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Singer and Ulmer (1997) gave an algorithm to compute Liouvillian (“closed-form”) solutions of ho-
mogeneous linear differential equations. However, there were several efficiency problems that made
computations often not practical. In this paper we address these problems. We extend the algorithm in
van Hoeij and Weil (1997) to compute semi-invariants and a theorem in Singer and Ulmer (1997) in such
a way that, by computing one semi-invariant that factors into linear forms, one gets all coefficients of
the minimal polynomial of an algebraic solution of the Riccati equation, instead of only one coefficient.
These coefficients come “for free” as a byproduct of our algorithm for computing semi-invariants. We
specifically detail the algorithm in the cases of equations of order 3 (order 2 equations are handled by
the algorithm of Kovacic (1986), see also Ulmer and Weil (1996) or Fakler (1997)).

In the appendix, we present several methods to decide when a multivariate polynomial depending on
parameters can admit linear factors, which is a necessary ingredient in the algorithm.

1. Introduction

In this paper k& will denote a differential field whose field of constants C is algebraically closed of
characteristic 0. For the computations, however (Section 2.2), we will consider more concretely the
field C(z) with the usual derivation d/dz. We denote by L = 0" + a,_10"" ! + -+ + agd° (a; € k,
L € k[d)]) a differential operator and by L(y) = y™ 4+ ap_19*~Y 4 --- + agy = 0 the corresponding
linear homogeneous differential equation. We now briefly recall the basic definitions from differential
Galois theory that are needed later on (see Magid, 1994, Singer, 1997, or van der Put, 1998, for details
and references).

A Picard-Vessiot extension (PVE) K of k for L is a differential field extension K =k < y1,...,yn >,
where {y1,...,yn} a fundamental set of solutions, with no new constants in K. It is the equivalent
of a splitting field for L(y) = 0. Under our assumptions a PVE exists and is unique up to differential
automorphisms. We denote by V(L) the solution space V(L) = {y € K|L(y) = 0} of an operator L.
The dimension of V(L) equals the order of L. The differential Galois group G of L is the group of
differential automorphisms of K /k. It acts faithfully on the vector space V(L), and so G can be viewed
as a subgroup of GL(V(L)); more precisely, it is a linear algebraic group over C. There is a Galois
correspondence between algebraic subgroups of G and differential subfields of the PVE of L(y) = 0.
The fixed field of G under this correspondence is k.

A solution of L(y) = 0 in & is called a rational solution, a solution in an algebraic extension of k is
called an algebraic solution, a solution whose logarithmic derivative is in k is called an ezponential
solution and a solution belonging to a differential field obtained by successive adjunctions of integrals,
exponentials of integrals and algebraic extensions is called a Liouwvillian solution. If L has a Liouvillian
solution then L also has a Liouvillian solution of the form y = exp([ r) where r € k is algebraic over
k (see Singer, 1981 & 1997).
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DEFINITION 1.1. An element r of the PVE is called a Riccati solution for L if v is the logarithmic
derivative 1 = y' [y of some non-zero solution y of L. If r is an algebraic Riccati solution (a Riccati
solution in k) then the minimum polynomial of r over k is called a Riccati polynomial of L.

DEFINITION 1.2. An element I € Sym™(V (L)) is called a semi-invariant of the differential Galois
group G of L of degree m if there is a character x : G — C of degree 1 such that for all g € G the
action of g on I is g(I) = x(g)I. If x is the trivial character, i.e. Vg € G, g(I) = I, then I is called
an invariant.

We call a polynomial or semi-invariant completely factorable if it is a product of linear factors. It is
known (see section 2 in Singer and Ulmer, 1997) that an algebraic Riccati solution r of degree m over
k corresponds to a completely factorable semi-invariant I of degree m of the differential Galois group
G. In Singer and Ulmer (1997), the Riccati polynomial of r is computed as follows:

1 Compute the spaces of all semi-invariants up to a certain degree. This degree can be bounded
in terms of the order of the operator using group theory.

2 In each such space, find a completely factorable semi-invariant I € Sym™ (V (L)) where m is the
degree. If such a semi-invariant is found, then L(y) = 0 has an algebraic Riccati solution and
the first coefficient of the associated Riccati polynomial is given by the logarithmic derivative of
the value of I. The value of I is the image of I in K.

3 In Singer and Ulmer (1997), the factorization of I into linear forms is used to compute the
remaining coefficients. This involves computing with splitting fields and so this step could be
costly.

The main objective in this paper is to give an efficient method to compute (if it exists) a Riccati
polynomial. The goal is a method that is efficient enough to handle operators of order 3 on a computer,
or sometimes even higher order if the Riccati polynomial is not too big.

First we extend the algorithm in van Hoeij and Weil (1997) for computing invariants to the case of
semi-invariants. If a completely factorable semi-invariant is known and given in a certain form, then
theorem 2.1 immediately gives us all coefficients of the Riccati polynomial. This central result avoids
the third step above and makes the computation much more feasible in practice.

In the appendix we discuss methods for finding the linear combinations of the basis corresponding
to a completely factorable semi-invariant I (second step). If the dimension of the vector space of
semi-invariants for a character is high then it is a very costly step. This can be resolved by looking
at semi-invariants (not always of minimal degree) that are guaranteed to be completely factorable.
This is particularly interesting because the second step above, i.e. selecting a completely factorable
semi-invariant which can be a very costly step, is then no longer needed. The result is a Kovacic-like
algorithm for order(L) = 3, given in section 4.
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2. Semi-invariants of differential Galois groups

2.1. THE FORMALISM

The basis of our approach is the following useful formalism:
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PROPOSITION 2.1. (van Hoeij and Weil, 1997, Proposition 2.5) Let K be the Picard-Vessiot extension
and G the differential Galois group of L. Define the C-algebra homomorphism

by (it suffices to define ¢ for homogeneous elements § of degree 1)

¢@) = Xy for yeV(L).
i=1
Here 7 is the element of Sym!(V (L)) C Sym(V (L)) that corresponds to the solutiony € V(L) C K of
L. Then ¢ is an embedding (as C-algebra and as G- module) of Sym(V (L)) in K[X1,...,X,], where
the action of G on X4,..., X, is trivial.

If I € Sym(V (L)), then we say that ¢(I) is the canonical image of I in K[Xq,...,X,].

Often the two vector spaces V (L), which is a subset of K, and Sym!(V (L)), which is a subset of
Sym(V (L)), are identified. In this paper we can not directly do so because multiplication in K is not
the same as multiplication in Sym(V(L)).

The following extension of Theorem 3 of Singer and Ulmer (1997) illustrates the usefulness of the
above formalism and is central to our approach.

THEOREM 2.1. Let L(y) = 0 be a homogeneous linear differential equation over k. Let K be o Picard-
Vessiot extension of k for L and G be its differential Galois group. Assume that G has a semi-invariant
I € Sym™ (V (L)) that is a product of linear factors and assume that the degree m of I is minimal
with this property. Let P(X1,...,X,) = ¢(I) € K[Xq,...,X,] be its canonical image. Let a be the
coefficient of X{" in P. Then:

1a#0
2 Let @ := %P(X, —1,0,...,0). Then Q € k[X] and Q is a Riccati polynomial.

PROOF. The semi-invariant I is completely factorable, so I = [];*,y; where y; € Sym'(V(L)) C
Sym(V (L)) and y; € V(L) are the corresponding solutions of L(y) = 0. Thus, as P = ¢(I), we have

m
P=TJwX: +yXs+ - +4" VX,)

i=1

If g € G then g(y;) € Cy; for some j because of the uniqueness of factorization in Sym(V (L)) (which

is isomorphic to a polynomial ring in n variables over C). Hence G permutes the set g—i, ey Z;Z} The
action of G on this set is transitive because m is minimal. Note that a = [] y; # 0 because P # 0.
7 1 / n (n—1) < yl'
Q=1 X +yi- (D +uf- 044y -0 = [T =70
i=1 i=1

Since G permutes the % it follows that @ is invariant under G and hence by the Galois correspondence
vi

i

Q € k[X]. Q is irreducible because the action of G on the % is transitive. The Riccati solutions
. . i . . .
are the roots of ) and hence they are algebraic functions with minimum polynomial Q. O

Remark: with notations as above, if m is not minimal, then it is easily seen that the polynomial @
is either irreducible or a product of Riccati polynomials. Conversely, theorem 3 of Singer and Ulmer
(1997) (combined with our theorem) shows immediately that any Riccati polynomial is obtained that
way. This is used implicitly in section 4.

The algorithm presented in van Hoeij and Weil (1997) computes the invariants I of G by computing
their images ¢(I). The reason for using ¢ in van Hoeij and Weil (1997) was to be able to compute
invariants without having to compute symmetric powers Sym™(L) € k[0]. In the following, this



4 M. van Hoeij, J. F. Ragot, F. Ulmer, and J. A. Weil

same approach is extended to the computation of semi-invariants. The above then shows that this
approach does not only produce the semi-invariant whose logarithmic derivative is the first coefficient
of the Riccati polynomial, but in fact gives all the coefficients. This makes this algorithm for computing
(semi)-invariants very suitable for finding Liouvillian solutions. We now proceed with the computation
of semi-invariants via the above formalism. The next subsection is rather technical and will be easier
if the reader knows about the paper of van Hoeij and Weil (1997) and about Beke’s method for
computing exponential solutions of operators (see van Hoeij, 1997, Singer, 1997, or Pfliigel, 1998 for
details and additional references).

2.2. COMPUTATION OF SEMI-INVARIANTS

LEMMA 2.1. The image of a semi-invariant under the embedding ¢ is an element of a-k[X1,...,X,]
where a = exp([y) for some y € k.

PROOF. Let I be a semi-invariant of degree m, and P = ¢(I). Because ¢ is a G-homomorphism, g(P) =
x(g) - P for some character x. Let a € K be one of the non-zero coefficients of P € K[X1,...,X,].
Now g(:P) = g(L)x(9)P = (ag(%)x(g)) LP. The action of G on the X; is trivial, so that the
coefficients of g(%P) are just the image of the corresponding coefficients under g. One of the coefficients
of LP equals 1 and since g(1) = 1 the corresponding coefficient of g(1P) must also be 1. Hence
Vg € G, ag(%)x(g) =1 and so %P is invariant under G. By the Galois correspondence

1
aPe k[Xy,..., X5]

Furthermore Vg € G, g(a) = x(g) - a showing that a’/a is left invariant by G and thus y = a'/a € k.
O

Remark: Using the embedding ¢, we will often identify semi-invariants with elements of K[ X7, ..., X,].
o

DEFINITION 2.1. For t € k, we note S; the k-automorphism of k[0] defined by S;(0) = 0 + t.

DEFINITION 2.2. The equivalence relation ~ on k is defined as follows: t; ~ to when there existsy € k
for which t; —ta = y'[y.

Let V(L) C K, a € K and assume t = a’/a € k. Then multiplication by a is a C-linear map
to : V(L) = V(S8 ,(L)).
The map p, induces a 1-1 linear map
fa 2 Sym™(V (L)) = Sym™(V(SZ,(L))).

Let S € Sym™(V(L)), g € G. Then g(ua(S)) = pa(g(S)) - g(a™)/a™ so if S is a semi-invariant
then p,(S) is an invariant if and only if g(S) = S -a™/g(a™) for all g € G. If S is a semi-invariant
then ¢(S) is of the form ¢(S) = b-I for some I € k[X1,...,X,], b € K with t; = b'/b € k. Then
g(S) =S -g(b)/b, s0 pue(S) is an invariant if and only if g(b)/b = a™/g(a™) for all g € G. This holds
if and only if b-a™ € k, if and only if —tm ~ ;.

Let L be a differential operator and K the Picard-Vessiot extension. Let S € ¢(Sym™(V(L))) C
K[X;,...,X,] be a semi-invariant of degree m. So S = b-I € K[X;,...,X,] for some b € K,
I € k[Xy,...,X,]. Let t; = b'/b € k. The map p, induces a map on ¢(Sym™(V (L))) that we will
denote by ¢,. Then ¢ [ ~t/m) (S) is an invariant of S7),, (L) if and only if ¢ ~ ¢;.

In order to compute all semi-invariants of degree m, we will construct from L a finite set B, such that
whenever L has a semi-invariant in b - k[X7,..., X,] then (b'/b mod ~) € B. Then for each t; € B
we take a ¢t € k with ¢ ~ ¢; and determine the invariants of Sy, (L). If I € k[Xi,...,Xn] is an

invariant of Sz‘/m(L), then the corresponding semi-invariant of L is S = ¢ (I). The remaining

exp( [ t/m)
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problem is to determine the set B, which will be done using the generalized exponents, in a way sim-
ilar to the computation of the bounds in van Hoeij and Weil (1997). This leads to the algorithm below.

In the rest of this section, we assume that k = C(z).

Algorithm Semi-invariants.

Input: a differential operator L € C(z)[0] of order n, and an integer m.

Output: all semi-invariants of degree m.

Step 1. Compute a finite set B C C(z)/ ~ such that for all semi-invariants al of L, a € K,
I € C(2)[X1,...,X,] the equivalence class of %' is an element of B.

Step 2. For each element of B take a representant ¢t € C(z) and compute the invariants of t*/m(L).
These correspond to semi- invariants of L.

Note that this algorithm resembles Beke’s algorithm for computing exponential solutions exp( [ t) with
t € C(z). We give the same sketch of this algorithm as in section 4 in van Hoeij (1997):

Step 1. Compute a finite set B C C(z)/ ~ such that for all exponential solutions a one has
(%’ mod ~) € B.

Step 2. For each element of B take a representant ¢t € C(z) and compute the rational solutions of
S; (L). Return the corresponding exponential solutions of L.

Computation of set B in step 1 of algorithm semi-invariants:

In van Hoeij and Weil (1997) and van Hoeij (1997) a generalization of the classical notion of exponents
has been defined. A generalized exponent is an element of C[z~'/7] for some integer r (called the
ramification index). In the regular singular case the generalized exponents are the exponents and the
ramification index is 1 in this case. For t € C(z) and p € P'(C) denote EP,(8 —t) € Clz']/Z as
the generalized exponent e € C[z!] at the point p of & — t modulo the integers. EP,(d — t) is the
exponentiol part of 8 —t at p. Now t modulo ~ is determined by the EP,(0 —t) for all p (van Hoeij,
1997).

Let e € C[z7!] be the generalized exponent of § — t at the point p. Then e/m is the generalized
exponent of 9 —t/m at p. The generalized exponents of SZ‘/m(L) at p equal —e/m plus the generalized
exponents of L at p. So the generalized exponents of the monomials in lemma 28 in section 4.1 in
van Hoeij and Weil (1997) for :/m(L) are —e plus the generalized exponents of the monomials for L.
According to this lemma, at least one of those generalized exponents should be in %Z (where r is the
ramification index at p) if Z‘/m (L) has an invariant. This leaves only finitely many possibilities for e

modulo Z and hence for EP,(0 —t) = e+ Z € C[z7']/Z.

At regular points, there is only one possibility for e + Z, namely e + Z = Z, because r = 1 and the
generalized exponents are integers at regular points.

At a singular point p, we can compute all generalized exponents of L, and all generalized exponents of
the monomials in the lemma (these are sums of m generalized exponents of L) and so we can compute
a finite set of possible values of EP,(0 —t). If p1,...,p; are the singularities, and we find N; possible

EP,,(0 —t) then we have N = Nj - Ny --- N; possible combinations, so we find at most’ N possible
values of ¢ modulo ~. These ¢ modulo ~ are the elements of the set B in the algorithm.

A comment on step 2: We need to compute invariants of a number of operators (one for each element
of B). It can be faster first to apply the heuristic algorithm in van Hoeij and Weil (1997), and to apply
the complete algorithm invariants in van Hoeij and Weil (1997) only for the cases when the heuristic
does not prove that no invariants exist.

Another efficiency improvement can be obtained as follows: For computing the invariants of 1;"/m(L)

* (L) at all singularities. However, these can be easily com-

we need the generalized exponents of S; I

T not every combination of exponential parts corresponds to a t, only those combinations that satisfy a generalized
Fuchs’ relation (lemma 9.2 in van Hoeij, 1997)
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puted from ¢ and the generalized exponents of L. Furthermore we compute with formal solutions of
;“/m (L) at one singularity, but these can be computed from the formal solutions of L. This way we only

need to compute generalized exponents and formal solutions of L, not of each S;‘/m(L) for every t € B.

Our algorithm for computing semi-invariants has the same drawback as Beke’s algorithm for comput-
ing exponential solutions: If the singularities or the generalized exponents involve algebraic extensions
over the coeflicients field then the algorithm may need to compute in exponentially large algebraic
extensions. For m = 1 it is in fact the same algorithm. If the set B is very large then the computation
can also be long. However, in many examples the generalized exponents are rational numbers, and the
number of singularities is small (typically 3) so that B will not be big. In such examples computing
semi-invariants will not be so hard.

Sometimes, e.g. step [2.1] in section 4.1, we need to compute only those semi-invariants whose n-th
power is rational (with n € IN given). The computation is then shorter: in step 2 of algorithm semi-
invariants, we need only to consider those ¢t € B for which nt ~ 0 (i.e. the generalized exponents of
& —t are in 1Z). This will be used in section 4.

Invariants are rational solutions of a system of differential equations, the symmetric power system
Y' = 8m(A)Y in section 2.1.2 of van Hoeij and Weil (1997). Semi-invariants are exponential solutions
of this system. So invariants and semi-invariants can be obtained by applying the algorithms in
Barkatou (1998) and Pfliigel (1997) on the symmetric power system. However, this can be a costly
computation because the dimension of the S™(A) can be very high, and because the algorithms in
Barkatou (1998) and Pfliigel (1997) are general, so they do not benefit from the special structure of
the symmetric power system.

2.3. A FOURTH-ORDER EXAMPLE WITH GROUP FP28

The following operator (constructed with the methods of van der Put and Ulmer, 1998) has a Galois
group which is a central extension of Sy (FP28 in the notation of Hessinger, 1998).

o4 (22—1)8° | (229522—20322+4105)8% | (150022 —287x+105)8
L= 0"+4 z(z—1) + 160z2(z—1)2 + 320(z—1)2z3
+7(148000z+9375:c4710088z376725022773125)
2560000z% (z—1)* :

Its exponents at the singularities 0, 1, and oo are

719 13 13 7 9 1357
{_ga g: g; g}? E1 - {Ea ]._0’ ]._0’ 1_0}7 and EOO - {g; g; g; g}
The group FP28 has semi-invariants of degree 5, including a completely factorable semi-invariant.
Following our method, we do the following to compute all semi-invariants of degree 5. Let E, + E, +
E, + E, + E, be the set of all sums of 5 exponents at = p. Let F}, be this set modulo %Z where 7,
is the ramification index. All ramification indices r;, are 1 in this example, so F}, is just £, +---+ E,
modulo the integers (i.e. we take the fractional parts of the elements of E, +---+4 E,). Then one finds
F, = {1/8,5/8}, F = {1/10,3/10,1/2,9/10,7/10} and F, = {1/8,3/8,7/8,5/8}. We need to try

S;5(L) for all t = co/x + ¢1 /(2 — 1) for which

Ey =

10<¢ <1forie{0,1}.

2 (ep+ %Z) (N Fp is non-empty for p € {0,1, 00}, where ¢ = —co — ¢1.

In general the ¢; are taken in C[x’l/ »] modulo %Z, but since all generalized exponents are rational
numbers we can take ¢; to be non-negative rational numbers smaller than 1. The above conditions
leave only very few (namely 2) cases for ¢, so computing all semi-invariants of L of degree 5 does not
take much computer time here.

Let L = +/5(L) where t = 5/(8z) +1/(2(z —1)). With the algorithm from van Hoeij and Weil (1997),
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we compute the 2-dimensional space of invariants of degree 5 of L, and determine an invariant that
factors into linear factors using the appendix. We then apply theorem 2.1 and obtain the following
Riccati polynomial:

P= X5(122683392 ° + 246481521 22 + 184373150 & — 557519375)
+X*(245366784 3 + 739444563 x2 + 737492600 = — 2787596875) /=
+X3(966131712 z* + 3750651762 z° + 2746408210 2>
—33407163250  + 27875968750) /(5 (z — 1) x2)
+X2(1878589440 z° + 10760213334 z* + 11619977980 2>
—183778983600 2 + 297197002500 = — 139379843750) /(25 (x — 1)” 23)
+X (1808142336 25 + 15408360513 2° + 43238642915 2*
—522670373950 2° + 1182921498750 2% — 1068395471875  +
348449609375) /(125 (z — 1) z4)
+X0(3451908096 =7 + 41967774147 2 + 302211588068 =5
—3042266659625 z* 4+ 8490891950000 x> — 11023761109375 z:2
+6968992187500 2 — 1742248046875) /(3125 (z — 1)* 25)

Let r € C(z) be aroot of P. Then exp( [ r dz) is a Liouvillian solution (in fact: algebraic solution, but
we have not computed its minimum polynomial) of L. To obtain a solution of L we have to multiply
by exp([ /5 dz), so we find the following Liouvillian solution of L

exp(/(r + %) dzr) = :171/8(:1: — 1)1/10 -exp(/r dz) e V(L).

We could also compute a semi-invariant of L from the invariant of L, and apply theorem 2.1 on that.
The Riccati polynomial obtained that way has r + é as solution, so it can be also be obtained from
P by a substitution.

In most examples we prefer to compute a Riccati polynomial through invariants, not semi-invariants,
because invariants are easier to compute. However, FP28 has a 5-dimensional space of invariants of
degree 8, and no invariants of lower degree. So computing a completely factorable invariant will be
very difficult because it has to be selected from a high dimensional space. So for FP28 it is easier to
use semi-invariants.

2.4. CONSTRUCTORS OF SEMI-INVARIANTS

In this part, we list some results from Weil (1995b) that will be used in section 4. Let X denote the
transposed vector (X1,...,X,)!. Let D be the derivation on K[X1,...,X,] defined by D(X) = —A!*X
and D is the usual derivation on K. Then, ¢(Sym(V (L))) = {P € K[X1,...,Xn] : D(P) =0} (Weil,
1995a)T.

Let S be a semi-invariant of degree m, and P = ¢(S) be its canonical image in K[X1,...,Xp]. In this
setting, it is shown in Weil (1995b, proposition 50, section 6, page 57) that the Hessian of P (with
respect to X1, ..., X,,) is again, up to multiples, the canonical image of a semi-invariant (same results
hold for the bordered Hessian and the Jacobian). Thus, once a semi-invariant is known, we can apply
directly Hessians and related constructors on its canonical image (see Weil, 1995b, section 6.3 page
65 for a fairly detailed example). In view of theorem 2.1, this will allow (in section 4) to construct
Riccati polynomials of high degrees directly from invariants of small degree.

T In fact, this derivation turns K[X1i,...,Xy] into a differential module isomorphic to Sym (D/DL).
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3. Computing Liouvillian solutions of equations of order n

LemMMA 3.1. If L is reducible and L has a Liowvillian solution then L has an irreducible right-hand
factor R € C(z)[0] that has a Liouvillian solution.

ProOF. The Liouvillian solutions of L form a subspace of V(L) that is invariant under the differential
Galois group. Hence there exists a right-hand factor R’ having this subspace as solution space. Now
take for R any irreducible right-hand factor of R'. O

From the fact that an operator M that has a Liouvillian solution must have a solution of the form
exp( [ r) for some algebraic function r € C(z), i.e. M has a right-hand factor of order 1 in C(z)[d], it

follows by induction that if all solutions are Liouvillian then M is completely factorable in C(z)[9] (i-e.
M is a product of operators of order 1). Conversely, if M is completely factorable then all solutions
are Liouvillian. Hence the operator R’ in the lemma is the highest order right-hand factor of L that

is completely factorable in C(z)[0].

1 Reducible case. If L is reducible and has a Liouvillian solution then according to the lemma
there exists an irreducible right-hand factor that has a Liouvillian solution. Though there may
be infinitely many different right-hand factors, there are only finitely many types (Tsarev, 1996,
Singer, 1995) of irreducible right-hand factors. For each type we need to compute one right-
hand factor and compute the Liouvillian solutions of that factor. This way we find a Liouvillian
solution of L, if such solution exists.

2 Trreducible case. In Singer and Ulmer (1993b) and references therein, the authors give an upper
bound for the lowest degree of (if it exists) a Riccati polynomial of L. So, by checking a finite
number of degrees, one can decide if a Riccati polynomial exists. For each possible degree m,
compute the semi- invariants of degree m and check (see appendix A) if there is a completely
factorable semi-invariant. If so, return the corresponding Riccati polynomial.

In the algorithms the irreducible case is usually split into the imprimitive and the primitive case
(containing only a finite list of possible groups); this is explained in Singer and Ulmer (1993b).
Several ideas from section 4 below can be re-used when handling equations of higher order (e.g. the
fact that knowing in advance which groups to check for allows us to check only a small number of
degrees for the semi-invariants). The important classification work of Hessinger (1998) should pave
the way to a better algorithm for computing Liouvillian solutions of equations of order 4.

4. Computing Liouvillian solutions of equations of order 3

The general algorithm can be improved in several ways. First of all, the computation of semi-invariants
can often be avoided. For example in the case that L is irreducible of order 2, we know from Ulmer
and Weil (1996) that it is sufficient to compute only invariants, which are easier to compute than
semi-invariants.

The factorization of a semi-invariant (cf. appendix A) becomes a problematic step if the number of
parameters is not small. For second order equations this problem does not occur because any invariant
will factor into linear forms. For third order equations we will use section 2.4 to find invariants that
are guaranteed to factor, so that appendix A can be avoided in most cases.

Furthermore we can reduce the size and number of different degrees m that need to be checked by
studying the possible Galois groups.

In this section, we develop along these guidelines a Kovacic-like algorithm for computing Liouvillian
solutions of linear differential equations of order 3. For the possible Galois groups, we follow the
notations from Singer and Ulmer (1993a, 1993b).
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4.1. THE ALGORITHM

Let L = 8% + a20° + a10 + a¢ where the a; € C(z). If there exists an f € k such that f'/f = as, then
G C SLs; if not, then we can first apply S* | /3 1o L so that the coefficient as will vanish. Hence, we
may assume in all that follows that the Galois group is unimodular, i.e. G C SLg.

Remark: in the algorithm below, the sentences “there are s invariants of degree m” should be under-
stood as “the vector space of all invariants of degree m has dimension s”.

1 Reducible case.

[1.1] If L can be written as Ly - (0 — r) for some r € C(z) then let a = exp(r) and compute
a basis yi,ya of solutions of Ly. Return a,a [ (y1/a),a [ (y2/a).

[1.2] If L allows only a factorization L = Lq L, where L has order 2. Then apply the Kovacic
algorithm on Ls. If a basis of Liouvillian solutions is found, then (assume that L is monic) L can
be factored as (0 —r)(0 — a)(0 — b) for some algebraic functions a and b and rational function r.
Let 21 = exp([(a—b) dz) and 2, = [ exp([(r—a)dz)dz. Then y; = exp(f bdz), y2» = y1 [ z1 dx
and y3 = y1 [ z122 dz is a basis of Liouvillian solutions of L.

2 Test if the group is imprimitive by doing one of the following steps, 2.1 or 2.2:

[2.1] Compute all semi-invariants of degree 3 whose square is invariant (see the remark at the

end of section 2.2). Decide if one of these semi-invariants has a linear factor (use Appendix A if

there is a semi-invariant linearly depending on pararnetersT). If this is the case then the group
is imprimitive; return the Riccati polynomial @) using theorem 2.1. Otherwise the group is not
imprimitive; proceed with step 3.

[2.2] Compute invariants of degree 6 and decide which of those is a square (see Appendix A4).
The corresponding square roots are all semi-invariants of degree three whose square is invariant.
Now proceed as in [2.1].

3 Compute the invariants of degree 2. If there is one (there can not be more) then compute the
invariants of degree 6 and one of the following two cases applies; otherwise proceed with step 4.

[3.1] Either there is ONE invariant of degree 6; then G ~ PSL3%* and there is no Liouvillian
solution.

[3.2] Or there are TWO invariants of degree 6; then G ~ AS%3. Return either the unique
Riccati polynomial of degree 6 (the corresponding completely factorable invariant must be found
in a space of dimension 2) or the unique Riccati polynomial of degree 15 obtained from section
4.3.2.

4 Compute invariants of degree 4. If there is one (there can not be more), then G ~ Gféf. Return
the Riccati polynomial of degree 21 obtained in section 4.3.3
5 Compute invariants of degree 6:

[5.1] If there are NO such invariants then one of the following 2 cases applies; otherwise
proceed with step 5.2.

[5.1.1] If there is one invariant of degree 9 (there can not be more), then G ~ Hj5%. Return
the corresponding Riccati polynomial of degree 9.

[5.1.2] Else, the group is SLs and there are no Liouvillian solutions.

[5.2] If there is ONE invariant of degree 6, then one of the following 4 cases applies; if there
are more invariants of degree 6 then proceed with step 5.3.

[5.2.1] If the invariant is a cube (Appendix A4), then G ~ PSL3™ x C3 and there are no
Liouvillian solutions.

[5.2.2] Tf there is one invariant of degree 9 (there can not be more), then G ~ H:5"s. Return
the corresponding Riccati polynomial of degree 9.

[5.2.3] If there is an invariant} of degree 12 which is the cube of a semi-invariant S (Appendix

T i.e. a vector space of semi-invariants corresponding to the same character.
t Alternatively, at this step, one could directly search for a (unique) semi-invariant of degree 4 whose cube is rational.
Or, to avoid factorisation, one could compute the dimension of the space of invariants of degree 18 (dimension 2 for

Gfgg‘ X C3 and dimension 3 for AgL3).
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A4), then G ~ Gf6L83 X C3. Return the Riccati polynomial of degree 21 corresponding to the
unique invariant of degree 21 obtained in section 4.3.5

[5.2.4] Else G ~ A*g Ls Return the Riccati polynomial of degree 45 corresponding to the unique
invariant of degree 45 obtained in section 4.3.6

[5.3] If there are TWO invariants of degree 6, then one of the following 2 cases applies:

[5.3.1] If there is one invariant of degree 9 (there can not be more), then G ~ Fji-?; Return
the corresponding Riccati polynomial of degree 9.

[5.3.2] Else, G ~ A5S I3 % Cy. Return either the unique Riccati polynomial of degree 6 (the
corresponding completely factorable invariant must be found in a space of dimension 2) or the
Riccati polynomial of degree 15 obtained in section 4.3.8.

4.2. PRACTICAL REMARKS ON THE ALGORITHM

We note that, in practice, some cases from the algorithm can be quickly excluded by the necessary
conditions from Singer and Ulmer (1995) and/or the heuristic from section 4.1 in van Hoeij and Weil
(1997). For example, if the equation is not Fuchsian, then there are Liouvillian solutions if and only
if step 1 or step 2 succeeds.

One consequence of the above algorithm is that we can decide whether an irreducible third order
equation has Liouvillian solutions by using only invariants of degrees 2, 4, 6, and 9.

Another remark concerns the rationality problem: The algorithm we use for computing invariants,
unlike for semi- invariants, does not introduce algebraic extensions in its output ¢(I). The only case
of an irreducible operator L of order 3 where we compute a Riccati polynomial that may require an
extension of the constant field is the imprimitive case (there may be an extension of degree at most 4,
see Hendriks and van der Put, 1994, Ulmer, 1994), because this is the only case where semi-invariants
and appendix A need to be used.

Choosing step [2.2] instead of [2.1] to handle the imprimitive case has several extra advantages. For
example, in step 3 and 5, we need not recompute the invariants of degree 6 (note, however, that
one can not safely perform step 3 before step 2). Also, if the dimension of the space of invariants
of degree 6 is bigger than 2, then we know automatically that the group is imprimitive (this follows
from the properties of the primitive subgroups of SL3(C)). Furthermore we do not need to compute
semi-invariants this way.

4.3. CORRECTNESS OF THE ALGORITHM

The fact that the successions of tests proposed in the algorithms yield the correct groups follow from
the decomposition of the symmetrisations of the characters (Singer and Ulmer, 1993a) for all primitive
subgroups of SLs. To prove that the corresponding degrees of algebraic Riccati solutions are correct,
we proceed by inspection of all imprimitive and finite primitive subgroups of SLs.

4.3.1. IMPRIMITIVE GROUPS

Assume that G is irreducible. If there is a semi-invariant of degree 3, then the group is either im-
primitive or F:;%L3 (Singer and Ulmer, 1993a, Table 2 and Proposition 3.6). In both cases there is a
Liouvillian solution. If the group is F356L3, then there is no semi-invariant of degree 3 corresponding to
a character of order 2 (i.e. whose square is an invariant). Thus, if there is a semi-invariant of degree 3
corresponding to a character of order 2 then the group must be imprimitive. An imprimitive group of
degree 3 is monomial, i.e. there exists a basis {y1,y2,ys} such that an element of G has only one non
zero entry in row and column. Since G C SL(3,C), we have Vg € G, g(y1y2y3) = £y1y2y3 (Singer and
Ulmer, 1993a, Proposition 3.6). There are at least one and at most 4 Riccati polynomials of degree 3
in this case (Hendriks and van der Put, 1994, Ulmer, 1994).
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4.3.2. Ay

LEMMA 4.1. If G ~ As then there is exactly one Riccati polynomial of degree 6 and exactly one
of degree 15. The Riccati polynomial of degree 6 can be obtained by applying appendiz A on the 2-
dimensional space of invariants of degree 6.

The canonical image of the invariant of degree 15 is obtained the following way: compute the images
Py and P of the invariants of degrees 2 and 6. Let Py be their bordered Hessian, and Pi5 be the
Jacobian of these three (Pi5 is unique and does not depend on the choice of Ps).

ProOF. That there exists a Riccati polynomial of degree 6 is proven in Singer and Ulmer (1993b). Its
uniqueness follows from the fact that there are 6 conjugate non-Abelian subgroups of index 6 having
each one common eigenvector. So we turn to degree 15.

There are 5 conjugate subgroups of order 4 in As which are all Abelian of exponent 2. Using the
matrix representation of As given in Singer and Ulmer (1993b), we get that one such group, say H,
is generated by the matrices { EyEy ExE3EoEy, E3Ey } which have (—(3 + (5 +1,(5,1)! as a common
eigenvector, where (5 = exp(27i/5). In order to find the corresponding semi-invariant that factors into
linear forms, we look at a set

S={id,E;" By E; ", E; 'E; ' By 'Ey' By 'E; ' By 'E; 'Ey Y E; 'E; 'Er
ET’E;',E; 'E{'E; ' E{'E;'E; ', E;°E; 'Ey ', E; 'E7 'E; 'ET ' ET'E3 'Ey VBT '}

of left coset representatives of H in As. The resulting polynomial

H 9 (=G + ¢+ Dyi + Gsyz + y3)
g€ES

which by construction factors into linear forms over the complex numbers, is a semi-invariant and
thus an invariant! of the simple group As. The length of the orbit of the logarithmic derivative of the
eigenvector, i.e. the degree of its minimal polynomial, divides 15 = [45 : H]. From Singer and Ulmer
(1993b), we know that this degree must be > 6, so the degree must be 15 and that the associated
polynomial must be a Riccati polynomial of degree 15. Note that there is, up to multiple, a unique
invariant of degree 15 which thus must factor into linear forms.

The statement on the construction of the invariant of degree 15 from the invariants of degree 2 and
6 follows from the uniqueness and from a simple direct computation on classical invariants (Miller,
Blichfeldt, and Dickson, 1938, paragraph 125 pp 253-255). O

4.3.3. Gws

LEMMA 4.2. If G ~ G1gs, then there is a unique Riccati polynomial of degree 21.

Its canonical image Py is obtained the following way. Let Py be the image of the invariant of degree
4, let Py be its Hessian, and let Pr4 be the bordered Hessian of Py and Ps; then Pay is obtained from
the Jacobian of Py, Ps, Py4.

PRrROOF. From Singer and Ulmer (1993b) we get that there exists a Riccati polynomial of degree
21. Since the group is simple, any semi-invariant must be an invariant. There is a unique trivial
summand in the decomposition of the character of the 21-th symmetric power of the faithful irreducible
unimodular 3-dimensional characters, we get that the semi-invariant must correspond to the, up to
multiple, unique invariant of degree 21 and thus factor into linear forms. The corresponding group H
and the coset representatives are given in Singer and Ulmer (1993b).

The statement on P,; follows from the uniqueness and from direct computation on classical invariants
(Miller, Blichfeldt, and Dickson, 1938, paragraph 125 pp 253-255). O

T This invariant does not correspond to the invariants given in Singer and Ulmer (1993b) where another basis of the
solution space was chosen in order to express the invariants.
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4.3.4. HyEs anp HObs

From Singer and Ulmer (1993b), we get that there exists a Riccati polynomial of degree 9. Since
there is no non-trivial character of degree 1 and a unique trivial summand in the decomposition of the
character of the 9-th symmetric power of the faithful irreducible unimodular 3-dimensional characters,
we get that the semi-invariant must correspond to the, up to multiple, unique invariant of degree 9
which thus must factor into linear forms. The corresponding group H and the coset representatives
are given in Singer and Ulmer (1993b).

4.3.5. G168 X Cg

The, up to multiple, unique invariant of degree 21 of G4s factors into linear forms (see section 4.3.3).
Since its order is divisible by 3 it is also an invariant of C3 and thus a, up to multiple, unique invariant
of G1gs x C'3 that factors into linear forms. Since 21 is the minimal degree of a Riccati polynomial
in this case (Singer and Ulmer, 1993b), it must correspond to a Riccati polynomial. This Riccati
polynomial can be constructed from the semi-invariant of degree 4 (whose cube is rational) as in
section 4.3.3.

4.3.6. AF"

LEMMmA 4.3. IfG ~ AgLS, then there is exactly one Riccati polynomial of degree 45, and it is obtained
from an invariant, which can be computed in the following way: let Ps be the invariant of degree 6,
let Py5 be the Hessian of Py, and let P3y be the bordered Hessian of Ps and Py5. Then Py is obtained
from the Jacobian of Pg, P12, Psg.

We note that there is also a Riccati polynomial of degree 36 (Singer and Ulmer, 1993b) but we know
of no simple formula to obtain it; furthermore, the space of invariants of degree 36 for Ag L3 has
dimension 5 so selecting the completely factorable invariant would be a very hard task.

PROOF. There are 3 types of non conjugate subgroups of order 24 in A§L3. Only one type con-
sisting of 45 conjugate non Abelian subgroups of order 24 is 1-reducible (the 24 elements have a
common eigenvector). Using the matrix representation of A3 given in Singer and Ulmer (1993b),
we get that one such group, say H, is generated by the matrices { E4Fy1 E2 EsEyEx Ey 1E4, (ELET 1)2,
EsEsE E;3, E3E4E3} which have a common eigenvector. In order to find the corresponding semi-
invariant that factors into linear forms, we look at a set S of left coset representatives of H in Ag"*
(containing 45 elements). Since the group is perfect and has no non-trivial character of degree 1, the
semi-invariant must be an invariant. There is, up to multiple, only one invariant of degree 45 for this
group which thus must factor into linear forms by the above. The length of the orbit of the logarithmic
derivative of the eigenvector divides 45 = [A5™® : H]. From Singer and Ulmer (1993b), we get that
this degree must be > 36 and thus that the degree must be 45 and that the associated polynomial
must be a Riccati polynomial of degree 45. The statement on P45 follows from the uniqueness and
from direct computation on classical invariants (Miller, Blichfeldt, and Dickson, 1938, paragraph 125
pp 253-255). O

4.3.7. Fyls

There are 9 conjugate subgroups of order 12 in F3%L3 which are all Abelian. Using the matrix repre-
sentation of Fg";Ls given in Singer and Ulmer, 1993b, we get that one such group, say H, is generated
by the matrices {V,U?} which have (0,—1,1)¢ (see Singer and Ulmer, 1993b for the notations) as a
common eigenvector. Note that U2 is w times the identity where w is a third root of unity, and that
U3 isin F§L3. In order to find the corresponding semi-invariant that factors into linear forms, we look
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at aset S = {id, S, T, S, T-1, 771§, TS, T—1S, TS} of left coset representatives of H in
F?:%LS. The resulting polynomial

T (o(=v2 +ys)) = —4345 + vivs — uiu3 + w843 — o + uiv3
geS

which by construction factors into linear forms over the complex numbers, is in fact an invariant
of Fiys (check using the generators). The length of the orbit of the logarithmic derivative of the
eigenvector, i.e. the degree of its minimal polynomial, divides 9 = [F?;%L3 : H]. From Singer and Ulmer
(1993b) we know that this degree must be > 6, so the degree must be 9 and the associated minimal
polynomial must be an irreducible Riccati polynomial of degree 9.

4.3.8. A7P x O3

The, up to multiple, unique invariant of degree 15 of A5 which, by section 4.3.2, factors into linear forms
is, since its order is divisible by 3, also an invariant of C's and thus an, up to multiple, unique invariant
of Ay x (5 which factors into linear forms. Since 6 is the minimal degree of a Riccati polynomial in
this case (Singer and Ulmer, 1993b), it must correspond to such a Riccati polynomial.

4.4. EXAMPLE

21(w2—x+1)8 212z —1) (2 — 2 +2)
2522 (x — 1)? 5022 (x — 1)3
The operator is irreducible. There is a two-dimensional space of invariants of degree 6. None of them is

a square so we proceed to step 3. There is one invariant of degree 2, so we know that G/Z(G) ~ A? Ls,
The invariants of degree 6 (variables g;, parameters a;, az) are:

L=0+

(2560 a1 — 30a2) 7,°7,° + 675 7,° a1
+ (—1024 a; + 30 a2) 75° — 3932167, 7,° ay
+ (15360 a1 — 90 a2) 51 §2 J5 + 9075° 32771 ” a2
Using a complete factorization approach, we find that for 256a; = 3a, we have the following factor
(up to conjugation):
7, — a7y + Qys, where o — 256 =0

and the remaining factor is simply ¥s.
The coefficients of the corresponding canonical image are:

[—4608 2t (z — 1)*, —3072 (=1 + 22) 2 (z — 1)3,

—-1536/52° (72> — Tz — 3) (z — 1),
1536

-5 z® (1332% — 1337 + 33) (z — 1),

2304 ; 110592
S s (m—1) (=1 +2 2 _rg—34), ——2f
o5 z(x—1)(-1+22z) (772> =77z —34), 505

1204224 , 602112 , 562176 39936 ,
z® — " — z — x*,
625 625 625 625
13824 262656
—ﬁx(x—1)(7x—4)(—1+2x)(7a:—3), 625

' Note that if the result would be a semi invariant, one could find the corresponding one dimensional character using
this construction.
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4666368 , 2333184 , 479232 1853952 ,
625 625 625 625 '
3072 (—1+ 2z) (637" — 12742° + 2522 + 612z + 126)
B 3125z (z — 1) ]

From this, we read the coefficients of the minimum polynomial of an algebraic solution of the corre-
sponding Riccati equation using theorem 2.1. We use rows that correspond to the monomials X {Xgil,
1=0,1,...,6. The way we numbered the monomials X{IX?ngll*l?, this corresponds to rows 1, 2,
4,7, 11, 16, 22. We obtain:

o (~1+2z)X5 (13322 — 133z +33) X4
X° -4
z(x—1) 522 (xz —1)2
_12(Tz—4) (~1+22) (T2 - 3) X3
25x3 (x — 1)3

N (351 — 11662 z* + 5831 2* — 2862 z + 8693 2%) X >
12524 (z — 1)%
4(—1+2z) (9604 z* — 19208 2° + 142752 — 4671z + 567) X
312525 (z — 1)°
N (16807 z* — 33614 2% + 24907 z2 — 8100z + 972) (—1 + 2z)?
12500 28 (z — 1)8
Alternatively, we can avoid the factoring by using sections 2.4 and section 4.3.2 to construct directly the
(unique) Riccati polynomial of degree 15 via bordered Hessian and Jacobian applied on the invariants
of degree 2 and 6. The result is the following irreducible Riccati polynomial:
(T2* —142°% — 42 + 112 — 3)
z(x—-1)(-2+2z)(-1+2z)(z+1)
21 (492* — 9823 — 2027 + 69z — 18) 19
522 (x+1)(-2+2z) (x —1)2
13 (960425 — 288124 + 191192 + 97822° — 15741 2® + 6048 2 — 756) x12
5023 (=24 2z) (-14+22z) (z+1) (x — 1)3
+ 13 (50421 2% — 151263 25 + 107203 2* + 37699 2® — 71843 22 + 27783z — 3402) X1 4
12524 (. + 1) (-2 + z) (z — 1)*

x15 _ 14

Appendix: Deciding when a homogeneous polynomials admits linear factors

If A is a ring, we denote by A[Xq,..., X,]m the space of homogeneous polynomials of total degree m
in the variables X;. Let P € C[t1,...,ts][X1,.-., Xn]m be homogeneous of degree m in the variables
X;. In this appendix, we show how to compute potential values of the parameters t; such that P
(then viewed as a homogeneous polynomial in C[X71,...,X,]) admits a linear factor. The subproblem
relevant in this paper is the following: Let P = )" ¢; P, where P; € C[X1, ..., X,]m- Decide for which
values of the t; the polynomial P admits a linear factor.

This problem is part of the general problem of absolute factorization of polynomials. For the latter,
the reader may consult Ragot (1997) where several methods and abundant references are given.

A1l: BRILL'S EQUATIONS

Completely factorable polynomials of degree m form a Zariski closed set. The defining equations, the
Brill equations, are homogeneous equations of degree m that can be computed (Brill, 1898, Gelfan’d,
Kapranov, and Zelevinski, 1994). This can be used (Singer and Ulmer, 1997) to select the completely
factorable semi-invariants.
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A2: COMPLETE FACTORIZATION OF NON-PARAMETRIZED POLYNOMIALS

If there are no parameters in P, then many methods exist (Hohl, 1995, Kobayashi, Fujise, and Fu-
rukawa, 1988, and Ragot, 1997, for another method and references). We outline below a method that
seems, from our experience, to be the most interesting. The tools and results are similar to the ones
that are used in the three papers mentioned above.

Let C be a perfect field (usually C is @ or a finite extension of @).

DEFINITION 4.1. Let P be a polynomial of C[Xy,...,X,]m, of degree d > 0 in X;. A n — 1-tuple
(az,...,a,) of C" ! is called a non critical value for P in X, if the polynomial P(T,az,...,a,) is
square-free and of degree d. This implies in particular that all roots of P(T,as,...,a,) are simple.

Remark : The existence of such a non-critical value for P implies that P is square-free.
From now on, let Z denote the multi-variable X3,..., X, .

LEMMA 4.4. Let P be a homogeneous square-free polynomial of C[X1, X2, Z]m , of degree d > 0 in

. Assume that P is of degree m in Xs, and let (1,0,...,0) be a non critical value for P in X, .
Denote by p(T) the polynomial P(T,1,0) and let a be a root of p(T). Then P(X; + a Xy, Xs,2Z) is
of degree m — 1 in Xo.

PROOF. Let P(X;,X3) = P(X1,X>,0). It is a homogeneous polynomial of C[X;, X»]. Write
d
P =X b X{ XS
=0

It factors in C[X71, X2] as

d
bx e H(Xl —a; X>)

i=1
where the a; , with ¢ from 1 to d, are the roots of p(T') . Hence

d
P(X) 4+ aXa, Xo) =bX" dH (X1 4 (@ —a;) Xa) .
=1

The roots of p(T) are simple, so a —a; = 0 for one unique 4, which proves that P(X1+a Xy, X») is of
degree m — 1 in X . It is also true for P(X; + a X5, X5, Z) , since P(X; + a Xo, X>5) is its evaluation
inZ=0.0

PROPOSITION 4.1. Let notations and assumptions be as above, and let PT(Xl,Xg,Z) = P(X; +
T X2, X2,Z); then P admits a linear factor in C[X1, X2, Z] if and only if there exists a root o of p

6m 1
such that
oxXy

Py
—= is a linear factor of P, in C(a)[X1,Z].

PROOF. Let L = X1+a Xo+) ;5 ¢; X; be alinear factor of P and let C' be the field of its coefficients.
Denote by r the degree of C' over C'.

The polynomial L is absolutely irreducible and by theorem 1.2.2 of Ragot (1997), F = Normc: ¢ (L)
is an irreducible polynomial of C[X1, X2, Z]. It is clearly of degree r, and it is a factor of P. The
polynomial F(T,1,0,...,0) is a factor of p(T), it is hence square-free.

On the other hand, F(T,1,0,...,0) = Normcr/c(L(T,1,0,...,0)) = Normci;c(T + a), and by
lemma 1.2.1 of Ragot (1997) (or theorem 2.1 of Trager (1976) extended to perfect fields), Norme: o (T+
a) is a power of an irreducible polynomial of C[T].

This implies that F(T,1,0,...,0) is an irreducible polynomial of degree . Let & = —a; then « is of
degree r and C' = C(a).
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Hence,

L=Xi—aXs+ ) ci(a)X;
i=3
where the ¢;’s are polynomials with coefficients in C'. 3 } 3
Let P=L-Q,then Py = Ly-Qq = (X1 + X1 5 ¢i(a) X;) - Qo - Now P, , and then @, are of degree
m — 1 in X, (lemma 4.4) and so

om P, cla)- | X +ic (a) X
A vm—1 — . 1 i il -
09X, ' i=3

Conversely, if X; + 31, ¢i(@) X; is a factor of P, then X; —a Xo + Y1 5 ci(a) X; is a factor of P.
O

This suggests the following fast algorithm to check whether a given square-free polynomial has linear
factors (and compute them as a byproduct).

After maybe a linear change of variables! we may assume that P satisfies the hypotheses of proposition
4.1. Form P, and L, as in proposition 4.1. Then the corresponding L is a factor of P if and only if L,
divides all coefficients of powers of X5 in P,; the latter conditions are easily stated via resultants or
even Euclidean divisions and, together with the relation p(a) = 0, they yield a system of polynomial
equations for a: our polynomial P has a linear factor if and only if the latter system is consistent.

A3: COMPLETE FACTORIZATION OF PARAMETRIZED POLYNOMIALS

The above method can be adapted to polynomials depending on parameters, although the conditions
that P be square-free and that (1,0,...,0) be non-critical may induce some nuisance (non-linear
branchings); if one avoids the branching, then the algorithm is incomplete but yields an interesting
heuristic.

The following straightforward method can also be used, without any restrictions on the parameters.
Write L = X1+, ¢; X;. We want conditions for L to be a factor of P. Let R := resultant(P, L, X;) =
P(—Y 1 ,¢iX;) (note that R = P(— .7 , ¢, X", Xs,..., X,)). Of course, there is a linear factor if
and only if R is the zero polynomial. The coefficients of R depend on the ¢; and the ¢;; equating all
these to zero yields a polynomial system that we solve with any available method (see e.g Cox, Little,
and O’Shea (1992) for an introduction to these).

In our specific problem, the system is linear in the #; and non-linear in the ¢; so we can also apply the
methods of Sit (1992) for solving it.

Surprisingly, this simple method is quite satisfactory in practice and can be faster than (our imple-
mentation of) the Brill equations. We may interpret this experimental fact as follows. Using the Brill
equations is like solving the system that we would obtain by first eliminating the ¢;; however, here,
it may be that another solving strategy is better (e.g because of the linearity in the ¢;) so it could
compensate for the fact of adding the extra variables c;.

A4: DECIDING WHEN A POLYNOMIAL IS AN k-TH POWER

Let P be of the form P = )" t;P; where the P; € C[X},...,X,] are homogeneous of degree m. After
a linear transformation we may assume that the degree of P in X; equals m.

Assume that P = Q*. Let L be the coefficient of X{®. We need to distinguish two cases: After
substituting values in C for the t; either L vanishes or L remains non-zero. First we compute under
the assumption that L vanishes. So we have a linear relation L = 0 between the parameters ¢; (P is
linear in the ¢;). We use this relation to eliminate one of the ¢; and then apply recursion.

T The condition on a change of variables to be such that P satisfies the hypothesis of proposition 4.1 are easily seen
to form a Zariski closed set so “almost any” change of variables will do.
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Afterwards we may assume that L does not vanish. Because P is homogeneous in the ¢; we may then
assume that L = 1. We use this relation to eliminate one of the ¢;. Then P is a monic polynomial in
X1 with coefficients in C[ty,...,ts, X2,...,X,], and the degree of @ in X; is d = m/k. Write Q =
E?:o q; X} where g; = 1. Taking the coefficient of X"~ on both sides of the equation P = Q* (the co-
efficient on the right-hand side is kgq_1) we find ¢4 1 € C[t1,...,t5, X2, .., X,]. Repeating this for the
next coefficients X{”*Q,Xl’”*, e ,le’d we determine ¢4—2,94—3,---,490 € Clt1,...,ts, Xo2,..., Xy].
Then we can compute P — Q* and equate all coefficients with respect to X7,..., X, to 0. This gives
a set of polynomial equations in the parameters t;. Solving it gives the values of ¢; for which P is a
k-th power.
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