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ABSTRACT
Given a second order linear differential equations with coef-
ficients in a field k = C(x), the Kovacic algorithm finds all
Liouvillian solutions, that is, solutions that one can write
in terms of exponentials, logarithms, integration symbols,
algebraic extensions, and combinations thereof. A theorem
of Klein states that, in the most interesting cases of the Ko-
vacic algorithm (i.e when the projective differential Galois
group is finite), the differential equation must be a pull-
back (a change of variable) of a standard hypergeometric
equation. This provides a way to represent solutions of the
differential equation in a more compact way than the for-
mat provided by the Kovacic algorithm. Formulas to make
Klein’s theorem effective were given in [4, 2, 3]. In this pa-
per we will give a simple algorithm based on such formulas.
To make the algorithm more easy to implement for various
differential fields k, we will give a variation on the earlier
formulas, namely we will base the formulas on invariants of
the differential Galois group instead of semi-invariants.
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123 avenue Albert Thomas
87060 Limoges cedex
jacques-arthur.weil@unilim.fr

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’05, July 24–27, 2005, Beijing, China.
Copyright 2005 ACM 1-59593-095-705/0007 ...$5.00.

1. INTRODUCTION
The Kovacic algorithm [19] computes closed form (Liou-

villian) solutions of second order linear differential equations
over k = C(x). Since the appearance of [19], many papers
have studied and refined the method. The version given in
[27] uses invariants instead of the semi-invariants, which is
easier to implement especially for differential fields k more
complicated than C(x). The paper [15] gives good formulas
for computing algebraic solutions (after [25]). The common
basis of these algorithms is to derive solutions from (semi)-
invariants of the differential Galois group (see section 3).

Another approach is the Klein pullback method: Klein
([18], also [1, 5, 2]) showed that if the projective differential
Galois group is finite, then the equation is a pullback of an
equation in a finite list of well-known standard hypergeo-
metric equations. This means that the solutions are of the
form e

R

gH(f) where f, g ∈ k and H is a standard hyperge-
ometric function H(x) = 2F1([a, b], [c], x) whose parameters
a, b, c appear in a finite list. Interest in this method has
recently been revived [5, 20, 21] for classifying work, but
finding pullback functions still relied on skill.

In [4, 2, 3] Berkenbosch and the authors of this paper give
(surprisingly simple) formulas for computing the pullback
function f (as well as the function g). In [2, 3] Berkenbosch
generalizes Klein’s theorem to third order operators.

Our formulas from [4, 2, 3] rely on computing semi-invariants
of the differential Galois groups, which is well-mastered for
differential equations with coefficients in C(x). For more
general differential fields, however, it may be easier (as noted
in [27]) to use algorithms that compute invariants of the dif-
ferential Galois group instead of semi-invariants. In order to
use invariants, we will need to give formulas that are slightly
different from those given in [4, 2, 3].

The contribution in this paper is of algorithmic nature:
we give an algorithm for solving second order differential by
pullbacks for a general differential field k by constructing
new formulas which rely on invariants only. A field k is
admissible for our algorithm if:

k is an effective (computable) field (this includes extracting
square roots), one has an algorithm for computing rational
solutions of linear differential equations with coefficients in
k and an algorithm for computing exponential solutions of
second order differential equations.

Examples of admissible fields are Liouvillian extensions
of C(x) ([24]). Implementations of the above assumed al-
gorithms are available for fields such as C(x), C(x, exp(f))
([8]), quadratic extensions of C(x) ([10]), etc. For those



fields k, the algorithm proposed here for computing Liouvil-
lian solutions will be easy to implement.

Although we recall the main ideas in sections 3, we assume
in this paper that the reader has an elementary knowledge of
differential Galois theory ([23]) and of the Kovacic algorithm
[19, 23]. The algorithm in section 2 below follows the lines
of the rational version of the Kovacic algorithm given in [27].

Section 2 contains the algorithm. Most of the remain-
der of the paper is devoted to its correctness and optional
improvements. Section 3 contains material and definitions
from differential Galois theory and Kovacic’s algorithm; sec-
tion 4 recalls the pullback formulas from [4, 2, 3] for the case
k = C(x), Section 5 proves the pullback formulas for a gen-
eral differential field and the correctness of the algorithm.

Finally, we remark that some recent papers [7, 12] showed
how to solve certain classes of second linear differential equa-
tions as pullbacks of differential equations corresponding to
special functions (Airy, Whittaker, etc). The present work is
complementary to those whenever the differential equation
has more than 3 singularities and the projective differential
Galois group is not PSL2.
Acknowledgments. The authors would like to thank M.
van der Put, M. Bronstein, M. Loday-Richaud and specially
M. Berkenbosch for fruitful discussions while preparing this
work. We thank the referees for their comments.

2. THE ALGORITHM
In this section, we state the algorithm assuming the reader

is familiar with notations and concepts from differential Ga-
lois theory and Kovacic’s algorithm; unfamiliar readers should
proceed first to the next sections for explanations and come
back to this section afterward.
Let k denote a differential field of characteristic 0. We con-
sider the differential operator

L = ∂2 + A1∂ + A0 ∈ k[∂] (2.1)

This corresponds to the differential equation y′′ + A1y
′ +

A0y = 0. We assume that there exists w ∈ k such that

A1 = −w′

w
(this is not restrictive since after a simple trans-

formation one may assume the stronger condition A1 = 0,
see section 3).

We define the following standard differential operators

Sts
Dn

= ∂2 +
x

x2 − 1
∂ − 1

4n2(x2 − 1)
, n ∈ N (2.2)

Sts
G = ∂2 +

(8x + 3)

6 (x + 1) x
∂ +

(6ν − 1)(6ν + 1)

144 (x + 1)2 x
(2.3)

for (G, ν) ∈ {(A4, 1/3), (S4, 1/4), (A5, 1/5)}.

Sti
D2

= ∂2 +
4

3

x

(x2 − 1)
∂ − 5

144

x2 + 3

(x2 − 1)2
(2.4)

Sti
Dn

= Sts
Dn

, n > 2 (2.5)

Sti
A4

= ∂2 +
2

`
3x2 − 1

´

3x (x2 − 1)
∂ +

5

144x2 (x2 − 1)
(2.6)

Sti
S4

= ∂2 +
1

4

(5x − 2)

(x − 1) x
∂ − 7

576

1

(x − 1)2 x
(2.7)

and Sti
A5

= Sts
A5

. These are well studied hypergeometric
operators and their solutions are well-known. There are var-
ious ways to express the solutions of the above operators, one
can use the hypergeometric function 2F1, or algebraic func-

tions, or (if G is not A5) nested radicals. We propose the

2F1 representation as the default choice because it is the
most compact representation. Moreover, converting these

2F1’s to algebraic functions or nested radicals is easier to
implement (table lookup) than the reverse conversion.

The m-th symmetric power L©s m of L is the operator
whose solutions are spanned by products of m solutions of
L. Given differential operators L ∈ k[∂] and ∂−b, b ∈ k, the
notation L ⊗ (∂ − b) refers to the operator whose solutions

are the solutions of L multiplied by the solution e
R

b of ∂−b.
Given a differential operator L = ∂2 + a1∂ + a0, we define

its g-invariant to be gL := 2a1 +
a′
0

a0
.

We can now state the algorithm. The steps have to be per-
formed in the given order, and the algorithm exits when a
solution is found.
Pullback Algorithm, general k:
Input: L with G(L) ⊂ SL2(C)
Output: Liouvillian solutions, expressed via solutions of
the above standard operators

1. Determine if L has a solution y such that y′/y ∈ k (an
exponential solution). If so, return a basis of Liouvil-
lian solutions of L [15, 2, 19, 27, 23]

2. Let B4 be a basis of solutions in k of L©s 4

(a) If B4 contains one element i4, let ∂2 +a1∂ +a0 :=

L ⊗ (∂ +
i′
4

4i4
). Return 4

√
i4 e±

R √−a0 or use sec-
tion 5.3.

(b) (implementation of this step is optional). If B4

contains two elements then let m = 6 and take
solutions as in step 3 below (B6 will have one
element i6), or use section 5.4.

3. For m in 6, 8, 12, let Bm be a basis of solutions in
k of L©s m. If Bm contains one element im, then let

L = ∂2 + a1∂ + a0 := L ⊗ (∂ +
i′
m

mim
). Now return the

following basis of solutions of L

m
√

im H1(f), m
√

im H2(f)

where H1(x),H2(x) is a basis of solutions of Sti
G and

where G and f are determined as follows:

(a) If m = 6, then G := A4 and f :=
q

1 + 64
5

a0

g2

L

.

This f will be in k.

(b) If m = 8, G := S4 and f = − 7
144

g2

L

a0
.

(c) If m = 12, G := A5 and f = 11
400

g2

L

a0
.

The name of the standard operators refers to the pro-
jective differential Galois group PG(L) (see section 3
below) of L.

4. Otherwise the operator has no Liouvillian solutions.

The above algorithm is correct but improvements are possi-
ble. In step 2a where B4 has one element, we have PG(L) =
Dn for some n > 2. If an integration algorithm for the field
k(
√−a0) is available, then we could use it to try to simplify

the expression e±
R √−a0 . However, if n 6= ∞ then there is

an alternative that is likely to be more efficient. To imple-
ment this alternative, one starts by running a subroutine
of the integration algorithm ([6]) that determines n. When



n is found, if n 6= ∞, then instead of running the remain-
der of the integration algorithm one proceeds by using the
formulas in section 5.4.

Implementation of step 2b is optional. In step 2b, the pro-
jective Galois group is D2 (this denotes C2 ×C2). If step 2b
is not implemented, then in the D2 case the algorithm will
proceed to step 3a and compute solutions using formulas
meant for A4. Although these formulas give correct solu-
tions for the D2 case (note that D2 � A4 and that these
two groups have the same invariants of degree 6) one can
find better (more compact) solutions in this case by using
equation (2.4) and the formula from section 5.4.

3. DIFFERENTIAL GALOIS THEORY
For completeness and to set notations, we briefly recall the

rational Kovacic algorithm from [27]. Let L = ∂2+A1∂+A0

where A0, A1 ∈ k. We consider a second order ordinary
linear differential equation

Ly = 0, y′′ + A1y
′ + A0y = 0. (3.8)

We assume that A1 = f ′

f
for some f ∈ k; this can be

achieved after a change of variable y 7→ ye
R A1

2 which turns
the equation (3.8) into the reduced form y′′ − ry = 0 with

r =
A2

1

4
+

A′
1

2
− A0.

Given two linearly independent solutions of (3.8), say y1, y2

(either “formal” or “actual functions on some open set”), the
field K := k(y1, y2, y

′
1, y

′
2) is a differential field (a field closed

under differentiation) and is generated, as a differential field,
by y1 and y2 over k. This field K is called a Picard-Vessiot
extension of (3.8). The solution space in K is the C vec-
tor space generated by y1 and y2, denoted by V in all that
follows. The group of differential automorphisms of K over
k (i.e., automorphisms of K over k that commute with ∂)
is called the differential Galois group of (3.8) over k. We

denote it by G(L) = GalK/k(L). The condition A1 = f ′

f

ensures that G(L) ⊂ SL2(C).
The projective Galois group is defined by

PG(L) := G(L)/(G(L) ∩ C∗),

where G(L) ∩ C∗ denotes the subgroup of those g ∈ G that
act on V as scalar multiplication.
Multiplying the solutions by e

R

b for b in k changes the Galois
group G(L) but not the projective Galois group PG(L). The

operator whose solutions are y·e
R

b, with y solution of L(y) =
0, is denoted L⊗ (∂ − b). We will say that two operators L1

and L2 are projectively equivalent when there exists b ∈ k
such that L1 = L2 ⊗ (∂ − b). It is easy to see that L1,
L2 are projectively equivalent if and only if they have the
same reduced form. If L1, L2 are projectively equivalent
then PG(L1) = PG(L2).

3.1 Invariants and Semi-Invariants
The key to Kovacic’s algorithm is that the existence of

Liouvillian solutions is (for second order equations) equiva-
lent with the existence of a semi-invariant of the differential
Galois group.

Definition 3.1. Fix a basis y1, y2 of the solution space
V of L.

1. A homogeneous polynomial I(Y1, Y2) ∈ C[Y1, Y2] is
called an invariant with respect to the differential op-
erator L if its evaluation h := I(y1, y2) is invariant

under the action of the differential Galois group G(L)
of L. In other words h ∈ k. This function h is then
called the value of the invariant polynomial I.

2. A homogeneous polynomial I(Y1, Y2) ∈ C[Y1, Y2] is
called a semi-invariant with respect to a differential

operator L if
h′

h
∈ k where h := I(y1, y2).

We will list a few well known facts, for more details see
[25, 23, 19]. For second order operators, there is a one to
one correspondence between the (semi)-invariants of degree
m and their values (for higher order operators this need not
be the case). The values of invariants of degree m are pre-
cisely the rational solutions of L©s m, i.e solutions in k. The
values of the semi-invariants of degree m are the so-called
exponential solutions of L©s m, that is, those solutions h of
L©s m for which h′/h ∈ k.
The operator L©s m can be easily computed from the recur-
sion given in (1.14) in [11] (see also [9]): Let L0 = 1, L1 = ∂
and

Li+1 = (∂ + iA1)Li + i(m − (i − 1))A0Li−1

for 0 < i ≤ m, then Lm+1 = L©s m.

3.2 The Subgroups ofSL2(C)

Invariants and semi-invariants are elements of C[Y1, Y2].
In the algorithm we will not calculate the invariants them-
selves, but only their values. For each semi-invariant, we will
only compute the logarithmic derivative h′/h of the value h
of a semi-invariant. So in the following, when we write that
there are n semi-invariants of degree m, we are counting
the number of distinct h′/h ∈ k for which h is a solution
of L©s m. And when we write that there are n invariants of
degree m, we mean that the set of solutions of L©s m in k
has a basis with n elements.

We recall the classification of subgroups of SL(C) (see e.g
[19, 25, 27, 23]) and the invariants and semi-invariants of
lowest degree. The group is reducible if there is at least
one invariant line in V . A non-zero element of that line is
an exponential solution, i.e., a solution whose logarithmic
derivative is in k (see [23, 27, 15, 2] for more on this case).
The rest of the classification (irreducible cases) is in the
above references:

Lemma 3.2 (Imprimitive groups).
Assume that G(L) ⊂ SL2(C) and that G(L) is imprimitive,
i.e. irreducible and there exist two lines l1, l2 ⊂ V such that
G(L) acts on {l1, l2} by permutation. Then PG(L) ⊂ D∞
(infinite dihedral group). Three cases are to be considered.

1. PG(L) = D2. Three semi-invariants S2,a, S2,b, S2,c of
degree 2 (S2

2,x is invariant), two invariants I4,a, I4,b

of degree 4. One invariant I6 of degree 6, with I6 =
S2,aS2,bS2,c. Note that the notation D2 does not refer
to the cyclic group C2 but to C2 × C2.

2. PG(L) = Dn, n > 2. One semi-invariant S2 of degree
2, one invariant I4 = S2

2 of degree 4, and another
invariant I2n of degree 2n.

3. PG(L) = D∞ has only one semi-invariant S2 of degree
2 and one invariant I4 = S2

2 of degree 4.



Lemma 3.3 (Primitive groups). Assume G is prim-
itive, i.e neither reducible nor imprimitive, and G(L) ⊂
SL2(C). Four cases are to be considered.

1. PG(L) = A4; two semi-invariant S4,a, S4,b of degree
4, one invariant I6 of degree 6, and one invariant I8

of degree 8, with I8 = S4,aS4,b

2. PG(L) = S4; one semi-invariant S6 of degree 6, one
invariant I8 of degree 8.

3. PG(L) = A5; one invariant I12 of degree 12.

4. G = SL2(C); no semi-invariants and no Liouvillian
solutions.

The degrees for the (semi)-invariants of these groups al-
low to give a list of possible symmetric powers L©s m to in-
vestigate. This is the key to the Kovacic algorithm (semi-
invariants) or its Ulmer-Weil rational variant [27] (invari-
ants). Computing invariants (or semi-invariants), one can
find the type of the differential Galois group (a little more
needs to be done to discriminate Dn from D∞, see section
4.4). We summarize this in the following immediate corol-
lary

Corollary 3.4. In the Pullback algorithm from section
2, in the case of step 1 the group is reducible, in case of step
2a the projective Galois group is D∞ or some Dn, n > 2. It
is D2 in case of step 2b, A4 in step 3a, S4 in step 3b, A5 in
step 3c, and PSL2 otherwise.

For each possible finite projective group, pullback formulas
can be computed; this is done in the next section.

4. PULLBACK FORMULAS, CASE K = C(X)

In this section, we recall our work with Maint Berkenbosch
from [4, 2]. The next subsection is standard material [1, 2,
5, 20, 21]

4.1 Standard equations
If y1, y2 is a basis of solutions of L, then define CL :=

C( y1

y2
), which is a subfield of the Picard-Vessiot extension

K. The field CL does not depend on the choice of basis
(replacing y1, y2 by another basis corresponds to a Möbius

transformation of y1

y2
). Replacing y1, y2 by e

R

vy1, e
R

vy2 for
some function v does not affect CL either. In fact, given two
operators L1 and L2, one has CL1

= CL2
if and only if L1

and L2 are projectively equivalent.
The projective Galois group PG(L) acts faithfully on CL.

The field C
PG(L)
L of invariants under this action can, by

Luroth’s theorem, be written as C(f) for some f ∈ k. We
say that an operator St is a standard equation for PG(St)

if C
PG(St)
St equals C(z) for some z with z′ = 1.

Now assume that L has projective group PG and St is
a standard equation with projective Galois group PG. If
CPG

L = C(f), then z 7→ f maps CPG
St to CPG

L . This, and the
fact that CL determines L up to projective equivalence, are
key ideas in Klein’s theorem below. Before stating this, we
set a family of standard equations. All other standard equa-
tions can then be found using Möbius x 7→ (ax+ b)/(cx+d)
and projective equivalence L 7→ L⊗ (∂+v) transformations.

A standard equation for each finite projective differential
Galois group can be found among the hypergeometric equa-
tions

StPG = ∂2 +
a

x2
+

b

(x − 1)2
+

c

x(x − 1)

where the coefficients a, b, c are related to the differences
λ, µ, ν of the exponents at 0, 1, and ∞ by the relations

a =
1 − λ2

4
b =

1 − µ2

4
and c =

1 − ν2 + λ2 + µ2

4
.

More precisely, one can choose (λ, µ, ν) =
`1

2
,
1

2
,
1

n

´
for

PG = Dn,
`1

3
,
1

2
,
1

3

´
for PG = A4,

`1

3
,
1

2
,
1

4

´
for PG = S4

and
`1

3
,
1

2
,
1

5

´
for PG = A5.

The index PG refers to the projective differential Galois
group of StPG corresponding to the chosen values of a, b, c.
These equations and their solutions are well known.

4.2 Klein’s theorem

Definition 4.1. Let L1 ∈ C(z)
h d

dz

i
and L2 ∈ k

h
∂

i
be

linear differential operators.

1. L2 is a proper pullback of L1 by f ∈ k if the change of
variable z 7→ f changes L1 into L2.

2. L2 is a (weak) pullback of L1 by f ∈ k if there exists
v ∈ k such that L2 ⊗ (∂ + v) is a proper pullback of L1

by f .

Theorem 4.2 (Klein, [18, 1, 2]). Let L be a second
order irreducible linear differential operator over k with pro-
jective differential Galois group PG(L). Then, PG(L) ∈
{Dn, A4, S4, A5} if and only if L is a (weak) pullback of
StPG(L).

Let L have a projective differential Galois group PG(L) and
suppose the standard equation with projective differential
Galois group PG(L) has H1, H2 as a C-basis of solutions.
The theorem of Klein says that L is a pullback of StPG(L).
Suppose we know f and v as in definition 4.1, then a C-basis

of solutions of Ly = 0 is given by H1(f)e
R

v and H2(f)e
R

v.
H1 and H2 are known for all standard equations. To get

the solutions in explicit form one should then determine the
projective differential Galois group and, in case it is finite,
determine f and v. It was remarked in [1, 5] (and somehow
in [18]) that f can be expressed as a quotient of invariants of
the differential Galois group, but this idea was not used al-
gorithmically. We will build f (and v) using semi-invariants
in section 4, and using invariants in section 5.

The difficulty lies in the fact that L is a weak pullback
of a standard equation, i.e it is only projectively equivalent
to a proper pullback of the standard equation. The key to
formulas is to compute a normal form such that the normal
form of L will be a proper pullback of its standard form.

Suppose that L has a differential Galois group G (and
projective group PG) with semi-invariant S of degree m
and value σ. And suppose the value of S with respect to the
standard operator StPG equals σ0 (modulo C∗). Then, the
value of S w.r.t. both the differential operator SG = StPG⊗
(∂z +

σ′
0

mσ0
) and the differential operator L = L⊗ (∂x + σ′

mσ
)

is equal to 1 and the following property holds.



Lemma 4.3. L is a proper pullback of SG.

Proof. The (semi)-invariant of SG corresponding to σ
(in the above notations) has value 1 so it is mapped to 1
under any pullback transformation z 7→ f . L is a weak
pullback by Klein’s theorem, so L⊗ (∂ − v) will be a proper

pullback for some v; but its (semi)-invariant is e
R

mv , which
should be 1, so v must be 0 and hence L must be a proper
pullback.

A direct examination (and relevant choices of standard
equations) in each case will provide the pullback function f .

4.3 Formulas: the primitive case
The projective Galois group is in {A4, S4, A5} in this sec-

tion. The standard equation in reference is StPG y = 0

where the differences of exponents are λ =
1

3
at x = 0,

µ =
1

2
at x = 1, and ν =

1

3
for A4,

1

4
for S4 and

1

5
for A5

at x = ∞.

The differential Galois group of this equation has a semi-
invariant S of degree m = 4 in the case of A4, degree m = 6
in the case of S4 and m = 12 in the case of A5 with value
σ0(x) = x−m/3(x−1)−m/4. The new equation SG = StPG⊗
(∂ +

1

3x
+

1

4(x − 1)
) now has an invariant of degree m with

value 1. Rearranging it (via a Möbius transform, to obtain
nicer formulas), we get the normalized standard equation:

Sts
PG := ∂2 +

1

6

(8 x + 3)

(x + 1) x
∂ +

s

(x + 1)2 x

with s = (6ν−1)(6ν+1)
144

(recall that ν is 1
3
, 1

4
, 1

5
for cases

A4, S4, A5 respectively). It has exponents ( ν
2

+ 1
12

,− ν
2

+ 1
12

)

at −1, (0, 1
2
) at 0 and (0, 1

3
) at ∞ where ν has the previous

value in each case.

Lemma 4.4. Let L = ∂2 + a1∂ + a0 be a normalized op-
erator with PG(L) ∈ {A4, S4, A5} (i.e it has an invariant
of degree m with value 1 for the above values of m). Define

gL := 2a1 +
a′

0

a0
. Then L is a proper pullback of Sts

PG and
the pullback mapping is

f := 9s
g2
L

a0

Proof. Lemma 4.3 shows that L is a proper pullback
z 7→ f of Sts

PG for some f . Computing this pullback and

equating it to L gives the relations a1 = f ′

2f
+ 5f ′

6(f+1)
− f ′′

f ′

and a0 = sf ′2

(f+1)2f
whence

a′
0

a0
= − 2f ′

f+1
− f ′

f
+ 2f ′′

f ′ and the

formula follows by simple elimination.

In fact, the formula was not obtained that way: as we know
that L is a proper pullback and that the solution f is unique
(by Klein’s theorem and our normalization), we compute the
expression of the image of Sts

PG under a generic pullback
and perform differential elimination [13, 14] (there are other
ways to find the formula but this way was the least amount
of work). In the same way one can obtain formulas for other
choices of standard equations but those turn out to be larger.

So, given L = ∂2 + A1∂ + A0 with finite primitive pro-
jective group, the pullback function is found the following
way:
Pullback for A4, S4, A5, semi-invariant version

Input: L = ∂2 + A1∂ + A0 with PG(L) ∈ {A4, S4, A5}.
Output: Pullback function f .

1. For m ∈ {4, 6, 12} check for a semi-invariant of degree
m and call v its logarithmic derivative.

2. If yes, the projective group PG(L) is known. Let L =
L ⊗ (∂ + 1

m
v); this is a proper pullback of Sts

PG with
invariant value 1.

3. Write L = ∂2 + a1∂ + a0. Compute gL := 2a1 +
a′

0

a0
,

and the pullback mapping is f := 9s
g2

L

a0

Remark 4.5. The change of variable z 7→ f changes gSt

to gSt(f) · f ′. Now, gSt = − 1
3(x+1)

and the relation gL =

− f ′

3(f+1)
yields another method to find f . This approach will

fail for imprimitive groups because then gL will be zero.

4.4 Formulas: the imprimitive case
In this case, the projective Galois group is PG(L) = Dn

for n ∈ N. To simplify formulas, here, we choose the stan-

dard equation with exponent differences
1

2
at +1 and −1 and

1

n
at infinity. It has a semi-invariant S2 = Y1Y2 of degree 2

and two semi-invariants Sn,a = Y n
1 +Y n

2 and Sn,b = Y n
1 −Y n

2

of degree n. The chosen standard equation

Sts
Dn

= ∂2 − z

z2 − 1
∂ − 1

4n2

1

z2 − 1

has exponents
`
0,

1

2

´
at +1 and −1 and

`−1

2n
,

1

2n

´
at ∞; it

has a semi-invariant of degree 2 and value 1.
An operator L = ∂2 + a1∂ + a0 is a proper pullback of

SDn
if a0 = − 1

4n2

f ′2

f2 − 1
and a1 = −1

2

a′
0

a0
. The equation

Ly = 0 admits the solutions y1, y2 = exp

Z
±
√
−a0 i.e.

y1 = 2n

q
f +

p
f2 − 1 and y2 = 1/y1. The number n can

thus be determined with (a subroutine of) the algorithm of
elementary integration ([6]) applied to

√−a0.
For N ∈ N, the expressions yN

1 and yN
2 are permuted by

the Galois group and are found to be a basis of solutions of
LN := ∂2 + a1∂ + N2a0. In particular L2n has solutions f
(rational) and

p
f2 − 1. Once n is known, we would like to

compute f from a rational solution F of L2n. However, we
would only know it up to a constant so we use its logarithmic
derivative:

Lemma 4.6. Let L = ∂2 + a1∂ + a0 be an irreducible
operator with an invariant of degree 2 with value 1. As-
sume that PG(L) = Dn. Let F be a rational solution of

∂2 + a1∂ + 4n2a0 and let u := F ′

F
. Then the solutions of L

are y1 = 2n

q
f +

p
f2 − 1 and y2 = −2n

q
f +

p
f2 − 1 with

f =
r

1

1+ u2

4n2a0

.

Proof. By the above discussion, ∂2 + a1∂ + 4n2a0 has a
rational solution and F = cf for some constant f . Now we
have f ′2 = −4n2a0(f

2 − 1). Dividing out by f2 yields the
formula.

Remark 4.7. Despite the square root in the expression
of f , the function is rational. However, if the constant field
of k is not algebraically closed, a quadratic extension of the
constants may be needed in computing this square root (see
also [2, 16] and references therein).



Pullback Formula for Dn, semi-invariant version

Input: L = ∂2+A1∂+A0 with PG(L) = Dn (n unknown).
Output: Pullback function f and the solutions.

1. Compute a semi-invariant of degree 2 and compute its
logarithmic derivative v.

2. If yes, let L = L ⊗ (∂ + 1
2
v); it is a proper pullback of

SDn
with invariant value 1.

3. Denote L = ∂2 + a1∂ + a0. Determine a candidate
for (a multiple of) n. (note: if there is more than one
semi-invariant of degree 2, then n = 2)

4. Compute a rational solution F of Ln := ∂2 + a1∂ +

4n2a0 and let u = F ′

F
.

5. Return the solutions y1 = e
R

v

2
2n

q
f +

p
f2 − 1 and

y2 = e
R

v

2
−2n

q
f +

p
f2 − 1 with f =

r
1

1+ u2

4n2a0

.

5. PULLBACK FORMULAS, GENERAL K

5.1 Standard Equations
The algorithm for general k uses only invariants (not semi-

invariants). Hence, the relevant normal form for the stan-
dard and target equations will be the one for which an appro-
priate invariant (often one with the lowest degree) has value
1. For a projective group PG, a standard equation with
semi-invariant of lowest degree with value 1 (resp. with in-
variants of lowest degree value 1) will be denoted Sts

PG (resp.
Sti

PG).
A second idea that we will use is the fact that D2 ⊂ A4 ⊂ S4.
So, a standard equation for D2 (resp. A4) is a pullback of
some StA4

(resp. StS4
). Transformations between those

equations can be found in [26] (or can be recomputed, as
below).

Like in the previous section, we will proceed in reverse
order of the classification to give the pullback formulas

5.2 Primitive Cases

5.2.1 Icosaedral case A5

The group is determined by an invariant of degree 12, as
in the C(x) case, so we use the formula from section 4.3.

5.2.2 Octaedral case S4

Let Sts
S4

denote the standard equation from section 4.3
with projective Galois group S4. It has an invariant of degree
6 with value 1. However our target differential operator L
has G(L) ⊂ SL2. It only has a semi-invariant S6 of degree 6
and an invariant I8 of degree 8. Having computed the value
of the (semi)-invariant of degree 8 of Sts

S4
, we tensor Sts

S4

with ∂ − 1
24(x+1)

(and, via a Möbius transform, change the

singularities to 0, 1 and ∞ to simplify the formula of lemma
5.1) to obtain the standard operator

Sti
S4

= ∂2 +
1

4

(5x − 2)

(x − 1) x
∂ − 7

576

1

(x − 1)2 x

Its exponents are (0, 1
2
) at 0, (− 1

24
, 7

4
) at 1, and (0, 1

4
) at ∞;

it has an invariant of degree 8 with value 1.
We assume that the differential operator L has projective
Galois group S4 and G(L) ⊂ SL2(C). Thus L has an invari-
ant of degree 8 with value σ. We normalize L by tensoring

with ∂ + σ′

8σ
so its normal form has an invariant of degree 8

with value 1.

Lemma 5.1. Let L = ∂2+a1∂+a0 ∈ k[∂] be a normalized
differential operator with projective Galois group PG(L) =
S4 (L is normalized to have an invariant of degree 8 with
value 1). Define gL := 2a1+

a
0′

a0
. Then L is a proper pullback

of Sti
S4

and the pullback mapping is

f = − 7

144

g2
L

a0

Proof. That L is a proper pullback of Sti
S4

follows from
lemma 4.3. Pick an unknown function f and form the change

of variable x = f in Sti
S4

. We obtain a0 = − 7
576

f ′2

(f−1)2f
and

a1 = − f ′′

f ′ + 1
2

f ′

f
+ 3

4
f ′

f−1
Performing standard differential

elimination on the latter, see [13, 14] and references therein,
yields the above formula.

With this formula, the algorithm in section 4.3 is straight-
forward to adapt (compute an invariant of degree 8 of L
instead of a semi-invariant of degree 6).

5.2.3 Tetrahedral case A4

Let Sts
A4

denote the standard equation from section 4.3
with projective Galois group A4. It has an invariant of de-
gree 4 with value 1. As G(L) ⊂ SL2(C), our L has only
semi-invariants in degree 4, but it has an invariant in degree
6. So, proceeding as in section 5.2.2 (with lemma 3.3.1 in
mind) yields a new standard operator Sti

A4
for A4 with an

invariant of degree 6 having value 1:

Sti
A4

= ∂2 +
2

`
3x2 − 1

´

3x (x2 − 1)
∂ +

5

144

1

x2 (x2 − 1)

Its exponents are (0, 1
3
) at 1 and -1, and (− 1

12
, 5

12
) at 0 (the

point ∞ is non-singular).
We assume that the differential operator L has projective

Galois group A4 and G(L) ⊂ SL2(C). Thus L has an invari-
ant of degree 6 with value σ. We normalize L by tensoring

with ∂ + σ′

6σ
so the resulting normal form L has an invariant

of degree 6 with value 1.

Lemma 5.2. Let L = ∂2+a1∂+a0 ∈ k[∂] be a normalized
differential operator with projective Galois group PG(L) =
A4, i.e L has an invariant of degree 6 with value 1. Then
L is a proper pullback of Sti

A4
. Let gL := 2a1 +

a
0′

a0
. Then

the pullback mapping is

f = ±
s

1 +
64

5

a0

g2
L

Proof. One can use the same differential elimination ar-
gument as for lemma 5.1. Note that Klein’s theorem shows
that 1 + 64

5
a0

g2 must be the square of an element of k.

Remark 5.3. The appearance of a square-root is no sur-
prise because the standard equation for A4 has a symmetry
(exchange 1 and −1) so there are two solutions to the pull-
back problem (see [16, 2] and references therein), each ”at-
tached” to one of the two semi-invariants of degree 4. In
the algorithm in section 4.3 we need to choose one of the
two semi-invariants, hence the (apparent) uniqueness of the
pullback formula there.



An alternative approach to find and prove the formula in
the lemma 5.2 is the following. As L is a pullback of Sti

A4,
it is also a pullback of Sti

S4
because A4 ⊂ S4. Now apply

the S4 formula to the A4 standard equation, solve, and one
obtains lemma 5.2. The same idea can also be used for D2.

5.3 Dihedral GroupsDn, n > 2

The case PG(L) ⊂ D∞ is characterized by the existence
of an invariant I4 of degree 4. We assume that PG(L) 6= D2

so the space of invariants of degree 4 has dimension 1 (and
I4 is the square of a semi-invariant of degree 2). Tensoring

L with ∂ +
I′
4

4I4
, we obtain a normalized operator L which

has an invariant of degree 2 with value 1. So we can use the
algorithm from section 4.4 (start at step 3) and obtain the
pullback function.

Remark 5.4. The difficulty in this subsection lies in de-
ciding whether PG(L) is some Dn or D∞. Computing n
is achieved by computing the torsion of some divisor from
the integration algorithm, which can be achieved under our
assumptions on k, see [6] or [2, 3].

5.4 Quaternion Group D2

There is a problem to choose a relevant normalization be-
cause the space of invariants of degree 4 is two-dimensional
and, in our normalizations, we would need to choose one
among those that is a square of a semi-invariant of degree 2
in order to use the formulas from section 4.4. Although this
is possible (e.g [27]), we propose a few simpler approaches
(the reader is welcome to select whichever one she likes best).
As G(L) ⊂ SL2(C), the operator has a unique (up to con-
stants) invariant of degree 6 with value σ (the product of the

three semi-invariants of degree 2). Tensoring L with ∂ + σ′

6σ
,

we obtain a normalized operator L whose invariant of degree
6 has value 1.

Approach 1: We have D2 ⊂ A4. Moreover, L has an in-
variant of degree 6 with value 1. So L is a proper pullback
of Sti

A4
from section 5.2.3 and the pullback is computed di-

rectly with the algorithm from section 5.2.3. The good point
is that no work is needed; the bad point is that the solutions
will be given in terms of the solutions of Sts

A4
which is not

very good if, for example, we want the minimal polynomial
or an expression by radicals.

Approach 2: In approach 1, we have computed a pullback

F from Sti
A4

so solutions of L are eHi(F ) with eHi solutions

of Sti
A4

. Now we precompute the pullback from Di
2 to Ai

4.
First send singularities to 0, 1,∞ by a Möbius transform;
next, tensor by a first order operator so that the exponents
are (0, 1/3) at 0 and ∞. Changing x to x3, the preimages of
0 and ∞ will have exponents (0, 1) so they will be ordinary,
while the preimages of 1 (i.e 1, j, j2) will have exponent dif-
ferences 1/2: the resulting equation is thus a standard D2

equation. Sending the singularities to −1, 1,∞ and tensor-
ing by a first order operator finally sends us to the standard

operator StD2
. We find that eHi(

3
√

−3(x2−1)
x3−9 x

) = Hi(x) with

Hi solutions of Sti
D2

. So the solutions of L will be Hi(f)
where f is a root of the third degree equation

`
3
√
−3(f2 − 1)

´
− F

`
f3 − 9 f

´
= 0 (5.9)

By Klein’s theorem, the latter has three roots f in k which
can be computed, e.g by factoring the above. We note that,

because the solution is not unique, factoring is inevitable in
this process.

6. CONCLUSION

Theorem 6.1. The algorithm of section 2 is correct.

Proof. The steps compute the projective Galois group
by [27] or corollary 3.4. Step 2a is sections 5.3 and 4.4; Step
2b is sections 5.4 and 4.4; Step 3a is section 5.2.3; Step 3b
is section 5.2.2; and Step 3c is sections 5.2.1 and 4.3.

The algorithm presented here is very easy to implement
for an admissible differential field. Further improvements
and speedups can be provided in the case when k = C(x).
The algorithm is implemented in Maple 9.5. A draft imple-
mentation (and a maple worksheet to check most formulas
of this paper) can be consulted at http://www.unilim.fr/

pages_perso/jacques-arthur.weil/issac05/

Denote H(x) = 2F1([−1/60, 11/60], [2/3], 1/(x+1)) which
is one of the solutions of Sts

A5
. The Kovacic algorithm pro-

duces the minimal polynomial mK of y′/y for some solution
y of Sts

A5
, whereas Fakler’s algorithm [15] produces the min-

imal polynomial mF of a solution y of Sts
A5

. Note that mF

is preferable over mK .
Now consider the following example: L = 48x(x − 1)(75x −
139)∂2+(2520x2−47712x/5+3336)∂−19x+36001/75 which
has projective Galois group A5. The pullback function f is
rather large (the degree is 31). By default our algorithm uses
hypergeometric functions to denote the answer. In essence
this means that x in the expression H(x) above is being re-
placed by f . To get a solution of L in the same format as
would have been produced by Kovacic’s resp. Fakler’s algo-
rithm, one essentially has to substitute f for x in the solu-
tion that these algorithms provided for Sts

A5
. However, this

substitution will lead to a large expression because x occurs
many times in the expression mK resp. mF and all those oc-
currences are replaced by f . We compared the kovacicsols
command in Maple 9.5 (which follows the usual Kovacic al-
gorithm) with the algorithm presented here. The size of the
output (measured with the command length) in Maple 9.5
was 236789 whereas for the new algorithm the size is only
1360. Note that this new algorithm is scheduled to appear
in the kovacicsols command in the next version of Maple.
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