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Abstract

We consider the problem of computing the monic ged of two polyno-
mials over an algebraic number field L = Q(ay, . - . , a,). Encarnacion,
Langemyr and McCallum have already shown how Brown’s modular
GCD algorithm for polynomials over Q can be modified to work for
Qa).

Our first contribution is an extension of Encarnacion’s modular
GCD algorithm to the case n > 1 without converting to a single field
extension. Our second contribution is a proof that it is not necessary
to test if p divides the discriminant. This simplifies the algorithm; it
is correct without this test.

Our third contribution is the design of a data structure for repre-
senting multivariate polynomials over number fields with multiple field
extensions. We have a complete implementation of the modular GCD
algorithm using it. We provide details of some practical improvements.

Our fourth contribution is a generalization of the reduced discrim-
inant to the case n > 1. Although not used by our algorithm, it is
useful for other algorithms, for example for the computation of the
algebraic integers.
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1 Introduction

We recall the relevant details of the so called modular GCD algorithm first
developed by Brown in [3] for polynomials over Z and then by Langemyr
and McCallum in [6] and Encarnacion in [4] for polynomials over L = Q(«),
which we shall generalize to L = Q(a, ... ,ay). First let us fix some nota-
tion.

We denote the input polynomials by f; and fo, their monic by g. The
cofactors are the polynomials f1/g and fa2/g.

If f € Q[z] then let the denominator den(f) be the smallest positive
integer such that den(f)f € Z[z]. See section 2 for the definition of den(f)
if f € Qai,...,on)x]. The associate f of f is defined as f = den(g)g
where g = monic(f). Here monic(f) is defined as lc(f) 1 f where Ic(f) is
the leading coefficient of f. Define the semi-associate f as rf where r is the
smallest positive rational number for which den(rf) = 1.

Computing the associate f is useful for removing denominators, but
could be expensive if lc(f) is a complicated algebraic number. So we pre-
process the input polynomials in our algorithm by taking the semi-associate
instead. If lc(f) € Q then the two notions are the same up to a sign:

f=+f<=lc(f) €Q

Examples: If f = 22—2/3 then f = f~= 3z—1. fa=+2and f = —az+1
then f = f, monic(f) =z — «/2 and f =2z — .

The modular GCD algorithm computes the monic ged g € L]z] of f; and
fo. It does this by reducing f1, fo modulo one or more primes and calling the
Euclidean algorithm mod p for each of these primes p. If p is a good prime,
the Euclidean algorithm mod p returns g mod p. To reconstruct g from these
modular images, one can either try to construct a integer-multiple of § or
one can use rational reconstruction (see Wang [9]) to construct g directly.
If the former approach is used, one needs to know in advance some positive
integer v that is divisible by den(g). If one follows this approach then an
important difficulty is to determine a good value for . For n = 0 one may
take -y to be the ged of the integers lc(f1), 1c(f2). But a priori bounds for y
are often too pessimistic, especially when n > 0 when it includes a bound for
the defect. Asin Encarnacion’s algorithm we will use rational reconstruction
since it is generally superior because it avoids this problem. See section 1.5
for other advantages of this approach. The following definition illustrates
the various problems of the modular GCD algorithm.



Definition 1 Let f1, fo € L[z] and g be their monic ged. We will distinguish
four types of primes.

e lc-bad primes. Let my,... ,m, be the minimal polynomials of the field

extensions ad,...,on. If any leading coefficient of fa,m1,... 7y
vanishes mod p then we call p an lc-bad prime.

Fail primes. If p is not an lc-bad prime, and the Fuclidean algorithm
mod p returns “failed”, then p is called a fail prime.

Unlucky primes. If p is not an lc-bad prime nor a fail prime, and if
the output of the Euclidean algorithm mod p has higher degree than g,
then p s called an unlucky prime.

Good primes. A prime p is called a good prime if the Fuclidean al-
gorithm mod p returns g mod p. Theorem 1 in section 2 says that all
primes that are not lc-bad are either fail, unlucky or good.

Remarks:

1.

Our definition of lc-bad prime is not symmetric in fi, fo. It could
be that p is lc-bad for f1, fo but not lc-bad for fo, f1. In that case,
because of how we set up the algorithm, we should either: not use p,
or: interchange fi, fo mod p before calling the Euclidean algorithm
mod p.

Our definitions are not the same as the standard definitions in [3]. For
example, it is possible that the Euclidean algorithm mod p fails even
if the monic ged of f; mod p, fo mod p exists and equals g mod p. We
call such p a fail prime and not a good prime. This distinction is not
necessary if f1, fo € Q[z] where there are no fail primes.

If p | den(g) (in the standard definition these primes are called bad
primes) then g mod p is not defined and so p can not be a good prime.
According to theorem 1, p must then be either lc-bad, fail, or unlucky.

Minimal polynomials are monic so the leading coefficients of 71, ... , My,
are den(m1),... ,den(m,) € Z. However, lc(f2) is in general not an
integer but an algebraic number.

It is very easy to tell if a prime p is lc-bad or not, but we can not tell
in advance if p is fail, unlucky, or good. So we will end up calling the
Euclidean algorithm mod p with fail, unlucky, and good primes but
never with Ic-bad primes.



1.1 lc-bad primes

If fi =b5x+1, fo =5z —1 and p = 5 then p satisfies our the definition of an
lc-bad prime as well as the definition of a good prime. However, there are
good reasons not to use any lc-bad prime. Take for example f; = fo = bz+1.
Also, the proof of theorem 1 requires that p not be lc-bad.

Another example is L = Q(a), fi,f2 € L[z] with ged g = 7 + o,
p =5, and the minimal polynomial of « is m = z° + z* + %w?’ — % Because
of preprocessing, in the algorithm we work with 7 = 52° + 52* 4+ 23 — 1.
Modulo p = 5 this becomes 23 4 4. If we used the prime p = 5, it is easy to
give an example f1, fo where the Fuclidean algorithm mod p returns ¢ mod
(5, &® + 4) which is z + 1. But, viewing « as a variable, g Z = + 1 mod 5.

For our algorithm, the best solution to the above problems is: never use
an lc-bad prime.

1.2 Fail primes

Fail primes are primes for which the Euclidean algorithm mod p tries to
divide by a zero divisor, in which case it returns “failed”. Take for example
fi =22 -1, fo = ax — a where a = 2Y/% + 5. Denote a mod p as a.
The Euclidean algorithm mod p will first try to make fs mod p monic by
multiplying it with 1/a@. But if N(a), the norm of a, vanishes mod p then
then @ is zero or a zero-divisor, and the computation of 1/a fails. In this
example N(a) = 53 - 59 so the fail primes are 53 and 59.

The reason that in our terminology 53 and 59 are called fail primes and
not lc-bad primes in the example (after all, the problem was caused by lc(f2)
mod p) is to indicate how these primes are discarded: We do not actively
avoid these primes, instead, they “discard themselves” when the Euclidean
algorithm mod p is called.

One can also construct examples where p is not le-bad, lc(f2) is a unit
mod p, but p still divides den(g) (occasionally such p can be unlucky instead
of fail). Take for example a with minimal polynomial m = 23+ 32% —462+1,

fi=a3 =222+ (202 +8a+ 2z —?+1la—1, fo=2°—-222 —z+1.

The monic ged is g =  — 9%042 — g—i’a - g—(l). The denominator is den(g) =
91 = 7-13. In this example, if p € {7,13} then p is not lc-bad and the
leading coefficient of fo (as well as of fi) is a unit mod p. Nevertheless,
p can not be a good prime because p | den(g). In this type of example p
must divide the discriminant. For this reason, Encarnacion [4] tests if the

discriminant is 0 mod p and avoids such primes. However, even without



the discriminant-test, the primes p € {7,13} would still have been discarded
at some point: The Euclidean algorithm mod p will calculate r3 = f; mod
(p, f2), try to make r3 monic and fail because the leading coefficient of r3,
namely, —20? + 8a + 3, is a zero divisor mod p.

Although one can generalize the discriminant-test to Q(ay, ... ,ay), see
section 3, our algorithm does not use it because it makes no difference for
the correctness of the algorithm. For an intuitive explanation see lemma 4
and for a proof see theorem 1.

1.3 Unlucky primes

Unlucky primes are not trivially detectable like lc-bad primes and do not
“discard themselves” like fail primes do, but need to be detected and dis-
carded nevertheless. Fortunately, Brown [3] showed how to do this in a way
that is efficient and easy to implement: Whenever modular gcd’s do not
have the same degree, keep only those of smallest degree and discard the
others.

As an example, take f; = 22+ (25 + D)z +3, fo =22~z -1, g =
z+ (/5 —1)/2. Then the Euclidean algorithm mod 2 will return z2 + z + 1,
so p = 2 is an unlucky prime. But if f; = 22+ V5 z + 1, f» and g the same
as before, then p = 2 is a fail prime.

1.4 Good primes

All but finitely many primes must be good. This is because if one would run
the Euclidean algorithm in characteristic 0, it would be a finite computation,
and so there can only be finitely many conditions on the primes and each
condition only excludes finitely many primes (see lemma 5 each condition
can be reduced to the form N # 0 mod p where N is some nonzero integer).

Of course we will not run the Euclidean algorithm in characteristic 0,
so we can not use this as a criterion to find good primes. To guarantee
correctness of the algorithm, just as in Brown’s algorithm, all we need to do
is to avoid the lc-bad primes, which is easy to do.

1.5 Motivation for the algorithm

The goal of this paper is to present an efficient modular GCD algorithm over
a field L that consists of multiple extensions over Q. Suppose the largest
numerator or denominator in g is ¢. To reconstruct ¢ by computing g mod
P = p; - pp, using primes p1,... ,pm, if we want log(P) = O(log(c)), that



is, if we want the number of primes used to be proportional to the size of
the coefficients in g, then we are forced to

1. Not use a primitive element to convert to a single extension, which is
expensive and can cause a blowup in the size of the coefficients. This
problem is well known, e.g. see [1].

2. Not invert lc(f2), which can also cause a blowup, and can also be more
expensive than computing g.

3. Use rational reconstruction, because vy can be much larger than den(g),
and the defect bound (usually the (reduced) discriminant) is generally
too large.

Encarnacion’s paper confirms each of these. As for item 1, his paper deals
only with a single extension, but he does illustrate that modifying that
extension (making oy an algebraic integer) is not efficient. But if modifying
one extension ¢ is not efficient, then modifying n extensions (replacing it
by a primitive element) is certainly not efficient.

In summary, Encarnacion gave the best known algorithm for a single
extension, and our goal is to generalize it to multiple extensions, without
using a primitive element because that could be devastating for the efficiency.
A technical difficulty is how to generalize the discriminant test, which we
did in section 3. It turned out, however, that this test is not necessary, it can
be omitted. So we not only generalize Encarnacion’s algorithm, we simplify
it as well.

In this paper we only treat univariate polynomials fi, fo € L[z], but our
implementation handles the multivariate case as well.

2 The Euclidean algorithm over a ring

Let aq,... ,a, be algebraic numbers. Denote L; = Q(a,... ,a;) and L =
L,,. Let d; be the degree of a; over (a1, ... ,;—1). The dimension of L as
a Q-vector space is dy := dy ---d,. A basis of L is:

n
M = {Haf" | 0 <e; <di}.
i=1

Let R be the set of all Z-linear combinations of M and let R; = lfzﬂLZ
Let m; be the minimal polynomial of «; over L;_1. The degree of m; is d;,
m; is monic (the leading coefficient is lc(m;) = 1) and m;(e;) = 0. The



coefficients of m; are in L; 1. Let [; be the smallest positive integer such
that the coefficients of I;m; are in R _1. Denote ]Fp = Z/pZ and l, =11 ---1,.

In general R is not a ring. For example, a; € R, but a ! is not in R unless
l; = 1. When a,b € R, to compute the product ab € L we have to replace
ai, ... ,a, by variables zi,... ,z,, then multiply a,b as polynomials, and
after that take the remainder modulo the polynomials mq(z1),... ,mp(2n)-
During this computation we only divide by l1,... ,l,. Hence, if k is a suffi-
ciently large integer, then l¥ab € R for all a,b € R.

If a € L then define the denominator of a as the smallest positive integer
den(a) such that den(a)a € R. Note that R, and hence den(a), depends
on the choice of a,...,a,. For example, if oy = /8 and a = %al then
den(a) = 2. For a € L one has a € R den(a) = 1, in particular
den(0) = 1. Define

R, = {a€ L |den(a)# 0 mod p} (1)
- {%|a€ﬁ,mEZ,m§éOmodp}. (2)
If a,b € L then den(ab) divides den(a)den(b)I¥ for some k. Hence, if p 1 I,

then R, is a ring. We will always assume that p does not divide I, so that
R, is a ring (if p | I, then p is an lc-bad prime). Denote

a
:Rpﬂ@:{g | a,m € Z, m # 0 mod p}.
Then R, is a Z(p)—module with basis M. Define
R = R,/pR,.

If a € R, then we use the notation @, or also a mod p, for the image of a in
R. If a € L, then (primes that divide I, are always excluded)

@ is defined <= a € R, <= p{ [.den(a).

If @ is defined we will say that a can be reduced mod p.
Now R is a ring and also an [F,-vector space with basis M mod p. We
can do the following identifications:

RPZR(X)ZZ(Z,), LZR@ZQ, and RZR@ZFP (3)

If a € L then a is a unit in R, if and only if both a and 1/a are in
R, (whenever we write 1/a it is implicitly assumed that a # 0). This is
equivalent to p t l,den(a)den(1/a). If a € L we will call a a unit mod p if
a € R, and @ is a unit in R. The following lemma shows that these two
notions are equivalent.



Lemma 1 The map a — @ is a ring homomorphism from R, to R. If
a € Ry then a is a unit in R, if and only if @ is a unit in R.

Proof: The first statement is true because R = R,/pR, and pR), is an ideal
in R,. If a is a unit in R, then a and 1/a are in R,, hence @ and 1/a are
defined, and since a — @ is a ring homomorphism one sees that m is the
inverse of @. Hence @ is a unit in R.

Conversely, assume @ is a unit. Then a # 0 so we can take b:=1/a € L.
To finish the proof we need need to show that b € R,. Take the smallest
integer k for which ¢ := bpF € R,. Since k is minimal, we have ¢ # 0 but
then ac is the product of a unit and a nonzero element in R and hence
nonzero. But ac equals abp* = pk so p* # 0, hence k =0, so b € R, and a
is invertible in R,,.

If f € L[z] then the denominator den(f) is defined as the smallest pos-
itive integer such that den(f)f € R[z]. Now f € R[] if and only if
p t den(f)l.. The polynomial f is the image of f in R[z], and is defined
if and only if f € Rp[z], in which case we will say that f can be reduced mod
p. Furthermore, if f and f have the same degree (when lc(f) is nonzero
mod p) then we will say that f reduces properly mod p. If p is not an lc-
bad prime it means that fi, fo can be reduced mod p, and that fo reduces
properly mod p.

Let 0 <4 <j <nanda € L;. Multiplication by a is an L;-linear map
% : Lj = Lj. The characteristic polynomial cpg (a) € Li[z] of a over the
extension L; : L; is defined as the characteristic polynomial of this linear
map. The trace Tr! (a) of a over L; : L; is the trace of 9 and the norm N} (a)
of a over L; : L; is the determinant of 1. Whenever we do not mention the
extension L; : L; it is assumed to be L : Q (so ¢ = 0 and j = n) in which
case we write Tr(a), N(a), cp(a). Now the integral closure of Z in L is

O ={a € L|cpla) € Z[z]}.

This is a ring (see [5]), and the elements of O are called the algebraic integers
in L. We will use the following notation for the integral closure of Z

Op ={a € L | cp(a) € Zy,[z]}-

Suppose a € L and m = den(cp(a)). Then by definition a € O, if and
only if m # 0 mod p. The characteristic polynomial of ma is in Z|z], hence
ma € O and hence

Op:{%\aeo,mez,m,%Omodp}. (4)
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Lemma 2 If0<i<j<nanda¢€ Op()L; then a is a unit in Op if and
only if Nij(a) is a unit in Op. In particular, a € O is a unit if and only if
N(a) € Q is a unit in Zy), in other words, both numerator and denominator
of N(a) are not divisible by p. The same is also true for Ry,.

Remark: If p { [, then R, C O, and the lemma implies that if a € R, and
1/a € Op then 1/a € Ry,

Proof: The L;-linear map 4 : L; — L; that corresponds to multiplication
by a is defined over O, i.e. the entries the matrix of ¢ are in O,. If Nij(a),
the determinant of 1, is a unit in O, then the matrix is invertible over O,,.
So then 9~ 1(1) € Op, so 1/a € O,. Conversely, if a is invertible in O, then
1) is an invertible linear map, so its determinant must be a unit.

Now N(a) = Ng(a) € Ly = Q and Q) Op = Z,) so the second state-
ment follows. The proof for R, is the same, although as always p must not
divide [, so R, is a ring.

Note that one can check if a € R, is invertible, and if so, compute its
inverse, with linear algebra over Z, or over its field of fractions Q. The
matrix of the system to be solved is the matrix of 1. The same also holds
for @ € R, whenever it is invertible, its inverse can be computed with linear
algebra over IF,. But instead of solving linear equations, we will use the
extended Euclidean algorithm to calculate inverses in R. However, this can
increase the number of fail primes because the calculation can fail even if @
is invertible. This is not a serious problem because the number of fail primes
will still be finite (see section 1.4).

In the following, let R be a commutative ring with identity 1 # 0. For
a univariate polynomial f € R[z] define monic(f) as follows: If f = 0 then
monic(f) = 0. If f # 0 and if the leading coefficient lc(f) € R of f is a
unit, then define monic(f) = lc(f)~'f. If f # 0 and lc(f) is not a unit then
define monic(f)="“failed”.

If f1, f2 € R[z] then the monic ged is defined as a polynomial g € R[z]
such that g = monic(g) and for every polynomial h one has: h | fi and
h | fo if and only if h | g. It is easy to show that if a monic ged of fi, fo
exists, then it is unique. The well-known Fuclidean algorithm over R works
as follows.

Euclidean algorithm.
Input: a list (f1, f2) of two univariate polynomials with coefficients in R.
Output: Either a message “failed” or the monic ged.



1. Set ry = f1, ro = fo, 1 = 2.

2. If ro = 0 then set 1 = monic(ry). If ry = “failed” then return “failed”.
If r; = 0 then return r;_1.

Set r; = monic(r;). If r; = “failed” then return “failed”.

Set r;4+1 to be the remainder of r;_; divided by ;.

AR AN B

Set © =7+ 1 and go back to Step 3.

Remark on a shortcut: Suppose that r; in step 3 is a nonzero constant.
Some implementations of the Euclidean algorithm over a field will then take
a shortcut: stop the computation, the output is 1. Over a ring we should
not use this shortcut because that would invalidate lemma 3 below. This
plays a role because our algorithm will not test if p divides the discriminant.
We may only use the shortcut if r; is a unit. For 7; € R we can test that
efficiently by computing N(7;) mod p (see lemmas 1,2).

Denote GCDx (f1, f2) as the output of this algorithm. If GCDx(f1, f2) #
“failed” then the sequence of polynomials 71, ... , 7y, withry, 1 # 0, ry, =0,
is called the monic polynomial remainder sequence of f1, fo.

Lemma 3 If g = GCDR(f1, f2) and g # “failed” then the ideal (r;—1,7;) =
R[z]r;—1+R[x]r; remains the same during each step. In particular (f1, f2) =
(g9) which implies:

1. There ezist s,t € R[z] such that g = sf1 + tfa.
2. f1 and fo are divisible by g.
3. g 1is the monic ged of f1 and fo.

Proof: When we make r; monic, we divide by a unit, which does not change
the ideal. In step 6 we increase 7 so we must show that (r;_1,7;) = (14, 75+1)
which is clear because r;;+1 is the remainder of r;_; modulo r;. Hence
(f1,f2) = (ri,m2) = (tm-1,7m) = (9,0) = (9)- So g € (f1,f2) which is
part 1, f1, fo € (g) which is part 2. Finally, every h that divides both f;
and f2 divides any element of (f1, f2) in particular it divides g. Since g is
monic it satisfies precisely the definition of the monic ged.

Remark: If GCD(f1, fo) # “failed” then the eztended Fuclidean algo-
rithm, which calculates g as well as s, ¢ will not fail either.
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Let d = GCDg(f1, f2) be the output of the Euclidean algorithm. If
all leading coefficients during the computation are units then the algorithm
succeeds, the monic gecd exists and equals d = ry,—1. If there is no monic
ged in R[z] then d = “failed”. If a monic ged g does exist then it is not
necessarily true that the algorithm will find it; the output d is then either
g or “failed”. A situation where the output is “failed” even when a monic
ged exists is the following:

Lemma 4 Suppose ptl, and fi, fo € Rplx] C Op[z]. Suppose a monic ged
g € Oplz] ezists and that g & Rylz]. Then GCDo,(f1, f2) = “failed”.

Remark: The lemma gives a hint that a discriminant test might not nec-
essary because if p is not lc-bad then the worst that can happen is that p is
fail or unlucky. Theorem 1 below shows that this is indeed true.

Proof: Since GCDg, (f1, fo) = “failed”, when we run the Euclidean algo-
rithm over R, we will encounter a leading coefficient in R, that is not a unit
in R,. But according to the remark after lemma 2, if @ € R, is not a unit
in R, then it is also not a unit in O, and hence the algorithm fails over O,
as well.

If the ring R in the Euclidean algorithm is a field L, then the output is
never “failed”, so GCDr(f1, f2) is always the monic ged of f1, fo € L{z].

Lemma 5 Suppose fi, fo € L[z] and r1,... ,rym € L[x] is the monic poly-
nomial remainder sequence. Suppose lci,... lcy,,—1 € L were the leading
coefficients that we divided by in steps 2 and 4. For all but finitely many
primes the following holds:

1. fi, f2 € Rp[z], and Icq,... ,lc—1 are units in R,.

2. 7r1,...,rm € Rplz] and 71, ... , Ty is the monic polynomial remainder
sequence of f1, fa.

3. p is a good prime which means: The monic gcd of f1, fo exists, will be
found by the Fuclidean algorithm, and equals § where g € L[z] is the
monic ged of fi1, fo.

Proof: Part 1 holds for all primes that do not divide any of the following;:
I, den(f1), den(f2), den(lc;), den(1/lc;) for i < m. Since these are finitely
many integers, all nonzero, we see that part 1 holds for all but finitely many
primes. The only divisions in the Euclidean algorithm are divisions by lc;, so
if the input is in Rp[z] and all Ic; are units in R, then all polynomials in the

11



GCDy(f1, f2) computation are in Ry[z]. Induction shows that 7,... 7,
is precisely the monic polynomial remainder sequence of fq, fo, so part 2
follows from part 1. Part 3 follows from part 2.

Since we will only run the Euclidean algorithm in R[z] for various primes
p, and not in L[z], we do not know the values of lc;. So the lemma does
not tell us which primes are good, it only says that all but finitely many
primes are good. We now investigate the relation between GCD%(f1, f2)
and GCDL(f1, f2) when p is not an lc-bad prime.

Theorem 1 Let fi1, fo € L[z] and let g € L[z] be the monic ged. Assume
p 1 liden(f1)den(f2), fo # 0 and lc(f2) Z 0 mod p, so p is not an lc-bad
prime. Let d = GCDy(f1, f2). If d # “failed” then

deg(d) > deg(g)-
Furthermore, if deg(d) = deg(g) then g reduces properly mod p and d =g.

Remark: The theorem says that if p is not lc-bad then p is either fail,
unlucky, or good. This implies that if lc-bad primes are avoided then the
modular GCD algorithm is correct.

Proof: Ic(f2) # 0 mod p, so if we assume d # “failed” then lc(f2) must
be a unit mod p, see step 4 in the Euclidean algorithm. There exist (see
lemma 3) sg,ty € Rp[z] such that

s0f1+tof2 =d.
Now take a monic polynomial dg € R[] such that d = dy. Then we have
sof1 + tofo = dp mod p.

We will apply Hensel lifting to increase the modulus p to a higher power of
p. Define (starting with i = 1)

hi = (si—1f1 +tic1fo — di_1) /" € Ry[7]

and let q;,r; € Rp[z] be the quotient and remainder of h; divided by dy (this
division works because dg is monic). Then define

§i=si-1 —p'aiso, 1o =tio1 —plaito, and dy =di_q + p'ri.
Then

§ifi +tif2 = d; mod p'tt.
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Now 3;,%; can have higher degrees than s;_1,#;_1. To remedy this, do the
following. For j € {1,2} denote f; 4 € Rp[z] as a polynomial whose modular
image equals f;j/d. Take q;so mod p, and divide it by fo4 € R[z]. This
division works because the leading coefficient of fs 4 is lc(f2) mod p, which
is invertible. Take g,r € R,[z] such that g, T are the quotient and remainder
of this division. Take g, r in such a way that they have the same degree as
q,7. Then define

si=s8i—1—p'r, and t; =t;_1 — p'(qito + qf1.a),
and we still have
sifi +tife = d; mod p'™

We can now increase ¢ and do the next Hensel step, and continue in this way.
Because deg(r) < deg(f2.4), the degree of s; will be bounded as 4 increases.
The degrees of ¢; and d; are also bounded. So when i — oo, the limit 3, %, d
of s;,t;,d; exists in the ring Rp[m] defined below.

Denote Zp as the ring of p-adic integers. Zp is the completion of Z ;) with
respect to the p-adic valuation norm. Let (@p be the field of p-adic numbers,
the field of fractions of Z Denote pr =R, Rz, (@p =L ®q @p This is
in general not an integral domaln because mlnlmal polynomials can become
reducible when one replaces QQ by a larger field Qp Denote &, = R, ®Z(p)Z

Now R, and L can be viewed as subrings of L, and

R,=R,(\L (5)

After doing infinitely many Hensel steps we find §,%,d € Rp[z] such that
§fi +ifa=d

Now d is monic and deg(d) = deg(dy) = deg(d) because the pir;, i =

1,2,..., that we added to dy have smaller degree than dg. The polynomials

f1, f2 are elements of L[z]g C I:,, [z]g. Hence 3f1 + Lfo, which equals d, is a
also an element of Ly[z]g. But d # 0 so

deg(d) = deg(d) > deg(g)-

If the degrees are the same then d= g because g is the only monic element
of Ly[z]g of that degree. Equation (5) then implies g € Rp[z] (recall that
d € Ry[z] and g € L[z]). So g can be reduced mod p. Hence g reduces
properly mod p because it is monic. The theorem now follows because d
equals d mod p, which equals g mod p.
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3 The reduced discriminant

One has l1a; € O. The degree of mo viewed as polynomial in «; is less
than d; and so lfl_lmg is a polynomial with coefficients in . The leading
coefficient is 11111—112 and hence lfl_llgag € O. Repeating this we see that
there exists a positive integer k such that v, := I¥a; € O for all i. Then
Zlyi,--- 5] € RNO. - -

An element D € L is called a defect of R if DO C R. The discriminant
of Z[y1,... ,vs] is an example of an integer defect (i.e. a defect in Z). In
this section we will present a defect D € L that is generally not an integer.
The following lemma shows how one can one can obtain an integer defect
from a defect.

Lemma 6 If D € L is a defect then [*den(1/D) is an integer defect for
some integer k.

Proof: Denote d = den(1/D) and a = d/D, then a € R by definition of
den(1/D). Now

dO = aDO C aR
and this, multiplied by ¥ for some , is a subset of R.

Lemma 7 Let p be a prime that does not divide l,. Then R, C O,. If D is
a defect and D is a unit in Oy then R, = Op, so then R, is integrally closed.

Proof: R, is generated over Z, by ai,...,a,, and Zg) C O,. Since
I*a; € O C O, and L, is a unit in O, we have o; € O, and hence R, C O,.
If D is a defect then DO C R and hence DO, C R,, see equations (2)
and (4) in section 2. But if D is a unit in O, then DO, = O, so the lemma
follows.

Lemma 8 Suppose a defect D is a unit in Op, p t I, and fo € Rp[z].
Suppose that lc(f2) is a unit mod p. Then any monic factor g € L[z] of fa
is in Rplz].

Proof: The leading coefficient of f, € R,[z] is invertible, and according to
lemma 7 the ring R, is integrally closed. Then we can apply Gauss’ lemma:
Any monic factor g € L[z] (L is the field of fractions of R)) of fo is in Rp[z].

Remark: One can simultaneously test if both D and lc(f2) are units by
testing if lc(f2)D is a unit, which can be done by computing N (lc(f2)D)
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mod p, see lemma 2 and the remark after lemma 9. If so, then lemma 8 says
that any monic factor g € L{z] of f, is in Rp[z], in particular the monic ged
of fi, f2 is in R,[z] where f; is any other element of L|z].

Recall that m; is the minimum polynomial of «; over L; ;. Define
A;:=ml(e;) €EL; and A=Ay A, €L
where m/ is the derivative of m;.
Lemma 9 There is an integer k such that D :=I*A is a defect.

Remark: Note that A is a unit in O, if and only if D is a unit in O,
because we always assume p { [,. Since A is the product of Aq,... , A, € O,
it follows that A is a unit iff each A; is a unit. This leads to the test
below. In the test, to save computation time, we delay multiplying with A;
until we reach an expression that does not contain @;41,...,a,. We also
avoid multiplications in characteristic 0 (so we do not compute A € L).
To compute N} ,(a), replace ; by a variable z;, and eliminate this variable
from a by computing res,, (m;(z;),a). Note that this can introduce additional
fail primes, because the resultant algorithm mod p, which is very similar to
the FEuclidean algorithm mod p, fails when it attempts to divide by a zero
divisor.

Test if D is invertible mod p: Assume p{ /..

Step 1. Let a = A, mod p.

Step 2. If we want to test lc(f2) as well then multiply a by lc(f2) mod p.
Step 3. Let i = n.

Step 4. Set a = N} (a) mod p. If “failed” then return “failed”.

Step 5. If a = 0 then return “not invertible”.

Step 6. Set 1 =4 — 1. If : = 0 then return “invertible”.

Step 7. Multiply a by A; mod p, and go back to step 4.

Proof of lemma 9: Denote O(i) = O[] L; and

ez+1
Zo aiht - aln

where the sum taken over all tuples e;;1,... en w1th ej < dj. So (9( ) is a

O(i)-module generated by monomials a;'' - . In partlcular O00)=R
and O(n) = O. Now lemma 10 below shows that

d;—1

AR O Z(’)z—l
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for some integer k; and hence
AR O@1) C O - 1).
Then
Ay Al O(n) € O(0)

and the lemma follows.

The proof of the following lemma comes from [2] (see also page 119 in [5]).

Lemma 10 Let K be a number field, o algebraic of degree d over K and
L = K(a). Denote Ok and Oy, as the algebraic integers in K and L. Let
m be the minimum polynomial of o over K. Let | be a positive integer for
which la is an algebraic integer. Then there exists an integer k such that
for every B € Op, there exists a polynomial g of degree < d and coefficients
in Ok such that

*m' (@) = g().

Proof: Let I/ be a Galois extension of L and let o9, j = 1,... ,d be the
conjugates of a over L : K, i.e. {a(l), e ,a(d)} is the orbit of a under
the Galois group of L' over K. We may assume a(!) = a. Define S0,
j=1,...,d in the same way. Now set k =d — 1 and

d
o) = Y0 por O

— a(j).

The Galois group of L' over K only permutes the terms, hence g(z) is
invariant: g(z) € K[z]. Furthermore, each term is a polynomial in z of
degree d — 1 so the degree of g is less than d. Denote Oy, as the algebraic
integers in I'. Now ), 1a(9) € Op/. Furthermore

" xrf(zzj) = [[(tz —1a™) € Op/[a]
h#j

and hence g(z) € Op[z]( K[z] = Ok|z]. Now g(a) = BI*m'(c) and the
lemma follows.

Ifl., =1 (so ay,... ,a, € O) then we can generalize the reduced dis-
criminant from [2] to the multiple extensions case as follows:

reduced discriminant = rdisc(ay, ... ,a,) := den(1/A)
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(see lemma 6). Even though it contains the same prime factors, the reduced
discriminant can be substantially smaller than the discriminant, see [2]. This
is useful for algorithms for computing O because such algorithms factor the
(reduced) discriminant, and factoring integers can be very expensive. First
factor rdisc(aq, ... ,@;), where ¢ < n because it divides rdisc(ay, ... ,ay).

Example: Let a; = /5, ay = v/3a; + 5, and L = Q(ay, ). The discrim-
inant of Z[ay, o] is —21953, rdisc(ay, a) = 2*5, and the smallest integer
defect is 2. Now L also equals Q(cp). The discriminant of Z[ay] is —203%53,
rdisc(az) = 24325 and the smallest integer defect is 6. The discriminant of
Z[oy] is 20, rdisc(ag) = 10 and the smallest integer defect is 2.

If the ged of fi, fo is a small expression, we would like to find it quickly.
However, 1/A € L could be a large expression, especially when there are
multiple extensions. So computing rdisc need not be cheap; it is a compu-
tation we want to avoid. But if rdisc (or some other integer defect) is not
known, then for computing the ged of fi, fo from modular ged’s, we must
reconstruct rational numbers, not integers, from their modular images. It
seems that our objective, to find the gcd quickly whenever it is small, forces
us to use rational reconstruction.

The remark after lemma 9 gives a very fast way to test if p divides
the (reduced) discriminant. We found experimentally that this test has
an insignificant impact on the total running time. However, according to
theorem 1 it is sufficient to avoid lc-bad primes. So the discriminant-test
can safely be omitted.

4 Implementation

In this section we describe our implementation of the modular GCD algo-
rithm for multivariate polynomials over L. There are several multivariate
“modular” GCD algorithms over Q that one may consider extending to work
over L. We have completed an implementation of Brown’s algorithm (see
[3]) which uses rational reconstruction and trial division (see [7]), and have
begun work on an implementation of Zippel’s algorithm (see [10]).

We will first give details of the data structure we use for multivariate
polynomials over L. The data structure is designed to make the modular
GCD algorithm fast. It supports n > 0 extensions over Q and F,. We
have encountered three bottlenecks on real problems, namely, (i) the trial
divisions, (ii) rational reconstruction, and (iii) extensions of low degree. We
will address (i) and (ii) in this paper. Problem (iii) is addressed in [7].
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To fix notation, recall that L = Q(«,... , a,) where «; is algebraic over
Li 1 = Qau,... 1), and m;(z;) € Lj_1[z] is the minimal polynomial
for o; over L;_y. Let R = L[z1,... ,zg]. Let fi1, fo be non-zero polynomials
in R and let g be their ged.

As part of the preprocessing of the input polynomials, we compute f;
and fg, that is, we cancel any rational scalar before proceeding. We do not
compute fi or fo which can cause a blowup. Let ic(f) denote the integer
content of a polynomial. This is the rational constant ¢ such that f/c = 1,
the semi-associate of f. For example, if f = 10/3z2 — 15 then ic(f) = 5/3
and f =222 — 9.

4.1 A Data Structure for R

We have chosen the recursive dense representation for our polynomials. In
[8], Stoutemyer asked the question “Which polynomial representation is
best?” (for a general purpose computer algebra system). Based on his data,
he concluded that the recursive dense representation was best overall, a con-
clusion that ran contrary to the general belief that one must use a sparse
representation. In our context, where we are looking at the modular GCD
algorithm over L, we have additional reasons to choose this representation.
Our input polynomials to the modular GCD algorithm are multivariate poly-
nomials in z1,... ,x and 21, ... ,2,. Because the modular GCD algorithm
is recursive and because the extensions must also be defined recursively if
they are dependent, a recursive data structure is a natural choice. Thus we
think of the polynomials being in Q[z1|[z2]...[2k][%n][Zn—1].--[£1]- Moreover,
because we compute the GCD modulo machine primes p1,p2, ..., most of
the real “work” takes place in the last variable, i.e. in the ring FF,[z;]. For
efficiency, we want to represent polynomials in [F,[z] as dense vectors of
machine integers. We now describe the data structure <poly> using a BNF
notation with some examples.

<poly> ::= POLYNOMIAL( <ring>, <data> )

<ring> ::= [ <char>, <variable>, <exts> ]

<char> ::= <nonnegative integer>

<data> ::= <rational number> | <immediate integer>
| vector(<data>)

<vars> ::= vector(<variables>)

<exts> ::= vector(<data>)

The characteristic of the ring is encoded by <char> and <exts> is a vector
of the minimal polynomials. Thus the ring for the polynomial is encoded
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in the data structure. Since this information is identical for polynomials in
the same ring it should be stored once so that the cost of storing the ring
information is one word.

We impose the following important restriction which is the key idea of
the recursive dense representation; a zero coefficient at any level in the data
structure is represented by the immediate integer 0. This means that every
algorithm must treat 0 as a special case. This exceptional case does not
bother us greatly because in the implementation of most operations 0 is a
special case anyway.

The bottom of the data structure is a word of storage which is either
a pointer to a rational number or an immediate integer. In our Maple
implementation, immediate integers are signed integers of 30 bits in length,
hence, one bit is used to distinguish them from pointers.

In the examples below, vectors are indicated by square brackets.

Example 1: The representation of the polynomial z* — 1022 + 1 in charac-
teristic 0 and characteristic 3 is

POLYNOMIAL( [0,[=z],011, [1,0,-10,0,1] )
POLYNOMIAL( [3,[z],[1], [1,0,2,0,1] )

The empty vector [] indicates that there are no extensions and the data
in both these examples is a vector of machine integers. Allowing one word
as a header word for the POLYNOMIAL structure and for each vector, the
storage requirement for both polynomials is 16 words (count one word for
POLYNOMIAL and each [ in the above). Since the ring information can be
shared between polynomials over the same ring, a more accurate count is
that 9 words are required. From now on we will not count the storage for
the ring.

Example 2: The representation of the polynomial z3 — zx + 22 in Q[2][z]
and Q[z]/ <22 —2>is

POLYNOMIAL( [O,EX,Z],[]], [[03031]’[0’_11301[1]] )
POLYNOMIAL( [0, [x,2],[[-2,0,111]1, [[21,[0,-1]1,0,[11] )

In the data structure, polynomials are reduced modulo the m; on input.
The storage requirement is 17 and 15 words respectively.

Example 3: The recursive dense data structure is not sparse, but neither is
it truly dense. On sparse polynomials, the storage requirement is still very
good. The additional computation with zero coefficients is very low because
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for arithmetic operations, adding, subtracting and multiplying 0 does not
require any explicit work. Consider the sparse polynomial 2x™+3y"+42"+5
where n = 3. Our data structure for this polynomial is

POLYNOMIAL( R, [[[4,0,0,3], O, O, [2]1], O, O, [[1111)

This is 24 words (not counting the storage for the ring). In general it is
15+ 3n words. One of the main sparse representations for polynomials that
is used in AXIOM is a linked list of pairs where each pair is a pointer to a
coefficient and a pointer to a monomial where the monomial z'y’ z¥ would
be stored as an exponent vector [i,7,k]. Thus each non-zero term of the
polynomial requires 2 + 2 + 4 = 8 words of storage. On our example this
would be 35 words, allowing 3 words for the top level of the data structure.
Of course, this is not truly a sparse data structure because the monomial
representation is not sparse. Nevertheless, on this example, the recursive
dense representation uses less storage for n < 6.

Example 4: Multiple extensions are handled in the obvious way. The
polynomial z + /1/5 y+ /1 + 1/1/5 is represented by

PDLYNOMIAL([O: [X’y:22121]: [[[_1’_11303[1]]’ [_1’ O’ 5]]]’
(ffo, 111, [r0,1111, CC[1111D)

where the two minimal polynomials m1(z1) and mo(2z2) have been replaced
by m1 and ms. We remark that although this makes the test for whether
a prime p in the modular GCD algorithm divides den(m;) easy, and makes
reduction of the minimal polynomials modulo p easy, after having reduced
the minimal polynomials modulo p, one should make them monic over [F,
so that we do not repeatedly invert their leading coefficients.

We end with some remarks about the data structure.

e The data structure supports multivariate polynomials over Q and I,
with n > 0 simple algebraic extensions. Our implementation of the
GCD algorithm also supports the finite field/ring case, i.e. multivari-
ate polynomials over finite fields or rings with n > 0 extensions. The
main difficulty there is how to deal with small finite fields.

e The representation of an element @ in I, is POLYNOMIAL([p, [1,[1],2)
which requires 3 words of storage (not counting the ring information).
For example, the lc operation returns such an object. In the modular
GCD algorithm, most of the time is spent working with vectors over
F, and Q. Special code is included for the case of F,; it does not
explicitly create constant polynomials.
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4.2 Rational Reconstruction

If one naively applies rational reconstruction after computing the GCD mod-
ulo each prime p, the cost of the rational reconstruction may become the
bottleneck asymptotically as well as in practice. Suppose ¢ = £+ a and a is
an integer of m digits in length. Then we need O(m) primes to reconstruct
g. The cost of Chinese remaindering will be O(m?) but rational reconstruc-
tion will cost O(m3). The reason is that Chinese remaindering can be done
“incrementally” after each prime in O(m) time but, as far as we know, ratio-
nal reconstruction cannot. We resolved this problem by attempting rational
reconstruction after 1,2,3,5,8,13,... primes. This ensures that the asymp-
totic cost of rational reconstruction is no more than Chinese remaindering.

4.3 Trial Division

Another bottleneck of the modular GCD algorithm is the trial divisions. If h
is the result of rational reconstruction then we must check that h|f; and h|fs
to show that h = g. Because these trial divisions can be expensive, we have
considered abandoning trial divisions altogether in favor of a probabilistic
result, that is, check that result of rational reconstruction agrees, say, with
the GCD modulo five additional primes. However, in many applications
where one computes GCDs, for example, normalizing a rational function,
one wants to compute also the cofactors fi/g and f2/g, hence, the divisions
cannot be avoided.

For example, if Trager’s factorization algorithm is used to factor a poly-
nomial f € L[z] where k = [L : Q], one computes g; = GCD(f, f1) where f;
is an irreducible polynomial over Q and f; is the norm of a factor of f. Since
the degree of g is known to be d = deg f1/k in advance, it is not hard to see
that if the modular GCD algorithm constructs a polynomial h of degree d
and h|f then h must also divide f; and hence h = g;. Since one also wants
compute the cofactor f/g; in Trager’s algorithm, but not the cofactor fi/g1,
then the latter trial division, which is usually the larger in degree, may be
avoided. This simple observation can make a significant improvement.

We can use either classical division or a modular division algorithm. If g
is small in size compared with fi and fs then classical division is asymptot-
ically faster. On the other hand, if g is of similar size to its cofactors fi1/g
and fa/g then a modular division algorithm will be asymptotically faster.
When dividing f; and fs by h over L using the classical division algorithm,
a significant improvement (we saw a speedup of a factor of 10 on one large
example) can be obtained if one avoids fractions as much as possible. Notice
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that the leading coefficient of A in the modular GCD algorithm is an integer.
If also I; = den(m;) = 1, which is often the case, then the entire division
algorithm can be completed using only integer arithmetic. If I; # 1 for some
17 then the division algorithm can still be modified to avoid fractions.

We will describe how to do this for univariate polynomials with one field
extension with minimal polynomial M. We will call the algorithm FFTDIV
(fraction-free trial division).

Algorithm FFTDIV
Input: A,B € Q[z,2], M € Z[z]: B#0,1c; B € Q, and degM > 1.
Output: Q@ = A/B mod M if B|A mod M; FAIL otherwise.
Set m = deg, A, n = deg, B and d = deg, M.
Set i =ic(A) and a = A/i,.
Set iy = ic(B) and b = B/iy.
Set I, =lcy b and [, = lc, M.
Set s=1,r =a, and ¢ =0.
While r # 0 and m > n do
Set I, = lc, r. Note that [, € Z[z].
Set ¢ = GCD(ic(l,.),ly) and I, =1, /g.
Set s = (Ip/g) X s.
Sett =1, x ™ ™ and g = g+ t/s.
Set r = (Ip/g) xr —t X b.
Set p = 1.
While r # 0 and deg, r > d do
Set I, = 1c, r. Note that I, € Z[z].
Set ¢ = GCD(ic(ly),ly) and I, =1, /g.
Set t = 1,297 and p = p X (In/g)-
Set r = (I, /g) xr —t x M.
Set s = s X p.
Set m = deg,, r.
If r # 0 then output FAIL.
Set @Q = (i4/%) X ¢ and output Q.
The algorithm first makes the inputs A and B primitive over Z. We claim
that each time round the outer loop r and ¢ satisfy a = bg + ¢r for some

scalar ¢ € Q and r has integer coeflicients. The outer loop reduces the degree
of the remainder r in z. In the outer loop we multiply r by the smallest
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possible integer so that lc; 7, a polynomial in Z[z], will be divisible by lcy b.
The inner loop then reduces the remainder » modulo M. In the inner loop
we multiply r by the smallest integer so that lc, r, a polynomial in Z[z], will
be divisible by lc, M. The integers s and p are multipliers. They keep track
of the integer factors of lc; b and lc, M, respectively, that r was multiplied
by so that the quotient ) may be correctly computed from gq.
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