Liouvillian Solutions of Irreducible Linear Difference Equations

Yongjae Cha Mark van Hoeij
ycha@math.fsu.edu hoeij@math.fsu.edu

Florida State University
Talk presented by Yonguae Cha

Liouvillian Solutions of Linear Difference Equations: Algorithms

(1) P. A. Hendriks and M. F. Singer, 1999

- Definition of Liouvillian solutions, and the first algorithm to compute them.
(2) R. Bomboy, 2002
(3) D.E. Khmelnov, 2008
(4) R. Feng, M. F. Singer, M. Wu, 2008
© S.A. Abramov, M.A. Barkatou and D.E. Khmelnov, 2009
(6) Y. Cha and M. van Hoeij, 2009
- Reduced combinatorial complexity (but only the irreducible case is handled).

Liouvillian Solutions of Linear Difference Equations: Our Contributions

- Prior algorithms reduce computing:

Liouvillian solutions of L
to a previously solved problem:
Hypergeometric solutions of another operator, say \tilde{L}.

- Hypergeometric solutions are computed with a combinatorial algorithm (cost is exponential in \# singularities).
- Problem: \tilde{L} has n times more singularities than L (this raises \# combinations to the n'th power!)
- Our algorithm does not increase the number of singularities. (so \# combinations is smaller).

Liouvillian Solutions of Linear Difference Equations: Linear Difference Operator

A linear difference operator

$$
L=a_{n} \tau^{n}+a_{n-1} \tau^{n-1}+\cdots+a_{0} \tau^{0}
$$

where $a_{i} \in \mathbb{C}(x)$ and τ is the shift operator: $\tau(u(x))=u(x+1)$ corresponds to a difference equation

$$
a_{n}(x) u(x+n)+a_{n-1}(x) u(x+n-1)+\cdots+a_{0}(x) u(x)=0 .
$$

Example:

- If $L=\tau-x$ then the equation $L(u(x))=0$ is $u(x+1)-x u(x)=0$ and $\Gamma(x)$ is a solution of L.

Gauge Equivalence

Notation:

- $V(L)=$ solution space of L.

Definition

Operators L_{1} and L_{2} in $\mathbb{C}(x)[\tau]$ are called gauge equivalent if they have the same order and

$$
G\left(V\left(L_{1}\right)\right)=V\left(L_{2}\right) \text { for some } G \in \mathbb{C}(x)[\tau] .
$$

Then G is called a gauge transformation from L_{1} to L_{2}.
Inverse gauge transformation:

- Given L_{1} and G we can find $G^{\prime} \in \mathbb{C}(x)[\tau]$ such that $G^{\prime}\left(V\left(L_{2}\right)\right)=V\left(L_{1}\right)$.

Gauge Equivalence

Notation:

- $L_{1} \sim_{g} L_{2}$ means L_{1} is gauge equivalent to L_{2}.

Remark

If $L_{1} \sim_{g} L_{2}$ and if we can solve L_{1} then we can also solve L_{2}.
(1) Find gauge transformation G with existing software,
(2) then apply G to solutions of L_{1} to get solutions of L_{2}.

Liouvillian Solutions of Linear Difference Equations: Property

Theorem (Hendriks Singer 1999)

If $L=a_{n} \tau^{n}+\cdots+a_{0} \tau^{0}$ is irreducible then
\exists Liouvillian Solutions $\Longleftrightarrow \exists b_{0} \in \mathbb{C}(x)$ such that

$$
a_{n} \tau^{n}+\cdots+a_{0} \tau^{0} \quad \sim_{g} \quad \tau^{n}+b_{0} \tau^{0}
$$

Remark

Operators of the form $\tau^{n}+b_{0} \tau^{0}$ are easy to solve, so if we know b_{0} then we can solve L.

Liouvillian Solutions of Linear Difference Equations: The Problem

Let $L=a_{n} \tau^{n}+\cdots+a_{0} \tau^{0}$ with $a_{i} \in \mathbb{C}[x]$ and assume that

$$
L \sim_{g} \tau^{n}+b_{0} \tau^{0}
$$

for some unknown $b_{0} \in \mathbb{C}(x)$.
If we can find b_{0} then we can solve $\tau^{n}+b_{0} \tau^{0}$ and hence solve L.

Notation

write $b_{0}=c \phi$ where $\phi=\frac{\text { monic poly }}{\text { monic poly }}$ and $c \in \mathbb{C}^{*}$.

Remark

c is easy to compute, the main task is to compute ϕ.

Liouvillian Solutions of Linear Difference Equations: Approach

Definition

Let $L=a_{n} \tau^{n}+\cdots+a_{0} \tau^{0} \in \mathbb{C}[x][\tau]$ then the finite singularities of L are Sing $=\left\{q+\mathbb{Z} \in \mathbb{C} / \mathbb{Z} \mid q\right.$ is root of $\left.a_{0} a_{n}\right\}$

Theorem

If $q_{1}+\mathbb{Z}, \ldots, q_{k}+\mathbb{Z}$ are the finite singularities then we may assume

$$
\phi=\prod_{i=1} \prod_{j=0}\left(x-q_{i}-j\right)^{k_{i, j}} \quad \text { with } k_{i, j} \in \mathbb{Z}
$$

(1) At each finite singularity $p_{i} \in \mathbb{C} / \mathbb{Z}$ (where $p_{i}=q_{i}+\mathbb{Z}$) we have to find n unknown exponents $k_{i, 0}, \ldots, k_{i, n-1}$.
(2) We can compute $k_{i, 0}+\cdots+k_{i, n-1}$ from a_{0} / a_{n}.

Valuation Growth

Definition

Let $u(x) \in \mathbb{C}(x)$ be a non-zero meromorphic function. The valuation growth of $u(x)$ at $p=q+\mathbb{Z}$ is

$$
\liminf _{n \rightarrow \infty}(\text { order of } u(x) \text { at } x=n+q)
$$

$-\liminf _{n \rightarrow \infty}($ order of $u(x)$ at $x=-n+q)$

Definition

Let $p \in \mathbb{C} / \mathbb{Z}$ and L be a difference operator. Then $\operatorname{Min}_{p}(L)$ resp. $\operatorname{Max}_{p}(L)$ is the minimum resp. maximum valuation growth at p, taken over all meromorphic solutions of L.

Theorem

If $L_{1} \sim_{g} L_{2}$ then they have the same $\operatorname{Min}_{p}, \operatorname{Max}_{p}$ for all $p \in \mathbb{C} / \mathbb{Z}$.

Example of Operator of order 3 with one finite singularity at $p=\mathbb{Z}$

Suppose $L=a_{3} \tau^{3}+a_{2} \tau^{2}+a_{1} \tau+a_{0}$ and that

$$
L \sim_{g} \tau^{3}+c \cdot x^{k_{0}}(x-1)^{k_{1}}(x-2)^{k_{2}}
$$

(1) c can be computed from a_{0} / a_{3}
(2) $k_{0}+k_{1}+k_{2}$ can be computed from a_{0} / a_{3}
(3) $\max \left\{k_{0}, k_{1}, k_{2}\right\}=\operatorname{Max}_{\mathbb{Z}}(L)$
(9) $\min \left\{k_{0}, k_{1}, k_{2}\right\}=\operatorname{Min}_{\mathbb{Z}}(L)$

Items 2, 3, 4 determine k_{0}, k_{1}, k_{2} up to a permutation.

Example with two finite singularities

Suppose $L=a_{3} \tau^{3}+a_{2} \tau^{2}+a_{1} \tau+a_{0}$ is gauge equivalent to

$$
\tau^{3}+c \cdot x^{k_{0}}(x-1)^{k_{1}}(x-2)^{k_{2}} \cdot\left(x-\frac{1}{2}\right)^{/_{0}}\left(x-\frac{3}{2}\right)^{l_{1}}\left(x-\frac{5}{2}\right)^{/_{2}}
$$

(1) $c, k_{0}+k_{1}+k_{2}$, and $I_{0}+I_{1}+l_{2}$ can be computed from a_{0} / a_{3}
(2) $\min \left\{k_{0}, k_{1}, k_{2}\right\}=\operatorname{Min}_{\mathbb{Z}}(L)$
(3) $\max \left\{k_{0}, k_{1}, k_{2}\right\}=\operatorname{Max}_{\mathbb{Z}}(L)$
(9) $\min \left\{I_{0}, l_{1}, l_{2}\right\}=\operatorname{Min}_{\frac{1}{2}+\mathbb{Z}}(L)$
(5) $\max \left\{I_{0}, I_{1}, I_{2}\right\}=\operatorname{Max}_{\frac{1}{2}+\mathbb{Z}}(L)$

This determines k_{0}, k_{1}, k_{2} up to a permutation, and also I_{0}, I_{1}, I_{2} up to a permutation.

Worst case is 3 ! $\cdot 3$! combinations (actually: $1 / 3$ of that).

Liouvillian Solutions of Linear Difference Equations: Example

$$
L=x \tau^{3}+\tan ^{2}-(x+1) \tau-x(x+1)^{2}(2 x-1)
$$

- Sing $=\left\{\mathbb{Z}, \frac{1}{2}+\mathbb{Z}\right\}$ and $c=-2$.
- At \mathbb{Z},

$$
\min =0, \quad \max =1, \quad \text { sum }=2
$$

So the exponents of $x^{\cdots}(x-1)^{\cdots}(x-2) \cdots$ must be a permutation of $0,1,1$

- At $\frac{1}{2}+\mathbb{Z}$,

$$
\min =0, \quad \max =1, \quad \text { sum }=1
$$

So the exponents of $\left(x-\frac{1}{2}\right)^{\cdots}\left(x-\frac{3}{2}\right) \cdots\left(x-\frac{5}{2}\right) \cdots$ must be a permutation of $0,0,1$

Liouvillian Solutions of Linear Difference Equations:

Example

Candidates of $c \phi$ are

$$
\begin{aligned}
& \text { (1) }-2 x^{0}(x-1)^{1}(x-2)^{1}(x-1 / 2)^{0}(x-3 / 2)^{0}(x-5 / 2)^{1} \\
& \text { (2) }-2 x^{0}(x-1)^{1}(x-2)^{1}(x-1 / 2)^{0}(x-3 / 2)^{1}(x-5 / 2)^{0} \\
& \text { () }-2 x^{0}(x-1)^{1}(x-2)^{1}(x-1 / 2)^{1}(x-3 / 2)^{0}(x-5 / 2)^{0} \\
& \text { (1) }-2 x^{1}(x-1)^{0}(x-2)^{1}(x-1 / 2)^{1}(x-3 / 2)^{0}(x-5 / 2)^{0} \\
& \text { (}-2 x^{1}(x-1)^{0}(x-2)^{1}(x-1 / 2)^{0}(x-3 / 2)^{0}(x-5 / 2)^{1} \\
& \text { (}-2 x^{1}(x-1)^{0}(x-2)^{1}(x-1 / 2)^{0}(x-3 / 2)^{1}(x-5 / 2)^{0} \\
& \text { () }-2 x^{1}(x-1)^{1}(x-2)^{0}(x-1 / 2)^{0}(x-3 / 2)^{1}(x-5 / 2)^{0} \\
& \text { (6) }-2 x^{1}(x-1)^{1}(x-2)^{0}(x-1 / 2)^{1}(x-3 / 2)^{0}(x-5 / 2)^{0} \\
& \text { (}-2 x^{1}(x-1)^{1}(x-2)^{0}(x-1 / 2)^{0}(x-3 / 2)^{0}(x-5 / 2)^{1}
\end{aligned}
$$

Only need to try $1,2,3$, the others are redundant.

Liouvillian Solutions of Linear Difference Equations: Example

- $\tau^{3}-2 x(x-1)(x-1 / 2)$ is gauge equivalent to L
- Gauge transformation is $\tau+x-1$.
- Basis of solutions of $\tau^{3}-2 x(x-1)(x-1 / 2)$ is

$$
\left\{\left(\xi^{k}\right)^{x} v(x)\right\}_{k=0}^{2}
$$

where $v(x)=54^{x / 3} \Gamma\left(\frac{x}{3}-\frac{1}{6}\right) \Gamma\left(\frac{x}{3}\right) \Gamma\left(\frac{x}{3}-1 / 3\right)$ and $\xi^{3}=1$.

- Thus, Basis of solutions of L is

$$
\left\{\left(\xi^{k}\right)^{x+1} v(x+1)+(x-1)\left(\xi^{k}\right)^{x} v(x)\right\}_{k=0}^{2}
$$

