Liouvillian Solutions of Irreducible Linear Difference Equations

Yongjae Cha Mark van Hoeij ycha@math.fsu.edu hoeij@math.fsu.edu

Florida State University

Talk presented by Yongjae Cha

Liouvillian Solutions of Linear Difference Equations: Algorithms

- 10 P. A. Hendriks and M. F. Singer, 1999
 - Definition of Liouvillian solutions, and the first algorithm to compute them.
- R. Bomboy, 2002
- D.E. Khmelnov, 2008
- R. Feng, M. F. Singer, M. Wu, 2008
- 5 S.A. Abramov, M.A. Barkatou and D.E. Khmelnov, 2009
- 1 Y. Cha and M. van Hoeij, 2009
 - Reduced combinatorial complexity (but only the irreducible case is handled).

Liouvillian Solutions of Linear Difference Equations: Our Contributions

- ullet Prior algorithms reduce computing: Liouvillian solutions of L to a previously solved problem: Hypergeometric solutions of another operator, say \tilde{L} .
- Hypergeometric solutions are computed with a combinatorial algorithm (cost is exponential in # singularities).
- Problem: \tilde{L} has n times more singularities than L (this raises # combinations to the n'th power!)
- Our algorithm does not increase the number of singularities.
 (so # combinations is smaller).

Liouvillian Solutions of Linear Difference Equations: Linear Difference Operator

A linear difference operator

$$L = a_n \tau^n + a_{n-1} \tau^{n-1} + \dots + a_0 \tau^0$$

where $a_i \in \mathbb{C}(x)$ and τ is the shift operator: $\tau(u(x)) = u(x+1)$ corresponds to a difference equation

$$a_n(x)u(x+n) + a_{n-1}(x)u(x+n-1) + \cdots + a_0(x)u(x) = 0.$$

Example:

• If $L = \tau - x$ then the equation L(u(x)) = 0 is u(x+1) - xu(x) = 0 and $\Gamma(x)$ is a solution of L.

Gauge Equivalence

Notation:

• V(L) = solution space of L.

Definition

Operators L_1 and L_2 in $\mathbb{C}(x)[\tau]$ are called *gauge equivalent* if they have the same order and

$$G(V(L_1)) = V(L_2)$$
 for some $G \in \mathbb{C}(x)[\tau]$.

Then G is called a gauge transformation from L_1 to L_2 .

Inverse gauge transformation:

• Given L_1 and G we can find $G' \in \mathbb{C}(x)[\tau]$ such that $G'(V(L_2)) = V(L_1)$.

Gauge Equivalence

Notation:

• $L_1 \sim_g L_2$ means L_1 is gauge equivalent to L_2 .

Remark

If $L_1 \sim_g L_2$ and if we can solve L_1 then we can also solve L_2 .

- \odot Find gauge transformation G with existing software,
- ② then apply G to solutions of L_1 to get solutions of L_2 .

Liouvillian Solutions of Linear Difference Equations: Property

Theorem (Hendriks Singer 1999)

If
$$L = a_n \tau^n + \cdots + a_0 \tau^0$$
 is irreducible then

 \exists Liouvillian Solutions $\iff \exists b_0 \in \mathbb{C}(x)$ such that

$$a_n \tau^n + \cdots + a_0 \tau^0 \sim_g \tau^n + b_0 \tau^0$$

Remark

Operators of the form $\tau^n + b_0 \tau^0$ are easy to solve, so if we know b_0 then we can solve L.

Liouvillian Solutions of Linear Difference Equations: The Problem

Let
$$L=a_n\tau^n+\cdots+a_0\tau^0$$
 with $a_i\in\mathbb{C}[x]$ and assume that
$$L\sim_g \tau^n+b_0\tau^0$$

for some unknown $b_0 \in \mathbb{C}(x)$.

If we can find b_0 then we can solve $\tau^n + b_0 \tau^0$ and hence solve L.

Notation

write $b_0 = c\phi$ where $\phi = \frac{\text{monic poly}}{\text{monic poly}}$ and $c \in \mathbb{C}^*$.

Remark

c is easy to compute, the main task is to compute ϕ .

Liouvillian Solutions of Linear Difference Equations: Approach

Definition

Let $L = a_n \tau^n + \dots + a_0 \tau^0 \in \mathbb{C}[x][\tau]$ then the finite singularities of L are $Sing = \{q + \mathbb{Z} \in \mathbb{C}/\mathbb{Z} \mid q \text{ is root of } a_0 a_n\}$

Theorem

If
$$q_1 + \mathbb{Z}, \dots, q_k + \mathbb{Z}$$
 are the finite singularities then we may assume $\phi = \prod_{i=1}^k \prod_{j=0}^{n-1} (x - q_i - j)^{k_{i,j}}$ with $k_{i,j} \in \mathbb{Z}$.

- At each finite singularity $p_i \in \mathbb{C}/\mathbb{Z}$ (where $p_i = q_i + \mathbb{Z}$) we have to find n unknown exponents $k_{i,0}, \ldots, k_{i,n-1}$.
- ② We can compute $k_{i,0} + \cdots + k_{i,n-1}$ from a_0/a_n .

Valuation Growth

Definition

Let $u(x) \in \mathbb{C}(x)$ be a non-zero meromorphic function. The valuation growth of u(x) at $p = q + \mathbb{Z}$ is

$$\liminf_{n\to\infty} (\text{order of } u(x) \text{ at } x = n+q) \\
- \liminf_{n\to\infty} (\text{order of } u(x) \text{ at } x = -n+q)$$

Definition

Let $p \in \mathbb{C}/\mathbb{Z}$ and L be a difference operator. Then $\operatorname{Min}_p(L)$ resp. $\operatorname{Max}_p(L)$ is the minimum resp. maximum valuation growth at p, taken over all meromorphic solutions of L.

Theorem

If $L_1 \sim_g L_2$ then they have the same $\operatorname{Min}_p, \operatorname{Max}_p$ for all $p \in \mathbb{C}/\mathbb{Z}$.

Example of Operator of order 3 with one finite singularity at $p = \mathbb{Z}$

Suppose
$$L=a_3\tau^3+a_2\tau^2+a_1\tau+a_0$$
 and that
$$L \sim_g \tau^3+c\cdot x^{k_0}(x-1)^{k_1}(x-2)^{k_2}$$

- c can be computed from a_0/a_3
- ② $k_0 + k_1 + k_2$ can be computed from a_0/a_3
- **3** $\max\{k_0, k_1, k_2\} = \max_{\mathbb{Z}}(L)$
- \bullet min $\{k_0, k_1, k_2\} = \operatorname{Min}_{\mathbb{Z}}(L)$

Items 2, 3, 4 determine k_0, k_1, k_2 up to a permutation.

Example with two finite singularities

Suppose $L=a_3\tau^3+a_2\tau^2+a_1\tau+a_0$ is gauge equivalent to

$$au^3 + c \cdot x^{k_0} (x-1)^{k_1} (x-2)^{k_2} \cdot (x-\frac{1}{2})^{l_0} (x-\frac{3}{2})^{l_1} (x-\frac{5}{2})^{l_2}$$

- **1** c, $k_0 + k_1 + k_2$, and $l_0 + l_1 + l_2$ can be computed from a_0/a_3
- **3** $\max\{k_0, k_1, k_2\} = \max_{\mathbb{Z}}(L)$

This determines k_0 , k_1 , k_2 up to a permutation, and also l_0 , l_1 , l_2 up to a permutation.

Worst case is $3! \cdot 3!$ combinations (actually: 1/3 of that).

Liouvillian Solutions of Linear Difference Equations: Example

$$L = x\tau^3 + tau^2 - (x+1)\tau - x(x+1)^2(2x-1)$$

- $Sing = \{\mathbb{Z}, \frac{1}{2} + \mathbb{Z}\}$ and c = -2.
- At ℤ.

$$min = 0$$
, $max = 1$, $sum = 2$

So the exponents of $x^{...}(x-1)^{...}(x-2)^{...}$ must be a permutation of 0,1,1

• At $\frac{1}{2} + \mathbb{Z}$,

$$min = 0$$
, $max = 1$, $sum = 1$

So the exponents of $(x-\frac{1}{2})$ " $(x-\frac{3}{2})$ " $(x-\frac{5}{2})$ must be a permutation of 0,0,1

Liouvillian Solutions of Linear Difference Equations: Example

Candidates of $c\phi$ are

1
$$-2x^{0}(x-1)^{1}(x-2)^{1}(x-1/2)^{0}(x-3/2)^{0}(x-5/2)^{1}$$

2 $-2x^{0}(x-1)^{1}(x-2)^{1}(x-1/2)^{0}(x-3/2)^{1}(x-5/2)^{0}$
3 $-2x^{0}(x-1)^{1}(x-2)^{1}(x-1/2)^{1}(x-3/2)^{0}(x-5/2)^{0}$
4 $-2x^{1}(x-1)^{0}(x-2)^{1}(x-1/2)^{1}(x-3/2)^{0}(x-5/2)^{0}$
5 $-2x^{1}(x-1)^{0}(x-2)^{1}(x-1/2)^{0}(x-3/2)^{0}(x-5/2)^{1}$
6 $-2x^{1}(x-1)^{0}(x-2)^{1}(x-1/2)^{0}(x-3/2)^{1}(x-5/2)^{0}$
7 $-2x^{1}(x-1)^{1}(x-2)^{0}(x-1/2)^{0}(x-3/2)^{1}(x-5/2)^{0}$
8 $-2x^{1}(x-1)^{1}(x-2)^{0}(x-1/2)^{1}(x-3/2)^{0}(x-5/2)^{0}$
10 $-2x^{1}(x-1)^{1}(x-2)^{0}(x-1/2)^{1}(x-3/2)^{0}(x-5/2)^{0}$
11 $-2x^{1}(x-1)^{1}(x-2)^{0}(x-1/2)^{1}(x-3/2)^{0}(x-5/2)^{0}$
12 $-2x^{1}(x-1)^{1}(x-2)^{0}(x-1/2)^{0}(x-3/2)^{0}(x-5/2)^{0}$

Only need to try 1, 2, 3, the others are redundant.

Liouvillian Solutions of Linear Difference Equations: Example

- $\tau^3 2x(x-1)(x-1/2)$ is gauge equivalent to L
- Gauge transformation is $\tau + x 1$.
- Basis of solutions of $\tau^3 2x(x-1)(x-1/2)$ is

$$\{(\xi^k)^x v(x)\}_{k=0}^2$$

where
$$v(x)=54^{x/3}\Gamma(\frac{x}{3}-\frac{1}{6})\Gamma(\frac{x}{3})\Gamma(\frac{x}{3}-1/3)$$
 and $\xi^3=1$.

Thus, Basis of solutions of L is

$$\{(\xi^k)^{x+1}v(x+1)+(x-1)(\xi^k)^xv(x)\}_{k=0}^2$$