for the opposite algebra. For any algebra B
we write Matr(a, B) for the algebra of the a x a-matrices with coordinates in
B. Now F and Matr(a, F')?? are central simple algebras over k. By [Ren],
Corollaire 4, p 107, the algebra F ®; Matr(a, F)? is again simple. This
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algebra is mapped to Endg(F?), the algebra of the k-linear endomorphisms
of F* by the following formula (f ® B)(v) = fvB for f € F, v € F*,
B € Matr(a, F)°PP. Since the first algebra has only trivial two-sided ideals,
this map is injective. By counting dimensions over £, one concludes that the
map is bijective. Let by, ..., bs denote a basis of F'° over C. From the above
it follows that every k-linear map L : M — M can uniquely be written as
L) = X% bwA;, with all 4; € Matr(a, F).

For L as above one calculates that (0L — LO)v = Z;il b;vB;, where B;
equals the matrix A} + A;D — DA;. Hence L commutes with 0 if and only if
A+ A;D — DA; = 0 for every i.

Suppose that A € Matr(a, F) is a non-zero solution of A’ = [D, A]. Let
g € Cklz] denote the monic polynomial of minimal degree such that ¢A €
Matr(a, F°[z]). Write A = ¢! B, then —¢'¢"?B+¢ 'B'+q"*BD—q¢ 'DB =
0. After multiplying this identity with ¢ one finds that ¢’A € Matr(a, F°[z]).
One concludes that ¢ = 1. Hence A € Matr(a, F°[x]).

The set V' of all solutions A € Matr(a, F°[z]) of A’ = [D, A] is an algebra
over Cy. Moreover, V is a finite dimensional vector space over C)} since
A" = [D, A] can be interpreted as a linear differential equation over the
differential field k. Any A € V, A # 0 can be written in the form A =
S Aix’ with all 4; € Matr(a, F°) and A, # 0. One finds that [Dy, A.] =0
and thus A, is a diagonal matrix (with coefficients in F°). The elements
1, A, A% A3, ... all belong to V. In particular, there is a non-trivial relation
Al+XMA+---+ XA° =0 with all \; € C and A\ # 0. If e > 0, then, since
A, is a non-zero diagonal matrix, the term z® is present in A® and not in the
A? with i < s. This contradiction implies that e = 0. Further A = A lies in
the center of Matr(a, F°), since Ay commutes with all D;. Hence A = A1 for
some A € Cy. Hence Endypg (M) = F°.

(ii) Endgg(M) = Ck and M is an irreducible differential module over K.
The first statement holds because Cx is a maximal commutative subfield
of F°. Let 0 # N C M be an irreducible K-differential module. For any
feF° f+#0,also fN is an irreducible K-differential module. The sum
> [N, where f runs in a basis of F° over Ck, is a semi-simple K-differential
module. Since this object is invariant under left multiplication by F', and M
is an irreducible F-differential module, one has Y fN = M. So M is semi-
simple over K and since Endgg(M) contains only the trivial idempotents
it follows that M is irreducible over K. The same argument (or 2.7) shows
that M is semi-simple and irreducible over k.
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(iii) "M =2 M as differential modules over K.

The Skolem-Noether theorem asserts that for o € G there exists non-zero
fo € F° such that o(\) = f,Af, ! for every A € Ck. One defines ®(o)(m) =
fom. Clearly ®(o) : M — M is a o-linear bijection, commuting with 0. This
proves (b). Statements (d) and (e) follow from 2.7 and 2.3. !

Examples 2.15 Skew fields over Q.

(1) Let H = Q + Qi + Qj + Qk denote Hamilton’s quaternion field over
Q. We consider a maximal commutative subfield Cx = Q(7) and the fields
K = Ck(z), k = Q(z). One provides the 1-dimensional left vector space
M = H(xz)e over H(z) with O defined by de = de for some d € H(x).
According to proposition 2.14, the choice d = i+ jx makes M into an example
for 2.8 and 2.9. Let ¢ be the non-trivial element in Gal(K/k). Then ®(o),
defined by ®(o)he = jhe for all h € H(z), is a good choice for the o-linear
bijection commuting with 0. We note that the 2-cocycle ¢ has the form
c(1,1) =¢(1,0) = ¢(o,1) =1 and ¢(o,0) = —1.

(1) Explicit formulas.

e € M is cyclic for M as a differential module over k¥ = Q(z). The minimal
monic operator Ly € k[0] with Lye = 0 has the form

Ly=0"+ (24 22%)0% + 420 + (4 + 22° + z*).

By 2.14 (c), L4 is irreducible as an element of Q(z)[0]. Moreover, e € M
is also cyclic for M as Q(i)(z)[0]-module. The minimal monic operator
Ly € Q(i)(x)[0] has the form

Ly=0—x'0+ (iz ' +1+2?%).
L, must be a right hand factor of L, in Q(4)(x)[0]. Indeed,
Li=(@*+2'0+ (2 2—iz ' +1+2%)- L.

By 2.14 (d), the operator L, is irreducible as an element of Q(z)[d)].

As we know L, is equivalent to its conjugate 9> — 2710 + (—iz™' + 1 + z?)
and Ly is not equivalent to any second order differential operator in Q(z)[d].
Now Q(v/—m) is a splitting field of H when m > 0 is the sum of three
squares in QQ. Hence for every such m, L, must be equivalent to an operator
in Q(v/—m)(z)[d], and L, can be factored as a product of two irreducible

operators in Q(y/—m)(x)[d].
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(ii) The associated third order operator Ly € Q(z)[0)].

According to 2.10 (b), the symmetric square N = sym?M of M as Q(z)(x)[0]-
module descends to Q(z). We want to make this explicit for our example.
The o-linear map ¥(o) : sym?M — sym?M is defined by

U(o)(m1 @ me) = ®(0)m; ® ®(0)my = jmy & jms.

In particular, ¥(o)? is the identity. Let N° denote the set of the elements of
N invariant under ¥(o). Give M the basis e, je. Then N has Q(7)(x)-basis
eQe, je®e, je® je. One finds that N° has Q(z)-basis e® e+ je® je, ie®
e —ije ® je, ije ® e. Further NV is a differential module over Q(z), since
V(o) commutes with 9. Thus N = Q(i)(z) ®q(z) N°. We take ije ® e as
cyclic element of N° and let L3 be its minimal operator: L3(ije®e€) = 0. A
calculation shows that

Ly=0"—227'0" + (207 + 4 + 42%)0 + 4.

Ls; must be equivalent to the symmetric square of the operator L, above.
The latter does not have coefficients in Q(z) because it corresponds to the
cyclic vector e ® e, which is not invariant under ¥ (o).

Since N is a symmetric square, we see that N° becomes a symmetric
square after making a suitable algebraic extension C' of Q. The fields C' are
precisely the splitting fields for H. We will return to this in the next section.

(2) Example for a general quaternion field over Q.

If we repeat the computation with ¢ replaced by by, j replaced by by, with the
following rules of multiplication: b2 = Aj, b3 = Ay, boby = —by by, replacing
H by F° = Q + Qb; + Qby + Qby1bs, and d by b; + bex then we find the
following Lo

L2 = 82 - .Z'_la + \/ Alx_l — A1 — AQ.’EQ.
Now the splitting fields of F'° are precisely the fields C' for which the conic
A X2+ AY?-1=0

has a point (X,Y) € C?. In particular, F° is a skew field if and only if this
conic has no Q-rational point. For example if A; = 2 and A, = 3, then F°
is a skew field with center Q. We note that the following operator

L,2=82—A2$2—A1+\/A2
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is equivalent to Ls. Hence it defines the same descent problem, and L)
descends to C(x)[0] if and only if C is a splitting field of F°. The symmetric
square of Lo is equivalent to

Ly=0—2237'0% + (2072 — 4A; — 4452%)0 — 44z
which is equivalent to
63 - 4(A1 + AQ.’E2)8 - 12A2.’L‘

Suppose A;, A; are integers, and that the conic has a rational point
(X,Y) € Q?. Then L, descends to Q(z) and the cocycle class ¢ in theo-
rem 2.8 is 1. If both parts (i) and (ii) of the descent data are explicitly known,
then one can explicitly calculate descent: The module N in 2.2 part (3) can
be found as {}_,.; ®(0)(m)/m € M}. Conversely, if one knows an explicit
descent, then descent data can also be explicitly calculated. Now suppose
that Ay, Ay are given, but X,Y are not. It is easy to calculate part (i) of the
descent data for the example Lo. However, to calculate part (ii) of the de-
scent data, one must multiply ¢(o) by a suitable element of C'x. This means
solving a norm equation, which is equivalent to finding a rational point on
the conic. Known algorithms for finding rational points on a conic use factor-
ization of integers. So finding a rational point can be computationally hard
(but only if Ay, Ay, —A; A are not squares, and at least one A; is hard to
factor in Z, for an example see http://www.math.fsu.edu/~hoeij/files/conic).
For such A;, Ay, finding part (ii) of the descent data for Ly, or equivalently,
finding descent, is computationally hard. Finding an irreducible submodule
of M, viewed as a differential module over Q(z), is then also computationally
hard, so factoring

L4 = 84 - 2(A2.’L'2 + A1)82 - 4A2$8 + A% - 3A2 + Agfﬂll + 2A1A2$2

in Q(z)[0] is hard. Indeed, one can parametrize all monic second order
factors

0% — s/(t+sx) 0 — Agx® — Ay — u/(t + sz)
of Ly in terms of points (s : ¢ : u) on the conic A;s* + Ayt? — u? = 0, and

hence finding a second order factor is equally hard as finding a point on the
conic.
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(3) Example with M of dimension 2 over F.

Consider the quaternion field F° = Q + Qb; + Qby + Qbiby, with b2 = 2,
b2 = 3, boby = —b1by. Let F = F°(z) and M = F? be the 2-dimensional
differential module over F' given by the following action of 0 (recall that we
are using row notation v = (v1, v3))

, 0 1
ov=uv +U<bl—|—b2x O)'

Endqg(M) = F°, see 2.14. M is irreducible as Q(v/2)(z)-differential
module. The cyclic vector (1, 0) gives the following operator:

0 —22719% +20720% + 2v227'0 — 2v2272 — 2 — 322

This operator is irreducible (even over Q) and descends to C(z)[0] if and
only if C is a splitting field for F.

(4) A skew field F° of dimension 9 over Q.

Let a be a solution of @® — 3a — 1 = 0. Then Q(«) is Galois over Q with
Galois group generated by o, where o maps o to 2 — o?. Now take b such
that ba = o(a)b and b® = 2. Let F° be the skew field generated by a and
b, take d = b+ ax, let M = F°(z), and dv = v' + vd. Then we find the
following operator

P+ (0®—2a—-2-32°)0—2° — (1 + a+a?)z —2 € Q(a)[0].

It is irreducible, even as an element of Q(x)[d], and descends to C(x)[d] if
and only if C' is a splitting field for F°.

2.5 Amitsur’s construction

Let k£ be a differential field of characteristic 0, having C}, as field of constants.
Amitsur considers an irreducible differential module M of dimension n over
k with the property that M* ® M is a trivial differential module. In other
words, Hom(M, M) is a trivial differential module and the ring of endomor-
phisms E := Endyg(M), which equals ker(9, Hom(M, M)), has dimension
n? over Cy. Now k ®c, F is the k-algebra of all k-linear maps M — M. It
follows that F is a skew field with center C} and that £ is a splitting field
for E.

If Cx D C} is a finite extension and a splitting field for £, and K = Ck - k,
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then the differential module K ®; M is a direct sum of copies of a 1-
dimensional differential module over K. Indeed, Endgg(K ®; M) is iso-
morphic to the matrix algebra Matr(n, Ck).

One of the main results, Theorem 16 of [A] is:
Any skew field E of dimension n? over its center Cy, that has k as splitting
field is obtained in this way.

We sketch the proof of this result. Put M = k™. By definition there is
a homomorphism ¢ € E +— P, € Endg(M). One defines 0y : M — M
by do(fi, -, fa) = (fi,---,fl). For any k-linear map L : M — M one
defines the k-linear map L' by L' = 0yL — LJy. The two representations
/

E — Endy(M & M), given by a — < 13“ ]ga ) and a — ( P;)a % ), are
isomorphic. Indeed, every finitely generated left module over a semi-simple
algebra is itself semi-simple. Using this one obtains a @) € Endg(M) with
the property P, = QP, — P,Q for all a € E. Define now 0 : M — M by
0 = 0y — Q. This makes M = (M, 0) into a differential module over k£ and
there is a homomorphism £ — Endy(M). Hence Hom (M, M) is a trivial
differential module and Endys (M) = E. This is Amitsur’s construction.

The differential field £ = Cy(x) does not produce an example for Amit-
sur’s theorem, since it is not a splitting field for any non-trivial skew field of
finite dimension over its center C. Consider the differential field £ = Q(s, t)
with s> +t2 = —1 and s’ = 1, ' = —st™!. Then k is a splitting field
for Hamilton’s quaternions H = Q + Qi + Q7 + Qk over C;, = Q. One
defines a € H — P, € End(M) with M = k* by P, = ( (1) _01 > and
0 1/2

~1/2t 0

P; = ( ‘; _ts ) One calculates that @ = (

) and that the

minimal monic operator that annihilates the cyclic vector ( 0 ) € M is

L=(s*+1)0%+s0 — 1.

Let m be a positive squarefree integer and K = k(v/—m). From the above
it follows that L is irreducible as an element of £[0], and that L factors in
K|0] if and only if m is the sum of < 3 squares in Q.

Note that Amitsur’s theorem follows from proposition 2.11 (a). Consider
a differential field £ with field of constants C and a skew field E of dimension
n? over its center C}, such that k is a splitting field for E.

27



Let C'x be a splitting field for E, and a finite Galois extension of Cy. Let G be
the Galois group of C/Cy. Then [E] € Br(Cx/Cy) = H*(G,Cj,). Now G is
also the Galois group of K/k, where K = Cx - k, so H*(G, K*) = Br(K/k).
Since k is a splitting field, [F ® k] is trivial, hence [E] is in the kernel of
H?*(G,C%) — H*(G, K*). According to proposition 2.11 (a), [E] is the image
of some N € I = Q(K)®. This N is a 1-dimensional differential module over
K such that N = N for all 0 € G. Let M be N considered as a differential
module over k. Explicit construction of the map Q(K)¢ — H?*(G,Cj)
shows that [Endyps)(M)] = [E]. Then M has a submodule M’ of dimension
n over k (if Cx is a maximal commutative subfield of E then M = M'),
and Ends(M') = E. Since N is unique up to Iy, see proposition 2.11 (a),
the isomorphism class of M’ is unique up to tensoring with 1-dimensional
modules over k. Thus it must correspond to Amitsur’s construction up to
this equivalence.

3 Differential modules of dimension 3

In this section we consider a differential operator L3 € K[J] of order 3 over
a differential field K. The first question is whether L3 is equivalent to the
second symmetric power of a differential operator of order 2. Singer (see [Si])
showed that the question has a positive answer if and only if one can produce
a certain conic and a K-rational point on this conic. This raises a second
question: Which conics can occur? We will use skew differential fields to
answer this.

The first question translates in terms of differential modules as follows.
A differential module B of dimension 3 over K is given. Is B isomorphic to
the second symmetric power sym?% A of a differential module A of dimension

2 over K? We recall that sym2 A is defined as the K-vector space A é[{ A
with 0 given by the formula 0(a; ® as) = (9a1) ®as + a1 @ (Jag). Our interest
in this question lies in the fact that a differential module B may not be a
second symmetric power, but could become a second symmetric power after
enlarging the field of constants of K. Example 2.15, (1), (ii) has this feature.
There is again a 2-cocycle responsible for this phenomenon (see section 4)
and we will construct examples using quaternion fields. First we investigate
some properties of the second symmetric power.
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3.1 Properties of the second symmetric power

Proposition 3.1 Let B be a differential module of dimension 8 over a dif-
ferential field K. The following are equivalent:

(1) B & sym3-A for some differential module A of dimension 2 over K.

(2) sym% B has a 1-dimensional submodule L with the following property. Let
b1, by, b be any basis of B over K. Then L is generated by an element of the
form ZISiSJ’SS ¢i,jbi®bj with ¢, ; € K and the quadric lei§j§3 ¢ ;i XiX; =0
in P2 is non-degenerate and has a K -rational point.

Proof. (1)=(2). Let a1, as be a basis of A over K. Put by = a; ® a1, by =
as ® az, b3 = a; ® as. Then the 1-dimensional subspace L of sym%B with
generator by ® by — b3 ® b3 is easily seen to be a differential submodule.
Moreover X; X, — X2 = 0 has a non-trivial solution in K?.

The reasoning above is based on the observation that the canonical morphism
of differential modules ¢ : sym3 B — sym3-A is surjective. Comparing the
dimensions, one finds that the kernel of ¢ is a 1-dimensional submodule of
sym?2. B.

(2)=(1). The assumptions on the quadric ), ; ;5 ¢;;X;X; = 0 imply that
there exists a linear change of the variables X, X5, X3 which transforms the
quadratic form into a multiple of X; X, — X2. Thus B has a basis by, by, b3
such that the 1-dimensional K-vector space generated by b; ® by — b3 ® b3
of sym% B is a differential submodule. One considers a 2-dimensional vector
space A over K with basis a1, as and one defines the K-linear bijection ¢ :
sym3 A — B by ¢(a; ® a1) = by, ¢laz ® az) = by and d(a; @ ay) = bs. Let
the 0 on B be given by the formula 0b; = Ej e;ib; for ¢ = 1,2,3. The K-
vector space A is made into a differential module by putting da; = > ;450
with di1 = e1,1/2, dog = e31/2, di2 = e32/2, doy = e32/2. Using that
(b1 ® by — by ® b3) is equal to f(by ® by — bs ® bs) for some f € K, one can
verify that ¢ is an isomorphism of differential modules. O

Some observations: Let C' be an algebraically closed field of characteristic
0. Let K = C(z) be the differential field with differentiation f — %. For
this field K, one can omit in part (2) of proposition 3.1 the assumption that
the quadric has a K-rational point. Indeed, K is a C;-field. The Tannakian
equivalence between differential modules over K and finite dimensional C-
linear representations of the universal differential Galois group of K leads to
the following translation of 3.1 in terms of representations of linear algebraic
groups over C"
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Let G be a linear algebraic subgroup of GL(W), where W is a vector space of
dimension 8 over C. Suppose that sym*W contains a G-invariant line that
defines a non-degenerate quadric. Then there exists a linear algebraic group
H C GL(V), where V has dimension 2 over C, such that H/(HN{£1}) = G
and the two G-modules sym?V and W are isomorphic.

A similar result seems to be valid for Galois representations.

Lemma 3.2 Let B be a differential module of dimension 3 over K. If
sym3. B has a 1-dimensional submodule such that the corresponding quadratic
form is degenerate, then B is reducible.

Proof. Suppose that the quadratic form associated to the 1-dimensional sub-
module L is degenerate. This degenerate quadratic form has rank 1 or 2.
There exists ¢1, ¢y € Cx and a basis by, by, b3 of B such that L is generated
by b; ® by (for rank 1) or by ¢1b; ® by + coby ® by (for rank 2). Then Kb, or
Kby + Kb, is a differential submodule of B. O

Lemma 3.3 Let A be an irreducible differential module of dimension 2. Put
B = sym2 A. Then B is reducible if and only if there is a field extension
K D K of degree two such that K Qx A is reducible.

Proof. Because of 2.7 (4), if B is reducible then B has a one-dimensional
submodule L. One can choose a basis a1, ay of A such that a generator of L
has one of the following forms: a;®a;, a;®as or a;®a; — fasRas where f € K
is not a square. The first two cases are excluded since A is irreducible. In the
last case one puts K = K (v/f) and K @ A = K (a1 +ax/f) ® K (a1 — az/F)
and thus K ® A is reducible.

Conversely, let K = K(t) with t* = f € K and write o for the non-trivial
element of Gal(K/K). Let Ke be a submodule of K ® A. If Koe = Ke,
then oe = ge for some g € K* and go(g) = 1. Then g = % for some h € K*
and so o(he) = he. It follows that he € A and Khe is a submodule of A.
This is a contradiction since A is irreducible. Thus K ® A is the direct sum
of the submodules Ke and Koe. Then a; = e+ oe, ap = te — toe is a basis
of A. Finally a; ® a; — f'as ® ay generates a submodule of B. O

Remarks. An irreducible differential module A of dimension 2 will be called
imprimitive if there exists a quadratic extension K of K such that K @ A
is reducible. Otherwise A will be called primitive. A differential module A
can be imprimitive for two different reasons. It is possible that A becomes
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reducible after a quadratic extension of the field of constants of K. In the sec-
ond case, A remains irreducible after replacing K by Cx K. The differential
Galois group G is defined for the differential module Cx K ® A. Imprimitive
is now equivalent to: the action of G on the two-dimensional solution space
V' is irreducible and there are lines L, Ly C V such that V = L; & L, and
any g € G permutes the lines L, Ly. In other words, G is contained in the
infinite dihedral group {g € GLo| {gL1,9L2} = {L1, Lo}}.

Lemma 3.4 Suppose that the two-dimensional differential module A is irre-
ducible and primitive. Put B = sym% A. There are two possibilities:

(1) sym% B has three distinct submodules of dimension 1. Each one of them
determines a non-degenerate quadric having a K-rational point.

(2) sym3 B has a unique submodule of dimension 1.

Proof. After replacing A by L ® A for a suitable 1-dimensional differential
module, we may suppose that the differential Galois group G of A is an
irreducible, primitive subgroup of SLy(Ck). We note that the differential
Galois group is only well defined over the differential field K := Cx K. Let A
and B denote K ® A and K ® B. If (G is not the group AELQ (see remarks 4.6
part (3) for a list of groups), then the symmetric power symj A has no 1-
dimensional submodule and so the same holds for sym%A. It follows that
the only 1-dimensional submodule of sym?2 B is the kernel of the canonical
morphism sym?% B — sym} A.

Suppose that G is A"2. Then by differential Galois theory:

(a) The differential Galois group of B is Aj.

(b) sym%B = M, & M, & M, & B, where My, M, M, are 1-dimensional
submodules. The differential Galois group of M, is trivial and My = Ly,
where L is the kernel of sym2% B — sym A.

(c) M; ® B = B for all i.

(d) The differential Galois group of M;, i = 1,2 is the quotient C3 of Aj.
Thus sym3, M; is a trivial module. Moreover sym?% M; & Ms.

We assume that sym2 B has a 1-dimensional submodule L; # L;. Then
L, is either M; or M,;. We may suppose that L; = M;. From the above
one concludes that sym2 (L; ® A) is isomorphic to B and that the kernel of
sym% B — sym} (L, ® A) is sym} L, = M;. From 2.3 (a) one concludes that
all isomorphisms are defined over the field K. As a consequence My = K®L,,
where Ly := sym?%L;. In the same way, L, is the kernel of the morphism
sym2 B = sym2 (L, ® B) — sym*(Ly ® A). An application of proposition
3.1 ends the proof. O
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3.2 Examples obtained from quaternion fields

Notations and assumptions.

F is a quaternion algebra over k¥ = Cy(z) with basis by, ...,b3. The mul-
tiplication is given by by = 1, b = A; € k = Cy(x) for i = 1,2,3,
biby = —byby = b3, A3 = —A;Ay. Then F is a skew field if and only if
the equation A; X% + A,Y? — Z? = 0 has only the trivial solution (0,0, 0)
in the field £ (see [Bl], Théoreme I-5). We will assume that this is the case.
Put F; = k(b;) for i« = 1,2,3. These are maximal commutative subfields
of F. As before, a differentiation ' on F' will be a map f — f’ such that
(fg) = flg+ fg for all f,g € F and f' = % for any f € C(z) C F. We
note that in general for f € F', the elements f and f’ need not commute, in
which case k(f) is not a differential subfield of F'. Differentiations on F' are
not unique, but we can choose one as follows.

Lemma 3.5 There is a unique differentiation ' on F such that the fields
F\, Fy are stable under differentiation. The field F3 is also stable under this
differentiation.

= ;Xibz- fori=1,2. From b3 =

biby one deduces that b = %bg. Thus (35, aiby) = S0 (al + ai%)bi,

where Ay := 1. On the other hand one can easily verify that this formula
defines a differentiation on F'. The last statement holds because b € F5. O

Proof. The condition prescribes by = 0 and ¥

A 1-dimensional module M = Fe over F' is described by de = de, where
d € F is an arbitrarily chosen element. One can see M as a two-dimensional
differential module over the differential field F;. Let o denote the non-trivial
element of the Galois group of F;/k. One considers the o-linear bijection
A(o) : M — M, defined by A(o)m = bym. One has:
0A(0) = A(0)(0 + %), or in a shorter notation 0by = by(0 + %).
Intermezzo.
One has "M = L ®p, M for the one-dimensional differential module L = F}b

over F| with 0b = %b. Further L ® L is isomorphic to the trivial one-
dimensional module. As a consequence the 3-dimensional differential module
N := sym%lM descends to k. We will make this explicit by a calculation.

On the differential module N =: symj, M of dimension 3 over F; we
define an additive operator B(c) : N — N by the formula B(c)(m; @ ms) =
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A%mel ® bymy. The following properties are easily verified: B(o) is o-linear,
commutes with 9, and B(c)? is the identity.

Let N° denote the subset of N consisting of the elements invariant under
B(o). An explicit calculation shows that N is a vector space of dimension 3
over k with basis n{ = e®e+A%bge®bge, nd = b1€®€—z_12b26®b2€, n3 = hre®e.
Since B(c) and  commute, N is a differential module over £ and moreover
N = F; ®; N°. In other words N descends to k.

M, as a differential module over F}, has basis e, boe. The differential mod-
ule NV has basis n1 = eQ®e, ne = bre ® boe, n3g = e ® bye. By proposition 3.1,
sym%lN has a 1-dimensional submodule, generated by n; ® ny — ng ® ns.

This expression can be rewritten in the basis n?, n3, n3 and reads
A2 A
0 0 2,0 0 0 0
n, @ny — Ny @ Ny — Nig @ ng.
4 MO T e ® Ny Ny @y

Thus symiN° contains a one dimensional submodule L and the quadratic
form associated to L has the form 42 X7 — A2 X2 —X3. This form is equivalent
to the quadratic form A;X? + A,Y? — Z? associated to the quaternion field
F.

Theorem 3.6 Let F, F\,k, M, N° be as above and let K be an algebraic ez-
tension of k.

(1) If K is a splitting field for F then K ® N° is the second symmetric power
of some differential module over K.

(2) Assume that K @ N° is the second symmetric power of some differential
module over K and that KF, ®; N° is irreducible. Then K is a splitting field
for F.

Proof. (1) Apply proposition 3.1 to the 1-dimensional submodule K ®j, L of
sym?(K ®; N°). By assumption the quadratic form associated to L has a
non-zero K-rational point.

(2) By proposition 3.1, sym?(K ®; N°) contains a 1-dimensional submodule
Z such that the associated quadratic form is non degenerate and has a non-
zero K-rational point. In general, this does not imply that K is a splitting
field for F' since Z need not be K ®;, L.

The assumption that KF; ®; N° is irreducible is equivalent, by lemma 3.3,
to M :=KF, ® r, M is irreducible and primitive. One applies lemma 3.4 to
N := sym®M. Thus sym?N satisfies (1) or (2) of lemma 3.4. Then the same
holds for sym?(K ®; N°). In particular the quadratic form associated to L
has a non-zero K-rational point and thus K is a splitting field for F'. O
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3.2.1 An example with A; =2z and Ay = sy — 517

We keep the notations of subsection 3.2. Assume that sg, s1 € Q and sy # 0,
s1 # 0,1. The central simple algebra F' over Q(z) need not be a skew field.
In fact, K D Q(z) is a splitting field for F if and only if the quadratic
equation A; X2 4+ A,Y? — Z? = 0 has a solution (X,Y, Z) # (0,0,0) in K3,
For K = Ck () this condition is equivalent to s¢ and s; being squares in C.
Indeed, if sg, s; are squares, then one easily sees that there are a,b € C such
that za®+ (sp— s12)b?* —1 = 0. On the other hand, let (X,Y, Z) € Ck(z)? be
a non-trivial solution of the quadratic equation. Then one can normalize this
solution such that X, Y, Z € Ck[z] and the g.c.d. of X, Y, Z is 1. Substitution
of = 0 and z = 3 in the equation xX? + (so — s12)Y? — Z? = 0 yields that
so and s; are squares in Ck.

Now we suppose that not both sq and s are squares in Q.

Then F'is a quaternion field. Examples of splitting fields for F' are:
Q(\/S0,1/51)(z) or Fi = Q(v/z) or Q(V/sp — s1z + m2z) for any m € Q. The
F-vector space M = Fe is made into a differential module over F' by de = de
and d = by + zby. We want to apply 3.6 with K = Ck(z) where Ck is any
algebraic extension of Q. Thus we have to show that N := Q(/7)®q) N? is
irreducible, since the composite of the fields Q(z) and F is Q(v/z). Suppose
that M contains a one-dimensional Fj-vector space V, invariant under 0.
Then b,V is also a 1-dimensional Fj-vector space, invariant under 9 (indeed,

biby = —boby and b, = %bQ) and M =V & bV. Thus M is always semi-

simple over F;. Then also N is semi-simple. Suppose that N is reducible.
Then N has a direct sum decomposition. The Galois group of the extension
Q(v/z) D Q(z) acts on these direct sum decompositions. From this one
concludes that Q(z) ® N° is also reducible and moreover that Q(z) ® N°
contains a submodule of dimension 2. Let L3 denote the minimal monic
operator Lj for the cyclic vector bye ® e of N°. We will prove that IV is
irreducible by showing that Lj has no right hand factor of order 1 in Q(z)[0).
One calculates that Lj is equal to

z(sg — 512)0% + 3(s0/2 — 512)0% + (4(s1 — 1)z — 351 /4 — 450)0 + 6(s1 — 1).

Suppose that 0—u with u € Q(z) is a right hand factor of Ls. We make now a
local analysis at the singular points z = 0, sq/s1, o0 of Ls. The first two points
are regular singular with local exponents 0,1,1/2. The point oo is irregular
singular and has only one “generalized local exponent” which is unramified,
i.e., does not involve a root of the local parameter % at oo. This exponent is
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3/2 and gives a local rlght hand factor of the form @ + 3/2z~! + ---. Then
u has the form u = 2 + — 50/51 + ’} with f € Q[z], where ly,[; € {0 ,1/2}.
This cannot produce the prescribed local right hand factor at oo.

Let K = Ck(z). From theorem 3.6 one concludes that there exists Ly €
K[0] whose symmetric square is equivalent to L3, if and only if the equation
A X? + A,Y? — Z2 = 0 has a non-trivial solution in K2. The latter is

equivalent to \/sg, \/s1 € Ck.

Observation. One can compute a monic operator Ly € Q(1/50,/51)(2)[0]
with Sym?L, equivalent to L3 above. Suppose that Q(+/50,+/51) has degree
4 over Q. Let o be a non-trivial automorphism of Q(y/5¢, \/51). Then o (L,)
is not equivalent to Ly. But according to theorem 4.7 it must be projectively
equivalent (see section 4) to L,. We verified by computer computation the
following:

Let o; interchange /s; and —/s;, and leave ,/s; invariant where j # 7. Let
to = /A1 Ay and let t; = \/Ay. Then o4(Ls) is equivalent to Ly ® (0 — %) and

01(Ls) is equivalent to Ly ® (0 — %) If one of these operators is equivalent
to Lo then (the module corresponding to) Lo is imprimitive by lemma 4.1.
The latter is excluded by the irreducibility of Ls.

3.2.2 Quaternion fields with general A; and A,

Consider elements A;, Ay € Q(x) with A} # 0 # Ay. Even if F is not a skew
field, one can define @ on M = Fe by Oe = de where d = by + xby. Again
M is a differential module over Fy and sym?, M = F; ®q(y) N°. Moreover
bye @ e is a cyclic vector for N°. Let L denote the monic operator of order 3
with L3(boe ® €) = 0. In the following we will make the equivalence between
L3 and the second symmetric power of some operator L, over some field
K D Q(z) explicit. For this purpose we introduce an operator R of order
< 3, with coefficients in K D Q(z). One describes R by: the least common
left multiple LCLM(R, L3) of R and L3 has the form Sym?L-R = B - L3
for some Ly € K[0] of order 2. In other words, R provides the isomorphism
K|[0]/K[0]Sym?L, — K[0]/K|[0]L3 of differential modules.

—(16A, A7 Ay + A2 JAy + AL AL JA, + 247 AL /AL — 247 +16)0
+8(A5/Ay + A /A, + 2AT/AY)
R = uAy0® + (24 Aqw + Ahu/2)0 + 4A} Ayv — du
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where (u,v,w) is a non-zero point on the conic
Aju? 4+ At —w? =0 (1)

Assuming that K ®q) sym?N° has only one submodule of dimension 1,
namely the one with generator

A20

1 ——n3 ®@nf —ng @nj,

44,
we have a one to one correspondence between all non-zero points (u, v, w) €
K3 on the conic, and all operators R € K|[J] of order < 3 with the required
property LCLM(R, L3) = Sym?L, - R for some L, of order 2. We note that
Q(z) is a C)-field, and hence there is always a field K of the form Cg (x) with
[Ck : Q] < oo such that (1) has a non-trivial solution. The degree [Ck : Q]
can be arbitrarily high as is shown in the following example:

Ai=z, As=(x—2)(z—3)(zx—5) - (x — pn),

where p,, is the nth prime number. The smallest field extension Ck of Q for

which (1) has a non-trivial solution in K = Cx(z) is Q(V2, .., \/Pn, v/ (—

Remark: For any specific choice, say of A;, Ay € Qlz] with A} # 0 # A,
we need to verify that Ls has the desired properties (i.e., K ®q(s) sym*N°
has only one submodule of dimension 1). Suppose that the differential Galois
group G of M := QF, ®, M satisfies G D SLy. Then the differential Galois
group of F} ®, M is G° and contains SLy. Then for any algebraic extension
K of Q(z), the second symmetric power of K ®qz) N° has a unique sub-
module of dimension 1.

If at a point p formal solutions involve logarithms, then the differential Galois
group of M contains SL,. Indeed, the differential Galois group is a reduc-
tive group (recall that M is semi-simple) and contains the additive group
G,. Examples w1th this feature are obtained by a different choice for Oe,
namely de = ( by + AI(AI 1)b1 -I- b2)€ Suppose that the point p satisfies

Ai(p) =1 and AQ( ) # 0, then one can verify that local solutions at p con-
tain logarithms (it is sufﬁcient to check this for the case A; =z, Ay € Q(z)
because one can then generalize the result by applying a pullback = — A;).
Thus logarithms will appear in local solutions if A, is not a multiple of A; —1.
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The operator obtained this way is:
Ly = 40° + (4B, — 12AY /A, + (6A; — 2)A'/B,)0?
+(2A5/Ay + (3A; —1)A | By/B; — 6A!By/ A} — 4AY /| A
—B2 + 12(A7JA))? — 2(34, — 1) A" /By — 16417 /(A1 (A — 1)?)
—16A44%/A3)0 + 8(A’By — (341 — 1) A%/ Ay) /Ay

where Bl = Al(Al - 1) and Bg = AIQ/AQ

This operator has the same conic (1). After, if necessary, replacing A; with
c? A, for some non-zero ¢ € Q, we obtain that A, is not a multiple of 4; — 1
(if A; € Q then take ¢ € Q(z) instead of in Q). The conic (1) changes into
an equivalent one. We conclude that for any algebraic extension K of Q(z),
the operator Lj is equivalent to a symmetric power of some Ly € K[0] if and
only if (1) has a non-zero solution in K?3. Furthermore, such examples exist
for every non degenerate conic over Q(x).

4 Projective equivalence

Some notations and definitions.

Let k be a differential field with field of constants Cj. Put k = Cik, where
C}, is the algebraic closure of Cj. The trivial 1-dimensional differential mod-
ule is denoted by 1. The determinant det(A/) of a differential module M
is the 1-dimensional module A" M, where n is the dimension of M. For a
1-dimensional differential module L, one writes L®" for the tensor product
L®---® L of n copies of L.

Two differential modules M;, M, will be called projectively equivalent if there
exists a differential module L of dimension 1 such that M, is isomorphic to
L ® M. Suppose that C is algebraically closed, then M;, M5 correspond to
representations of the universal differential Galois group ¢ on finite dimen-
sional Ci-vector spaces. These representations are projectively equivalent if
and only M; and M are projectively equivalent.

The translation in terms of monic differential operators Ly, Ly € k[0] reads
as follows: L; and Ly are projectively equivalent if there exists f € k such
that the k-algebra automorphism ¢, : k[0] — k[J], given by ¢¢(9) = 0 + f,
has the property that ¢(L;) is equivalent to L.

The problem. Let M be an irreducible differential module over K of
dimension n. Suppose that M is projectively equivalent to M for every
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o € Gal(K/k). The problem is to find the fields £ C ¢ C K for which there
exists a differential module N, projectively equivalent to M, such that N
descends to £. The main case of interest is K = k and £ = Cyk.

Lemma 4.1 Suppose that M is irreducible of dimension n > 1 over k and
that k contains a primitive n™-root of unity. The following are equivalent:
(1) There exists a 1-dimensional L ¥ 1 with L ® M = M.

(2) There exists a cyclic field extension k C k(t) with equation t¢ = f € k of
degree d # 1 dividing n, such that [k(t) : k] = d and k(t) ® M is a direct sum
of d irreducible differential submodules over k(t).

Proof. (1)=(2). det(M) = det(L®M) = L¥"®det(M) and so L®" = 1. Let
d be the minimal divisor of n such that L®? = 1. Put L = ke with de = be.
There exists an element f € k* with fTI = db. The isomorphism M — M Q@ ke
can be written as m +— ¢(m) ® e, where ¢ : M — M is a bijective k-linear
map. One finds that ¢p9¢ ! = 0 + b and ¢%0¢ ¢ = 0 +db = f'0f. Then
f¢® commutes with 9 and thus f¢? € C;. After changing f we may suppose
that f¢? = 1. One considers the field extension k() D k, given by t¢ = f.
It is easily seen that [k(t) : k] = d. Define ¢ :==t¢ : k(t) @ M — k(t) @ M.
Then %0 = 0y and ¥? = 1. Let Ny,...,Ng_1 C N =: k(t) ® M denote the
eigenspaces of 1 corresponding to the eigenvalues (4,7 =0,...,d — 1, where
(4 denotes a primitive d"-root of unity. Then N = &,;N; and the N; are
submodules of N. We will use a cyclic notation for the V;, e.g. N;j = Nj.
Let o € Gal(k(t)/k) be the generator of this Galois group, given by o(t) =
¢;'t. Then o acts also on N and one has o(N;) = Ny, for all i. Indeed, for
n; € N; one has ¥(on;) = tdon; = togn; = (yotdn; = (oling = (lon,.
Now suppose that (say) Ny has a non-trivial submodule Nj. Then N’ :=
N ®oNj & ---® % 1N} is a non-trivial submodule of N, stable under the
action of 0. Then the set of the g-invariant elements of N’ forms a non-trivial
submodule of M. This contradicts the assumptions.

(2)=(1). Write again N = k(t) ® M and let o have the same meaning
as before. Take an irreducible submodule Ny of N. Put N; := ¢'N, for
it =0,...,d —1. Then N' := Z?;ol N; is a differential submodule of N,
invariant under the action of o. The set of the o-invariant elements of N’
forms a non-zero submodule of M. Hence N’ = N. The assumption in
(2) implies that N = @7 N;. Define the k(t)-linear map 9 : N — N,
by ¥n; = (in; for any i = 0,...,d — 1 and any n; € N;. Then 90 = 0¢
and Yo = (40v. Define the k(t)-linear ¢ : N — N by ¢ = ¢t '4. Then
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$0¢t = 0+ I and 0¢ = ¢o. The last equality implies that ¢(M) = M
and that the restriction ¢’ of ¢ to M is a k-linear bijection. The relation
¢'0=(0+ (’;—f)gb’ implies that L ® M is isomorphic to M, where L = ke is

given by de = g—}e. The assumption [k(t) : k] = d implies that d is minimal
such that L% 1. 0

Remarks. A differential module M of dimension n > 1 will be called cyclic-
imprimitive if M satisfies property (1) of lemma 4.1. We recall that an
irreducible action of a group G on a finite dimensional vector space V is
called imprimitive if V has a direct sum decomposition V =V, @ --- @ Vy
(with d > 1) such that G permutes the V;. This induces a homomorphism
G — S; which has as image a transitive subgroup of S; since the action of
G is irreducible. The action of G is called cyclic-imprimitive if the image of
G — S, is a cyclic group of order d. If Cy is algebraically closed then the
solution space V' of the irreducible differential module M and the action of
the differential Galois group G on V is well defined. In this situation, it is
easily seen that M is cyclic-imprimitive if and only if the action of G on V' is
cyclic-imprimitive. An example of a cyclic-imprimitive operator is given in
case 3 in the table in section 1 (if £ = Ck(z), K = Ck(z) then case 3 implies
part (1) of lemma 4.1).

Corollary 4.2 Let k = Ci(z) and k = Ci(z) and let My, M, be differ-
ential modules over k, which descend to differential modules Ny, Ny over
k. Suppose that My and My are projectively equivalent and that M, is not
cyclic-imprimitive. Then N1 and Ny are projectively equivalent.

Proof. There is a one-dimensional module L over k, unique up to isomor-
phism because M; does not satisfy 4.1 (1), such that L ® M; = M,. For any
o in the Galois group of k/k one has °L ® “M; = “M,. Since “M; = M;
for 2 = 1,2, one has L = L. By 2.8, there exists a one dimensional Ly over
k with L 2 k ® Ly. The two modules Ly ® N; and N, are isomorphic after
tensoring with k£ over k. By 2.3, Ly ® N; is isomorphic to Ns. O

Example 4.3 Corollary 4.2 is no longer valid if M; is cyclic-imprimitive. We
give two examples. Let M; = Q(z) ®q) Vi for i = 1,2, where N;, N denote
the differential modules over defined by the differential operators Lq, Ly. In
the first example one chooses

3(5xt - 2) and L, — & — 3z%(z* — 10)

— 92 _O\Y 7T el S
Li=0"+ 222(z* — 2)2 Azt —2)2
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One can verify the following. The differential Galois group of M; is D5™2.
Moreover sym?N; = sym?N, and the modules N;, N, are not projectively
equivalent. They become projectively equivalent after extending the con-
stants with a solution of the equation t* + 2 = 0 (not ¢* — 2 as the denomi-
nators would suggest). The proof of these statements can be deduced from
part (2d) of the proof of theorem 4.7.

In the second example one fixes ¢ € Q, not a square, an integer n > 2, and
considers monic operators Ly, Ly € Q(z)[0] of degree 2, defined by the dataz:
three regular singularities 1/c, —/c, 00,

exponent-difference 1/2 at ++/c for Ly, Lo,

L1 resp. Lo have exponent-difference % resp. 1+ % at r = oo.

The differential Galois group of M; is D§L2, n > 2. The modules Ny, N, are
not projectively equivalent, but become projectively equivalent after extend-
ing the constants with \/c. The proof of these statements can be deduced
from part (2b) of the proof of theorem 4.7.

Theorem 4.4 Let K be Galois over k and G = Gal(K/k). Let M be an
wrreducible, not cyclic-imprimitive, differential module of dimension n > 1
over K such that det(M) descends to k and Endgg(M) = Ck. Suppose that
for any o € G the twisted differential module M 1is projectively equivalent
to M. Then:

(1) M induces a 2-cocycle class ¢ € H*(G, K*), having an order d with d|n.
Let F' denote the (skew) field with center k associated to €.

(2) A field k C £ C K is a splitting field for F if and only if M is projectively
equivalent to a module N that descends to /.

Proof. (1) For ¢ € G there is an isomorphism ¢(c) : M — M ® L(o) of
differential modules. Then one has isomorphisms:

M MeLr)="Me L) "D Mo L) e L)
and ¢(o1) : "M — M ® L(o7). The assumption on M implies that
L(o7) =2 L(o) ® °L(1). From det(M) = det(° M) = det(M) ® L(c)®" one
concludes that L(0)®™ = 1. Fix a basis e(o0) for each L(o). Let A(o) be the
o-linear map M — M for which m — A(o)(m) ® e(o) is the o-linear map
M — M ® L(o) associated to ¢(c). Then A(0)0 = (0 + a(o))A(o) with
a(o) € K given by de(o) = a(o)e(o
One has c(o01,09)A(0109) = A(o1)A(og) with c(oy,00) € K*. Moreover

).
).
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a(o109) = a(oy) + o1(a(og)) + % The collection {c(o1,09)} defines
a 2-cocycle with class ¢ € H?(G, K*). The 2-cocycle class ¢" is associated to
the differential module det(M). By assumption, det(M) descends to k& and
thus ¢" = 1.

(2) Tt suffices to consider the case £ = k. Suppose that ¢ = 1, then one
may suppose that ¢(oq,09) = 1 for all 01, 09. Now {a(0)} is a 1-cocycle with
values in K. Such a 1-cocycle is trivial and thus has the form a(o) = o(b) —b
for a certain b € K. The differential module N = M ® Ke, with de = be,
descends to k. Indeed, for N one has that the corresponding maps A(o)
commute with 0 and A(o1)A(02) = A(0102) holds for all oy, 0.

On the other hand, if N with property (2) is given, then clearlyc¢=1. O

The condition that det(M) descends to k is not a serious restriction be-
cause every M is projectively equivalent to a module with this property. Note
that if K = k then L(0)®" = 1 implies L(c) = 1, so the theorem follows
from 2.10 (d) in this case.

Example 4.5 A skew field F' of dimension 9 over Q(z).
Let a be a root of the polynomial 22 —3z—1. Then Q(«) is Galois over Q. Let
o be the automorphism that sends o to 2 — o?. Let F' be the skew field with
center Q(z), with basis 1,b,b* as Q(«, x)-vector space, and multiplication
rules b* = z and bf = o(f)b.

We turn the vector space Fe into a Q(«, z)[0]-module by defining o/ = 0,

b = % and Ode = aTJ’be. Taking a cyclic vector then leads to the following
operator:

L=LyLiLy —x where L; =20 —o'(a) —i/3.

Now L, o(L), 0?(L) are not equivalent but are projectively equivalent. They
are not projectively equivalent to an element of Q(x)[d].

If we increase our differential field to Q(c, z'/3) then these three mod-
ules become isomorphic and descend to a module over Q(x'/3) given by the
following operator

92%(z 4+ 1)0° + 323(9 — 25 + z3 + 82)0° — 32(6 + 225 — x5
+72 +25)0 — 9+ 5z3 — 1125 — 10z — 325 — 325 — 927

This operator was obtained through a cyclic vector computation of Fe, but
this time viewed as Q(b)[0]-module.
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Remarks 4.6

(1) Let the differential module M over K of dimension n > 1 satisfy the
assumptions of theorem 4.4. Then sym’ M is projectively equivalent to a
module that descends to k. Indeed, the 2-cocycle associated to this module
isc" =1.

(2) If K = k and M is of dimension n = 2 over K then a converse for (1)
can be obtained from 4.7 below, and one finds: If sym?M is projectively
equivalent to a module that descends to k£ then M is projectively equivalent
to its conjugates over k.

(3) We recall the classification of irreducible algebraic subgroups of SLo(C),
where C is an algebraically closed field of characteristic 0

DS DSt ASRe SR AR SL,(C).

The first five groups are the pre-images in SLy(C) of the subgroups D?’, D,,,
Ay, Sy and Aj of PSLy(C). Further DP is the projective dihedral group
consisting of the elements of PSLo(C) which stabilize the subset {0, 00} of
P!(C). For more details see [Ko]. We will use this classification to prove
theorem 4.7.

(4) Theorem 4.7 below does not hold for higher symmetric powers nor for
second symmetric powers of modules of dimension > 2. We give three exam-
ples where M, M, are not projectively equivalent, and sym'M; = sym’M,
with ¢ = 3 for (a), (b) and i = 2 for (c¢). Let E(Q) be the one-dimensional
module given by de = Q/x e. Then E(Q:) ® E(Q2) = E(Q; + Q2) and
E(l) = E(())

(a). My =E(0) ® E(3) and Mz = E(3;) ® (E(0) ® E(2)).

(b). My = E(0)® E(55) ® (O)andMQZE(%)®(E(0)@E( 1) © E(55
(c). Mi=E(0)® E(3) ® E(3) and Mz = E(y;) ® (E(0) ® E(5 )@ E(3)).

Theorem 4.7 Let My, My denote differential modules over k of dimension

2. If symy 20N symkMz, then there exists a one-dimensional differential
module L over k such that My = L ® M;.

))-

Remark: Corollary 4.2 implies that over rational functions this result is also
valid for non-algebraically closed field of constants ezcept (see examples 4.3)
in the imprimitive case (cases (2b) and (2d) in the proof below). The proof
below is long because it distinguishes many cases. Bas Edixhoven informed
us that a shorter proof can be obtained with the following ideas: replace
the groups G; by the largest group that stabilizes both quadrics, consider
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the intersection R of these quadrics as a closed subscheme of length 4, and
distinguish cases based on the structure of R.

Proof. 'The theorem is in fact a statement concerning representations. The
translation is as follows. Let ¢ denote the universal differential Galois group
of the field k. The category of the differential modules over k is equiva-
lent to the category of the finite dimensional C-linear representations of the
affine group scheme . Here C' = C}, is the field of constants of k. One
associates to a differential module M over k its solution space V equipped
with the action of U. Let p; : U — GL(V;) for i = 1,2, denote the repre-
sentations associated to M;. Put W; = sym?V; equipped with the induced
representation sym?p;. There is given an isomorphism B : W, — W, be-
tween the two representations. Now it suffices to show that there exists a
C-linear bijection A : V; — V5 such that sym?A = B. Indeed, for any ¢ € Y
one has that Ap;(g)A~"! and py(g) have the same second symmetric power.
Hence there exists a x(g) € {1} such that Ap;(9)A~" = x(9)p2(g). The
map g € U — x(g) € {£1} is a one dimensional representation and cor-
responds to a one-dimensional differential module L over k. It follows that
M, =2 L® M,.

Since we are dealing with only two differential modules M; and M,, we
may replace in the sequel the (somewhat fancy) affine group scheme U by the
differential Galois group of M; & M,, which is an ordinary linear algebraic
group over C.

As before, one considers the canonical surjective map symZW; — sym*V;
and its one-dimensional kernel K; for 7 = 1,2. One observes that a C-linear
bijection B : W, — W, has the form sym2A for some C-linear bijection
A : V) — Vyif and only if sym?B : symiW, — symiW, maps K; to Ko.

Let G; denote the image of p;. The isomorphism between W; and W, implies
that the induced morphisms U — G;/{£1} NG, i = 1,2 coincide.

(1a) Suppose that V; is reducible and that it has precisely one proper in-
variant subspace L;. It easily follows that the only non-trivial invariant
subspaces of Wy are L1 ® Ly and L; ® V. Also V, has a unique proper in-
variant subspace Lo, since G1/{£+1} = G5/{£1}. Thus L, ® V; is isomorphic
to Ly ® V. Hence Vo =2 L, ® Ly,* ® V4.

(1b) Suppose that V; has precisely two proper invariant subspaces. We may
assume that the representation V] is the sum of the trivial character (denoted
by 1) and a non-trivial character x;. Because G1/{£1}NG; = Gy/{£1}NG,
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one has that V5 is the direct sum of two distinct characters x», x3. The two
sequences of characters 1, x1, x? and X3, X3, x2)X3 are equal up to their order.
Suppose that x2 # 1 # x3. Then we may suppose that x2x3 = 1, x5 =
X1, X3=xi- Then x} =1, xo =x}, x3=x1 and Vo = x1 ® V4.

If say x2 = 1, then after changing V5 into x3 ® V2. Thus we may suppose
that Vo = 1@ xa. If x1 = xo, then Vi = V. If x1 # Xa, then x; = 3,
Xi=xeand X2 =1. Thus V1 =1®x1=x1® (1D x2) = x1 @ V.

(1c) Suppose that V] has more than two invariant subspaces of dimension 1.
Then G,/{£1} = {1}. Also Go/{£1} = {1}. Hence V; and V4 differ by a
character.

(2) Now we consider the case where G is irreducible. After multiplying p;
by a character, one may assume that G; C SL,. The isomorphism between
Wi, and W, implies that the image G5 of the second representation lies in
{Z € GLy|det(Z)® = 1}. Using the above notations, we will show that there
is a choice of the isomorphism B between W; and W, such that sym?(B)
maps K; to Ks.

(2a) If G1 € {S7™2, A5™2,SLy(C)}, then sym*V;, i = 1,2 has no invariant
one-dimensional subspace. Then sym?W;, ¢ = 1,2 has only K; as invariant
subspace of dimension 1. Hence B(K;) = K, and we are done.

(2b) If G, = D52 then we have to make a more detailed calculation. Let
{v1,v2} be a basis of V; such that Gy consists of the transformations with
determinant 1 which permute the two lines C'v{, Cvy in Vi. Then b; = v1 ®
v1, by = U3 @ Vg, by = v; ® vy is a basis of Wi = symZ V. The space W is the
direct sum of the irreducible representations C'b; & Cby, and Cbs. The space
symZW; is the sum of the irreducible representations Cb; ® by + Cby ® by,
Cby ® by, Cby ® bz + Cby ® b3 and Cbs ® bz. The family of all invariant lines
in symZW; is C(Ab; ® by + bz ® b3) with A\, u € C, not both zero. Each
member of the family defines a quadric in W;. The family has two special
members namely Cb; ® by and Cbs ® bz, where the quadric consists of two
lines or a double line. The situation is similar for W, and sym?W, (with
adapted notations vi,vh, b}, by, b5). Thus the isomorphism B : W; — W,
sends the family of quadrics of W; to the one of W5. The special quadrics
are mapped to the special quadrics and one concludes that Bbs is a multiple
of b and {Bb,, Bby} are multiples of {6, b5}. One has the freedom to change
the isomorphism B by prescribing Bby = Abj for any A € C*. In this way
one obtains that sym?B maps the line K; with generator b; ® by — b3 ® b3 to

44



the line K, with generator b, ® b}, — by ® b;. Thus the changed B is a sym?A.
For G, = D5™ with n > 2 the same proof works.

Note that sym?B depends quadratically on A, which explains why +/c is
needed in example 4.3.

(2¢) Assume now that Gy = A3">. Then W, is the irreducible representation
D of G,/{#1} = A, of dimension 3. Further sym?W, is the direct sum of
three invariant lines L(0), L1(1), L1(2) and D. The group G,/{£1} = A4
acts trivially on L;(0) which is the kernel K, of sym?W; — sym*V;. The
action of G; on the other two lines is given by the two non-trivial characters
of Ay. The space sym?W, has a similar decomposition Ly (0)@ Lo (1)® Lo (2)®
D. The notation is chosen such that Lo(0) is the kernel Ky of sym?W, —
sym*Vy. Again, Ly(0), Ly(1), Lo(2) correspond to the three 1-dimensional
characters of Go/{£1} = A,. However, Ly(0) need not correspond to the
trivial character of A; and B need not satisfy sym?(B)K; = Ko.

Now we replace Va by Vy := Ly(0)®?2®V5. This new representation has the
same kernel as p,. Put Wy = sym?V, = L,(0)®* ® W,. This representation
has the same kernel as sym?p,. The image of sym?p, is identified with A,.
As representations of A4 the two objects Ly(0)®** ® D and D are isomorphic,
since there is only one irreducible representation of A, with dimension 3.
Thus sym?V, and sym?V, are isomorphic. Then sym?V; and sym?V, are
isomorphic. Let B’ denote the isomorphism. The decomposition of sym?W,
is

Ly(0)®° @ (Ly(1) ® Ly(0)®®) @ (L2(2) ® Ly(0)*®) @ D,

where L,(0)®? is the kernel K} of sym?W, — sym*V,. Now, as required,
sym?(B')K; = K} and we conclude that V; and V; differ by a character.
Hence V; and Vj; differ by a character.

(2d) Assume that Gy = D;™2.

Consider a two-dimensional vector space V' and a representation p : U —
SL(V) with image D§L2. For a suitable basis vi,vy of V' the space W =
sym?V is a direct sum of the three invariant lines L1, Ly, Ly with generators
e =V U+ Uy Q@ Vg, € 1= V] QU — Vs ® Uy and ez := vy ® v9. They
correspond to the three characters of Dy having order two. Then sym?W is
a direct sum of the 3-dimensional space T" spanned by e; ® €;, 1 = 1,2, 3,
having trivial Dy-action, and the three lines Ly ® Lo, L; ® L3, Ly ® Ls.
These lines correspond again to the three characters of D, of order two. The
line K, kernel of sym?W — sym*V, lies in T and is generated by an element
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Z?:1 cie;®e; with non-zero ¢y, ¢, c3 € C. For any other element 25’21 die;Re;
in T with all d; # 0, there is an automorphism D of the representation W
such that sym2D maps the given element 2?21 cie; ® e; to 2?21 die; Q e;.
Indeed, take D of the form De; = \e; for i = 1,2,3 where \? = d;/c;.
Consider, as before, two representations (V;, p;) of U having dimension 2,
such that the image G of p; is D§L2. Let an isomorphism B : W; — W, be
given. Using the automorphism D above, one changes B into B’ such that
sym?B’' maps K, to Ko.

In the first example of 4.3, the three lines Ly, Lo, L3 are defined over the field
of constants Q(v/2). The above proof then shows that N;, N, must become
projectively equivalent if we extend the constants to C = Q(v/2, :\\—;, :\\—z) In
the example, C turns out to be the splitting field of #* +2, which has degree 8
over Q. In general, if Ny, N, are differential modules over Q(z) that become
projectively equivalent over Q(z), and have differential Galois group D52,
then they become projectively equivalent over C’(x) for some field extension
C' of Q of degree < 4 when n = 2, and degree < 2 when n > 2. In the
example one can show that the two subfields of C' that contain a solution
of z* + 2 = 0 are the smallest fields of constants over which N;, N, become
projectively equivalent. a

The following explains the constructions with quaternions in section 3.

Corollary 4.8 Suppose that N is an irreducible differential module over k of
dimension 3, which descends to k. Assume that sym?N has a 1-dimensional
submodule, such that the corresponding quadratic form has a k-rational point.
Then:

(1) There exists a differential module M over k with sym?>M = N. For every
o € Gal(k/k) the modules °M and M are projectively equivalent.

(2) Let ¢ € H*(Gal(k/k),k*) denote the 2-cocycle of order 1 or 2, associated
to M. Let F' be the quaternion algebra over k associated to €. An algebraic
extension C; D Cy, yields a splitting field k = Cik for F if and only if there
exists a differential module M over k such that k Qi sym%M 1S 1somorphic
to N.

Proof. Apply 3.2, 3.1, 4.7 and 4.4 (observe that the differential Galois group
of M is irreducible and primitive since N is irreducible). O
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