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Liouvillian Solutions of Second Order Linear ODE’s:
The Problem

y ′′ + a1(x)y ′(x) + a0(x)y(x) = 0, ai (x) ∈ k

k is a differential field, e.g C (x), C (x , exp(x))

A solution y is called

1 Rational: if y ∈ k

2 Exponential: if y ′/y ∈ k

3 Liouvillian: if y can be presented by any combination of:
algebraic extensions, arithmetic operations, exp( ), and

∫
The problem is to compute Liouvillian solutions.
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Liouvillian Solutions of Second Order Linear ODE’s:
Algorithms

1 Kovacic, 1977, 1986

If a Liouvillian solution exists then ∃ solution of the form
y = exp

(∫
ω
)

with ω algebraic. Minimal polynomial of ω is
computed using semi-invariants and a recursive formula.

2 Ulmer & Weil, 1996

Compute minpoly ω from invariants (easier to implement).

3 Fakler, 1997, computes algebraic solutions y in nicer form:

Gives the minpoly of y instead of minpoly of ω.

4 Klein (1877) ... Berkenbosch, van Hoeij, and Weil (2002)

Write Liouvillian solutions as hypergeometric functions
composed with a function (called the pullback) in k.
Formulas for pullback given in B.H.W. using semi-invariants.
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L(y) := y ′′ + a1(x)y ′(x) + a0(x)y(x) = 0, ai (x) ∈ k

Write Liouvillian Solutions as H(f ) · exp
(∫

v
)

where H is a
Hypergeometric function from Klein’s table and f , v ∈ k.

Advantage: A more compact representation of the solutions.

Sketch of the Approach:

Invariants =⇒ The differential Galois group G (L) and v .

G (L) and Klein’s table =⇒ H.

a0, a1, v and a pre-computed formula =⇒ f .

Our contribution: Formulas to compute v and f using invariants.

Makes it easy to implement: need only rational sols of linear
ODE’s (and exponential sols of L itself, if L is reducible).

Available in Maple 10 and in Bernina.
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Solutions and Differential Galois Groups

L(y) := y ′′ + a1(x)y ′(x) + a0(x)y(x) = 0, ai (x) ∈ k

May assume a1 = 0.

To L is associated a diff. Galois group G (L).

G (L) is a group of 2× 2 matrices, acts on sol. space.

Discriminate between groups via computing semi-invariants
(Kovacic, Singer-Ulmer) or invariants (Ulmer-Weil)

Invariants are found by finding rational solutions (in k) of an
auxilliary operator: the symmetric power Symm(L).
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Invariants and the UW-Kovacic algorithm

L(y) := y ′′ + a1(x)y ′(x) + a0(x)y(x) = 0, ai (x) ∈ k

Assume L is irreducible (no exponential sols).

Projective group PG (L) := G (L) mod center.

We compute PG (L) (and later also v and f ) from invariants:

1 If ∃ invariant(s) of degree 4: group is Dn or D∞.

(n = 2 is a special case, there we will compute v and f from
the invariant of degree 6).

2 else, if ∃ invariant of degree 6: group is A4

3 else, if ∃ invariant of degree 8: group is S4

4 else, if ∃ invariant of degree 12: group is A5

5 else: group is PSL2 (no Liouvillian solutions).
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Pullbacks

Definition

Let L ∈ C (z)
[ d

dz

]
and L ∈ k

[
∂
]

be differential operators.

1 L is a proper pullback of L by f ∈ k if the change of variable
z 7→ f changes L into L. Then:

Solutions y(z) of L ⇐⇒ Solutions y(f ) of L.

2 L is a (weak) pullback of L by f ∈ k if ∃v ∈ k such that we
can transform L into L by doing a

change of variable: z 7→ f , followed by
scaling: multiplying all solutions by exp(

∫
v).

Then:

Solutions y(z) of L ⇐⇒ Solutions y(f ) · exp(
∫

v) of L.
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Klein’s pullback theorem

To each G ∈ {Dn,A4,S4,A5}, one associates a Standard Equation
(we scaled them in such a way that the invariant has value 1)

StD2 = ∂2 +
4

3

z

(z2 − 1)
∂ − 5

144

z2 + 3

(z2 − 1)2
(1)

StA4 = ∂2 +
2
(
3 z2 − 1

)
3z (z2 − 1)

∂ +
5

144z2 (z2 − 1)
(2)

... (3)

Theorem (Klein)

Let L be a second order irreducible linear differential operator over
k with projective differential Galois group PG (L). If PG (L) is finite
then L is a (weak) pullback of StPG(L).

This means: can write solutions of L as HPG(L)(f ) exp
(∫

v
)

where
HG (z) = Hypergeometric sols of StG .
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The Algorithm: Example of the A4 Group

Suppose for example the input of our algorithm is a differential
operator L with group PG (L) = A4. How would the algorithm
determine PG (L), the pullback f , and the solutions of L?

Group..
1 L irreducible. No invariants of degree 1, 2, 4 and an invariant

of degree 6 with value I6. So the projective group is A4.

Scaling..v
2 Divide solutions of L by I

1/6
6 =⇒ new operator LS that must

be a proper pullback of StA4 (because both operators have
invariant value 1, and y(z) 7→ y(f ) sends 1 to 1).

Pullback..f
3 Write LS = ∂2 + a1∂ + a0. Compute g := 2a1 +

a′
0

a0
, and the

pullback mapping is f = ±
√

1 + 64
5

a0
g2 it is rational!

Solutions: HA4(f ) · I 1/6
6 for any solution HA4 of StA4
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How the pullback formula was found

For G = A4 the pullback formula on the previous page was

f = ±
√

1 + 64
5

a0
g2 where g = 2a1 +

a′
0

a0
.

Our algorithm contains a pullback formula for each group G .
These formulas were found as follows:

Take a standard equation for G from Klein’s table.

Key idea: Scale it so that the invariant has value 1. Doing this
to all operators reduces weak pullpacks to proper pullbacks!

Change of variable z 7→ F . One obtains a differential operator
∂2 + a1∂ + a0 where a1, a0 ∈ C (F ,F ′,F ′′).

Use differential elimination to express F in terms of a1, a0.

For A4 we got F = ±
√

1 + 64
5

a0
g2 where g = 2a1 +

a′
0

a0
.

For S4 we got F = −7
144

g2

a0
.

For other groups: see paper.
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Example: group A4 concretely

L(y) :=

y ′′ − 1
144

404 (ex )2x−27 x2+108 x3+54 x4+9 x6−36 x5+216 (ex )4+···
(x−ex )2(x+ex )2(x−1)2

y = 0

Group
1 No invariants of degree 1 or 2 or 4

2 Invariant of degree 6, value I6 =
(x2−e2x)

2

ex (x−1)3
: Sym6(L)(I6) = 0

=⇒ PG (L) = A4

Normalize
3 Rescale operator L: Get LS such that Sym6(LS)(1) = 0.

LS is a proper pullback of StA4 because Sym6(StA4)(1) = 0.

Pullback
4 Apply pullback formula to coeffs of LS gives pullback f = ex

x
5 Solutions are

(x2−e2x)
2/3

√
x−1

(
C1

2F1

“
[ 7
24

, 19
24

],[ 3
4
], e2x

x2

”
e

x
4 x

7
12

+ C2

e
x
4 2F1

“
[ 13
24

, 25
24

],[ 5
4
], e2x

x2

”
x

13
12

)
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Example: group A5

L(y) := 48x(x − 1)(75x − 139)y ′′ + (2520x2 − 47712x/5 +
3336)y ′ + (36001/75− 19x)y = 0.

1 PG (L) equals A5 in this example.

2 Both the standard Kovacic algorithm and our pullback
method need to compute the invariant of degree 12.

3 However, the pullback method produces much smaller
solutions:

1 Solutions in Maple 9.5 (standard Kovacic): 236789 bytes.
2 Solutions in Maple 10 (using pullback): 1360 bytes.

4 The old output is very large is because it contains an algebraic
function represented by its minimal polynomial, and every
coefficient of this polynomial is a large rational function.

5 In contrast, the output from the pullback method contains
only one large rational function, namely f (which has degree
31 in this example).
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Conclusion

Keys to the algorithm are:
1 We choose standard equations with invariant value 1.
2 Given an equation we want to solve, we compute its invariant,

and then scale it so that it too has value 1.
3 This reduces a weak pullback to a proper pullback,
4 which allows us to find a formula for the pullback.

Easy to implement (one can simply add the pullback formulas
to existing Kovacic implementations).

Slightly faster than Kovacic due to smaller output size.

∃ extensions to order 3 by Berkenbosch (no algo but good)

Other works on special functions using special forms (e.g
Cheb-Terrab 2004) or essential singularities (e.g Bronstein and
Lafaille 2002): get non-Liouvillian functions.

Thank you for your attention.
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