
Liouvillian Solutions of Irreducible Linear Difference
Equations

Yongjae Cha
Florida State University
Tallahassee, FL, USA

ycha@math.fsu.edu

Mark van Hoeij∗
Florida State University
Tallahassee, FL, USA

hoeij@math.fsu.edu

ABSTRACT
In this paper we give a new algorithm to compute Liouvil-
lian solutions of linear difference equations. Compared to
the prior algorithm by Hendriks and Singer, our main con-
tribution consists of two theorems that significantly reduce
the number of combinations that the algorithm will check.

Categories and Subject Descriptors
G.2.1 [Combinatorics]: [Recurrences and difference equa-
tions]; I.1.2 [Symbolic and Algebraic Manipulation]:
Algorithms—Algebraic algorithms

General Terms
Algorithms

1. INTRODUCTION
Let C be a field of characteristic zero and C be its closure.

A linear difference operator

L = anτn + an−1τ
n−1 + · · · + a0τ

0

where ai ∈ C(x) and τ is the shift operator, corresponds to
a difference equation or recurrence equation

an(x)u(x+n)+an−1(x)u(x+n−1)+· · ·+a0(x)u(x) = 0. (1)

The set of all such linear difference operators is denoted
by C(x)[τ]. A solution of L is a function u which satisfies
equation (1).

In this paper we aim to find Liouvillian solutions for linear
difference equations. Starting with an operator L of order n,
we give an algorithm to solve L whenever L is gauge equiv-
alent to an operator of the form τn + cφ ∈ C(x)[τ] (details
are provided only for n = 2 and n = 3, but it is easy to
generalize to higher order). Here c is a constant and φ is a
monic rational function (a quotient of monic polynomials).

∗Supported by NSF grant 0728853

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’09, July 28–31, 2009, Seoul, Korea.
Copyright 2009 ACM 978-1-60558-609-0/09/07 ...$5.00.

For irreducible L, finding such τn + cφ is equivalent to com-
puting Liouvillian solutions, see [9, Lemma 4.1], [8, Prop.
3.1], or [5, Prop. 55]. Computing Liouvillian solutions is
already solved in [9, 11, 2, 8] where this problem is reduced
to computing hypergeometric solutions of some other op-
erator L̃ (or system, in [8]) which has n times more finite
singularities (defined in [10]) than the original operator L.
The problem is that computing a hypergeometric solution is
done with a combinatorial algorithm [12, 7] where the num-
ber of combinations depends exponentially on the number
of singularities. We give a more direct approach, based on
Theorems 2 and 3, that avoids introducing L̃ and the corre-
sponding increase in the number of singularities. This way
there are much fewer combination to be checked.

In essence, the efficiency problem in the existing algorithm
for Liouvillian solutions is this: If one computes hypergeo-
metric solutions of L̃ (denoted Pi in [9, Lemma 5.3]), and if

one does not exploit the fact that the singularities of L̃ come
from singularities of L, then the algorithms for computing
hypergeometric solutions [7, 12] will try many more combi-
nations than necessary. The contribution of this paper is to
solve this problem with Theorems 2 and 3.

The paper is organized as follows. In Section 2, we re-
view definitions and some properties of gauge transforma-
tions and valuation growths from [9], [7] and [10]. In Sec-
tion 3, we define n-equivalence and show how it is related to
gauge equivalence. This section also contains Theorems 2
and 3 on which our algorithm is based. Section 4 gives the
algorithm for order 2 and 3. In Section 5 we work out an ex-
ample of order 2 and compare with the algorithm in [9]. In
Section 6, we discuss order > 3 and possible improvements
for our algorithm, some of which are already incorporated
in our implementation [6].

2. PRELIMINARIES AND DEFINITIONS
The statement in Theorem 1 in subsection 2.2 below was

already mentioned in [7, Section 4] but a proof was not given
there so we will give a proof in this paper. Apart from this
proof and definition 6, everything else in this section and
its subsections comes from [9], [7], [10] and [13]. The main
new results in this paper are Theorems 2 and 3 in Section 3
because those are the results that make our algorithm effi-
cient.

Let C be a field of characteristic zero and C be its al-
gebraic closure. Existence and uniqueness (up to difference
isomorphisms) of a universal extension V for difference equa-
tions with coefficients in C is proved in Section 6.2 of [13].
We will view the solutions of L(y) = 0 as elements of this

universal extension V . This way, the solution space of L
(which we will denote as V (L) ⊂ V) will be a vector space of
dimension ord(L) =: max{i | ai 6= 0} − min{i | ai 6= 0}. We
will assume a0 6= 0 in this paper so that ord(L) = max{i |
ai 6= 0}.

One can view V as a subring of the ring S which is defined
as follows

S = {[f] | f ∈ C
�
}

where [f] is the equivalence class of all f̃ ∈ C
�

for which

f − f̃ has finite support. If f is a function that is defined on
all but finitely many elements of

�
then its image [f] ∈ S is

well defined. This way C(x) can be viewed as a subring of
S.

2.1 Gauge equivalence
Definition 1. If two operators L1 and L2 in C(x)[τ]

have same order then they are called gauge equivalent if
there exists an operator G ∈ C(x)[τ] such that G(V (L1)) =
V (L2). Then G is called a gauge transformation from L1 to
L2 and we denote L1 � g L2.

If L1 and G are given then we can find G′, S ∈ C(x)[τ] for
which G′G+SL1 = 1 with the extended Euclidean algorithm
for C(x)[τ]. Then G′ is the inverse gauge transformation,
that is G′(V (L2)) = V (L1). In this way one can see that
gauge equivalence is an equivalence relation.

If there exists a gauge transformation G from L1 to L2

(in other words, if L1 and L2 are gauge equivalent) then
there is also a gauge transformation Grem from L1 to L2

with ord(Grem) < ord(L1), namely take Grem as the re-
mainder of G after right division by L1. So given a gauge
transformation G from L1 to L2 we may assume w.l.o.g.
ord(G) < ord(L1) = ord(L2).

Definition 2. Let L = � n

i=0 aiτ
i, ai ∈ C(x) and an = 1

be linear difference operator. Then we can form the system
τ (Y) = ALY where

AL =

����
�

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

−a0 −a1 −a2 . . . −an−1

� ���
	 .

We call the matrix AL the companion matrix of the equation
L(y) = 0.

So, y is solution of L(y) = 0 if and only if

Y = (y, τ (y), . . . , τn−1(y))T

is solution of τ (Y) = ALY . Suppose two linear difference
operators L and M are gauge equivalent. Then there is
a gauge transformation G from the solutions of L to the
solutions of M . Let AL, AM be companion matrices for L, M
and AG be corresponding matrix for G such that multiplying
by AG is a bijection from the solution space of τ (Y) = ALY
to the solution space of τ (Z) = AMZ. Then

τ (Z) = AMZ

τ (AGY) = AMAGY

τ (AG)τ (Y) = AMAGY

τ (Y) = τ (AG)−1AMAGY

Thus

AL = τ (AG)−1AMAG. (2)

2.2 Valuation growths of difference equations

Definition 3. Let L = anτn+· · ·+a0τ
0. After multiply-

ing L on the left by a suitable element of C(x), we may as-
sume that the ai are in C[x] and gcd(a0, . . . , an) = 1. Then
q ∈ C is called a problem point of L if q is a root of the
polynomial a0(x)an(x − n) and p ∈ C/
 is called a finite
singularity of L if L has a problem point in p (i.e. p = q+

for some problem point q).

Definition 4. Let p ∈ C/
 . For a, b ∈ p ⊂ C we say
a > b iff a − b is a positive integer.

Let L = � n

i=0 ai(x)τ i, ai(x) ∈ C(x) with a0 6= 0, an 6= 0

be a difference operator. We define Lε = � n

i=0 ai(x + ε)τ i

which is substituting x by x + ε in L. The map L 7→ Lε

defines an embedding (as non-commutative rings) of C(x)[τ]
in C(x, ε)[τ], so if L = MN then Lε = MεNε.

Definition 5. Let a ∈ C(ε). The ε-valuation vε(a) of
a at ε = 0 is the element of
 ∪ ∞ defined as follows: if
a 6= 0 then vε(a) is the largest integer m ∈
 such that
a/εm ∈ C[[ε]], and vε(0) = ∞.

Let p ∈ C/
 . We denote

Vp(Lε) = {ũ : p → C(ε) | Lε(ũ) = 0}.

Choosing ql, qr in p. Let ql be the smallest root (by the
ordering from Definition 4) of a0(x)an(x − n) in p, so ql

is the smallest problem point in p. Likewise we define qr

to be the largest root of a0(x)an(x − n) in p. If p is not
singularity, that is, if a0 and an have no roots in p, then
choose two arbitrary elements in p and define ql, qr to be
those two elements.

Definition 6. For non-zero ũ ∈ Vp(Lε) and for a, b ∈ �
if b = a + n − 1, we define the box-valuation

va
b (ũ) = min{vε(ũ(m))|m = a, a + 1, . . . , b}.

Lemma 1. With ql, qr chosen as above, we have

vq−n
q−1 (ũ) = vql−n

ql−1 (ũ) for all q ∈ {ql − 1, ql − 2, ql − 3, . . .},

vq+1
q+n(ũ) = vqr+1

qr+n(ũ) for all q ∈ {qr + 1, qr + 2, qr + 3, . . .}

.

Proof. We will only prove the first equation, the sec-
ond equation can be proved likewise. Given two consecutive
boxes [q − n, . . . , q − 1] and [q − (n − 1), . . . , q] the values
of ũ at one box can be computed from the values of ũ at
the other box using the relation an(x + ε)ũ(x + n) + · · · +
a0(x + ε)ũ(x) = 0 for x = q − n. This computation in-
volves a division either by an(q −n + ε) or by a0(q −n + ε).
If q ∈ {ql − 1, ql − 2, ql − 3, . . .} then an(q − n + ε) and
a0(q − n + ε) have ε-valuation 0, and hence this division
does not decrease the box valuation. So the valuation of
each box can not be lower than the valuation of the other
box, hence the boxes [q−n, . . . , q−1] and [q− (n−1), . . . , q]
have the same box valuation. By repeating this one can
check that the box valuation vq−n

q−1 (ũ) and vql−n
ql−1 (ũ) must be

equal for all q ∈ {ql − 1, ql − 2, ql − 3, . . .}.

We define vε,l(ũ) as vql−n
ql−1 (ũ) which, by Lemma 1, equals

the box valuation of any box on the left of ql. Likewise we
define vε,r(ũ) as vqr+1

qr+n(ũ).

Definition 7. Define the valuation growth of non-zero
ũ ∈ Vp(Lε) as

gp,ε(ũ) = vε,r(ũ) − vε,l(ũ) ∈
 .

Define the set of valuation growths of L at p as

gp(L) = {gp,ε(ũ) | ũ ∈ Vp(Lε), ũ 6= 0} ⊂
 .

Definition 8. Let L be a difference operator and p ∈
C/
 be a finite singularity of L. If gp(L) = {0} then p
is called apparent singularity. If gp(L) has more than one
element then p is called essential singularity.

Note: this definition of apparent singularity is related, but
not quite equivalent, to the definition in [1].

Theorem 1. If L1 and L2 are gauge equivalent then
gp(L1) = gp(L2) for every p ∈ C/
 .

Proof. Let G = cn−1τ
n−1+· · ·+c0 ∈ C(x)[τ] be a gauge

transformation from L1 to L2 and let p ∈ C/
 . Choose any
non-zero ũ ∈ Vp(L1,ε), and let ṽ = Gε(ũ) be the correspond-
ing solution in Vp(L2,ε). Then

ṽ(q) = c0(q + ε)ũ(q) + · · · + cn−1(q + ε)ũ(q + n − 1) (3)

for all q ∈ p. We can take q′ ∈ p such that for all q ∈
{q′ − 1, q′ − 2, q′ − 3, . . .}

(i) q + 2n − 2 is smaller (Definition 4) than any problem
point of L1 and L2

(ii) c0(q + ε), . . . , cn−1(q + ε) have ε-valuation ≥ 0.

If q < q′ then, by Lemma 1, min{vε(ũ(m))|m = q, . . . , q +
(n − 1)} = vq

q+(n−1)
(ũ) = vε,l(ũ) and by (ii) and Equa-

tion (3) vε(ṽ(q)) ≥ vq

q+(n−1)
(ũ). Hence vε(ṽ(q)) ≥ vε,l(ũ).

Repeating this for q, q + 1, . . . , q + (n − 1) we get vε,l(ṽ) =
min{vε(ṽ(m)) | m = q, . . . , q + (n − 1)}) ≥ vε,l(ũ). Since
gauge equivalence is an equivalence relation there is a gauge
transformation G′ ∈ C(x)[τ] from L2 to L1. Using this
G′ we can get the opposite inequality vε,l(ṽ) ≤ vε,l(ũ).
In all, vε,l(ṽ) = vε,l(ũ). In the same way one can show
vε,r(ṽ) = vε,r(ũ). Thus, ṽ and ũ have the same valuation
growth, and hence gp(L1) = gp(L2).

Lemma 2. If p ∈ C/
 is not a finite singularity of L (i.e.
if a0 and an have no roots in p) then gp(L) = {0}.

Proof. Let ũ ∈ Vp(Lε), ũ 6= 0. Following the proof of
Lemma 1 one can see that vq−n

q−1 (ũ) is the same for every
q ∈ p. Hence the valuation growth of ũ is 0.

3. N-EQUIVALENCE CLASS

Definition 9. We say a, b ∈ C(x) are n-equivalent if
a
b

= τn(r)
r

for some non-zero r ∈ C(x) and denote a � n b.

Note that n-equivalence is similar to [8, Section 3.2.1] (the
new results in this section are found after the Problem State-
ment below). A rational function is said to be monic if it is
a quotient of monic polynomials.

Notation We write a non-zero rational function as cφ where
φ is a monic rational function and c ∈ C∗.

Example 1. If φ(x) = (x − q1)
n1R(x) and φ̃(x) = (x −

q1 − n)n1R(x) then φ, φ̃ are n-equivalent. This means that
up to n-equivalence one can shift roots or poles by multiples
of n. If all roots and poles of cφ(x) are in
 then cφ(x) is
1-equivalent to a function of the form cxn and 3-equivalent
to a function of the form cxn1(x − 1)n2 (x − 2)n3 for some
n1, n2, n3 ∈
 with n = n1 + n2 + n3.

We will denote det(L) as the determinant of the compan-
ion matrix of L. Let L = anτn + · · · + a0τ

0 then det(L) =
(−1)n a0

an
. If L � g M and G is gauge transformation from

L to M then det(M) = τ(det(AG))
det(AG)

det(L) by Equation (2).

Thus,

det(L) � 1 det(M). (4)

If M = τn + cφ with φ monic then Equation (4) implies

a0

an
� 1 cφ and c = lc(a0)/lc(an) (5)

where lc(ai) denotes the leading coefficient of ai. Note that
this is similar to the proof of Lemma 3.13 in [8].

Lemma 3. If φ � n φ̃ and if L is gauge equivalent to τn +
cφ then L is also gauge equivalent to τ n + cφ̃.

Proof. φ̃/φ = τn(r)/r for some r ∈ C(x) by definition

of n-equivalence. Then M := τn + cφ and �M := τn + cφ̃ are
gauge equivalent because multiplying by r is a bijection from

V (M) to V (�M). Since gauge equivalence is an equivalence

relation, L � g �M .

Problem Statement
Operators of the form τn + cφ can be solved easily (see
subsection 3.1 for details). If L is gauge equivalent to an
operator of the form M = τn + cφ then we can solve L as
well. However, given only L, not M , we need to find cφ up
to n-equivalence (see Lemma 3) but a0/an only provides it
up to 1-equivalence.

Lemma 4. Let M = τ 3 + cxn1(x − 1)n2 (x − 2)n3 for
some c ∈ C∗ and let p =
 ∈ C/
 then min(gp(M)) =
min{n1, n2, n3} and max(gp(M)) = max{n1, n2, n3}.

Proof. By Lemma 1,

vε,l(ũ) = min{vε(ũ(−3)), vε(ũ(−2)), vε(ũ(−1))}

and

vε,r(ũ) = min{vε(ũ(3)), vε(ũ(4)), vε(ũ(5))}

for all non-zero ũ ∈ Vp(Mε). Now

vε(ũ(3)) = vε(ũ(−3)) + n1

vε(ũ(4)) = vε(ũ(−2)) + n2

vε(ũ(5)) = vε(ũ(−1)) + n3.

The values of vε(ũ(−3)), vε(ũ(−2)), vε(ũ(−1)) in
 �
{∞}

can chosen arbitrarily by choosing suitable ũ ∈ Vp(Mε). Do-
ing so it is easy to check from the five equations above that
the smallest resp. largest possible value one can obtain for

gp,ε(ũ) = vε,r(ũ) − vε,l(ũ)

is min{n1, n2, n3} resp. max{n1, n2, n3}. So min(gp(M)) =
min{n1, n2, n3} and max(gp(M)) = max{n1, n2, n3}.

Definition 10. Let L = anτn+· · ·+a0 and let p1, . . . , pk

be the finite singularities for L. Write pi = qi +
 for some
qi ∈ C then a0/an � 1 c � k

i=1(x − qi)
ni for some c ∈ C and

ni ∈
 . We call this ni the � 1-exponent of L at pi.

We will first sketch the key idea before giving the Theorem
below. Suppose that the operator L is gauge equivalent to
some unknown M = τ 3 + cφ, and suppose for example that
M is as in Lemma 4. The � 1-exponent of M (and hence of
L by equation (4)) at p is n1 +n2 +n3. Our strategy is now
this: to find M , our algorithm needs to compute numbers
n1, n2, n3 at every singularity p. It is easy to compute the
sum of these three numbers by taking the � 1-exponent of
L. But we can also compute the minimum and the maxi-
mum of these three numbers using Lemma 4 combined with
Theorem 1. Knowing the minimum, maximum, and sum, of
three numbers, that determines those numbers up to a per-
mutation. That is the key idea of our algorithm for order 3,
and in the Theorem below.

Theorem 2. Let L = a3τ
3 + a2τ

2 + a1τ + a0 where ai ∈
C[x]. Let {p1, . . . , pk} ⊆ C/
 be the set of finite singularities
of L. Write pi = qi +
 for some qi ∈ C. Let Mi =
max(gpi

(L)), mi = min(gpi
(L)) and ei = ni−Mi−mi where

ni is the � 1-exponent of L at pi. If L is gauge equivalent
to an operator of the form τ 3 + cφ for some monic rational
function φ ∈ C(x) and c ∈ C∗ (c is given in equation (5))
then

φ � 3

k�
i

(x − qi)
ni,1 (x − (qi + 1))ni,2 (x − (qi + 2))ni,3

where (ni,1, ni,2, ni,3) is a permutation of (Mi, mi, ei).

Proof. Let M = τ 3 + cφ and gauge equivalent to L.
We may assume that the singularities of M are a subset
of {p1, . . . , pk, pk+1, . . . , pl} for some pk+1, . . . , pl ∈ C/
 .
Write pi = qi +
 for some qi ∈ C. Now,

φ � 3

l�
i=1

(x − qi)
ni,1 (x − (qi + 1))ni,2 (x − (qi + 2))ni,3 (6)

for some ni,1, ni,2 and ni,3 as explained in Example 1. Then

a0

a3
� 1 cφ � 1 c

l�
i=1

(x − qi)
ni ,

see Equation (5) and Example 1, with

ni = ni,1 + ni,2 + ni,3. (7)

By Theorem 1 and Lemma 4,

Mi = max(gpi
(L)) = max(gpi

(τ 3+cφ)) = max{ni,1, ni,2, ni,3}

mi = min(gpi
(L)) = min(gpi

(τ 3+cφ)) = min{ni,1, ni,2, ni,3}

For i > k we have gpi
(L) = {0} by Lemma 2 (pi is not a

singularity of L if i > k) and so max{ni,1, ni,2, ni,3} = 0 and
min{ni,1, ni,2, ni,3} = 0. In all, ni,1 = ni,2 = ni,3 = 0 for all
i > k. Thus, we can replace l in equation (6) by k:

φ � 3

k�
i

(x − qi)
ni,1 (x − (qi + 1))ni,2 (x − (qi + 2))ni,3 .

The maximum of ni,1, ni,2, ni,3 is Mi and the minimum is
mi, and so the remaining number must be ei := ni − Mi −
mi by Equation (7). This determines ni,1, ni,2, ni,3 up to a
permutation.

Remark. If p ∈ C/
 is a apparent singularity (Defini-
tion 8) of L then n1 = n2 = n3 = 0 so then p will not be
a singularity of τ 3 + cφ. Hence such p are not needed for
constructing φ in our algorithm.

Example 2. Suppose L = a3τ
3 + a2τ

2 + a1τ + a0 and
p =
 ∈ C/
 is the only singularity of L. If L � g (τ 3 + cφ)
for some monic rational function φ(x) ∈ C(x) and c ∈ C∗

then for some integers n1, n2, n3 one has cxn1 (x− 1)n2 (x−
2)n3 � 3 cφ(x) � 1

a0

a3
� 1 cxn, where n = n1 + n2 + n3. Let

M = max(gp(L)), m = min(gp(L)) and e = n − M − m.
Then the ordered triple (n1, n2, n3) is a permutation of M, m
and e. If M, m and e are all distinct numbers this leaves
3! = 6 possibilities for the ordered triple (n1, n2, n3).

More generally, if there are k singularities then we have ≤
6k combinations, with equality when Mi, mi and ei are all
distinct for each singularity.

Theorem 3. Let L = a2τ
2 + a1τ + a0 where ai ∈ C[x].

Suppose the singularities are {p1, . . . , pk} ⊆ C/
 . Write
pi = qi +
 for some qi ∈ C. Let Mi = max(gpi

(L)) and
mi = min(gpi

(L)). If L is gauge equivalent to operator of

the form τ 2 + cφ then

φ � 2

�
i

��� �� (x − qi)
Mi(x − (qi + 1))mi

or

(x − qi)
mi(x − (qi + 1))Mi

and c is as in Equation (5).

The proof is similar to the proof of Theorem 2. As an
example, if p =
 is the only singularity of L then φ � 2

xM (x − 1)m or xm(x − 1)M . More generally, the number of
combinations that the algorithm need to check is 2l where l is
the number of pi for which Mi 6= mi. For each combination
we find a candidate φ up to 2-equivalence.

3.1 Solutions of τn + cφ

Solutions of L = τn + cφ can be found easily. First find a
solution u(x) of τ + cφ(nx). Let v(x) = u(x/n) then

v(x + n) = u((x + n)/n) = u(x/n + 1)

= −cφ(nx/n)u(x/n)

= −cφ(x)v(x).

Thus v(x) is a solution of L = τn + cφ(x), and (ξ)xv(x) is
also solution of L for any ξ ∈ C with ξn = 1. We obtain a
basis of V (L) this way.

4. ALGORITHMS FOR ORDER 2 AND 3
Given L = a2τ

2+a1τ+a0 ∈ C(x)[τ], after clearing denom-
inators we may assume that a0, a1, a2 ∈ C[x]. Algorithm
Tausqsols resp. Taucbsols below uses Theorem 3 resp. 2 to
compute a set comb, the set of all candidates for φ. It then
checks each φ ∈ comb.

Note that the two algorithms below only search for φ de-
fined over the field C, and that C must be given in the input.
If there exist Liouvillian solutions with φ defined not over
C but over some algebraic extension C ′ of C, then in order
to find these solutions, we need to call the algorithm with
C′ instead of C in the input. The problem of finding these
field extensions C′ of C has already been solved for hyper-
geometric solutions in [7, Section 8] and the same approach

works here as well. The only difference is that here we have
additional information that can be used to further reduce
the search for C′, for instance, unlike for hypergeometric so-
lutions, in our situation the minimal field extension needed
to find φ must necessarily be Galois over C with cyclic Ga-
lois group (this restriction is of course only useful for or-
der > 2 because an extension of degree 2 is always cyclic).
Our implementation for order 2 uses the same approach as
in [7] to determine the fields C ′ for which we have to call
Tausqsols(C′, L) in order to find all Liouvillian solutions.

Algorithm Tausqsols
Input: A field C of characteristic 0, and an operator L =
a2τ

2 + a1τ + a0 with a0, a1, a2 ∈ C[x] and a2 6= 0, a0 6= 0.
Output: A basis of solutions of L if there exists an operator
of the form τ 2 + cφ ∈ C(x)[τ] that is gauge equivalent to L.
Otherwise the empty set.

1. Let S be the irreducible factors of a2a0 over C up to
1-equivalence.

2. c := lc(a0)/lc(a2) as in equation (5).

3. comb := {1}.

4. For s ∈ S do

(a) p := a root of s.

(b) m := min(gp(L)), M := max(gp(L)).

(c) T := {s(x)ms(x − 1)M , s(x)Ms(x − 1)m}.

(d) comb := {ij | i ∈ comb, j ∈ T}.

5. For each φ ∈ comb, check if there exists a gauge trans-
formation from τ 2 + cφ to L, and if so, then

(a) Compute a basis of solutions of τ 2 + cφ.

(b) Apply the gauge transformation to the solutions
of τ 2 + cφ.

(c) Return the result of step 5b as output and stop
the algorithm.

6. Return ∅.

Algorithm Taucbsols
Input: A field C of characteristic 0, and an L = a3τ

3 +
a2τ

2 +a1τ +a0 with a0, a1, a2, a3 ∈ C[x] and a3 6= 0, a0 6= 0.
Output: A basis of solutions of L if there exists an operator
of the form τ 3 + cφ ∈ C(x)[τ] that is gauge equivalent to L.
Otherwise the empty set.

1. Let S be the irreducible factors of a3a0 over C up to
1-equivalence.

2. c := lc(a0)/lc(a3) as in equation (5).

3. We can write
a0

a3
= c

�
s∈S
i∈ � s(x − i)ni,s

with only finitely many ni,s 6= 0. Then for each s ∈ S
let ls := �

i
ni,s ∈
 .

4. comb := {1}.

5. For s ∈ S do

(a) p := root of s.

(b) m := min(gp(L)), M := max(gp(L)), e := ls −
M − m.

(c) E := the set of all permutations of [m, M, e].

(d) T := {s(x)is(x − 1)js(x − 2)k | [i, j, k] ∈ E}.

(e) comb := {ij | i ∈ comb, j ∈ T}.

6. For each φ ∈ comb, check if there exists a gauge trans-
formation from τ 3 + cφ to L, and if so, then

(a) Compute a basis of solutions of τ 3 + cφ.

(b) Apply the gauge transformation to the solutions
of τ 3 + cφ.

(c) Return the result of step 6b as output and stop
the algorithm.

7. Return ∅.

Finding a gauge transformation can be reduced to finding
a rational solution of a system of recurrence equations, which
can be done with [4] or [3]. See Section 4 of [7] for computing
the set of valuation growths of a difference operator (an
implementation is available in Maple as the undocumented
command ‘LREtools/g_p‘).

5. EXAMPLE
We will follow Algorithm Tausqsols with the operator L =

(3+2x)(x+4)(x+3)τ 2−(8x2+32x+36)τ−16x(2x+5)(x+1).

First we get S = {x, x−1/2}. Let p = 0+
 and p′ = 1/2+
 ,
then

gp(L) = {−2,−1, 0, 1, 2} and gp′(L) = {0}.

So p′ is apparent singularity of L and it has no role in con-
structing φ. Thus

comb =

�
(x − 1)2

x2
,

x2

(x − 1)2 �
and

c =
lc(a0(x))

lc(a2(x))
=

lc(−16x(2x + 5)(x + 1))

lc((3 + 2x)(x + 4)(x + 3))
= −16.

So we have two candidates τ 2 −16 (x−1)2

x2 and τ 2 −16 x2

(x−1)2
,

and the algorithm checks if any of these candidates is gauge

equivalent to L. It finds that τ 2 − 16 x2

(x−1)2
is gauge equiv-

alent to L and finds the gauge transformation

g1(x)τ + g0(x) =
1

x3 + 2x2
τ +

4x

(x2 − 1)2
. (8)

Using Section 3.1 we get a basis of solutions of τ 2−16 (x+1)2

x2 ,
namely

v(x) and (−1)xv(x), where v(x) =
16

x
2 Γ(x

2
+ 1

2
)2

Γ(x
2
)2

. (9)

By applying the gauge transformation (8) to the solution
(9) we get

g1(x)v(x + 1) + g0(x)v(x),

(−1)x+1g1(x)v(x + 1) + (−1)xg0(x)v(x)

as a basis of solutions of L, where g1(x), g0(x) are given in
equation (8).

The algorithm presented in [9] would construct an oper-

ator L̃ and then compute its hypergeometric solutions. In
the example L given above, we find (we used Khmelnov’s

[11] Maple implementation to compute L̃)

L̃ = (x + 3)(x + 2)(8x2 + 16x + 9)(5 + 2x)2τ 2

+ (−8100 − 35904x − 1024x6 − 9216x5

− 66112x2 − 63744x3 − 33664x4)τ

+ 256x(x + 1)(8x2 + 32x + 33)(1 + 2x)2.

Apparent singularities of L can become non-singular in the
operator L̃, and non-singular points can become apparent
singularities, but this does not matter because neither ap-
parent singularities nor non-singular points contribute to the
combinatorial problem.

Concerning the singularities that do contribute to the
combinatorial problem, each singularity p = q +
 of L cor-
responds to n := ord(L) singularities of L̃, namely p1 =
q/n +
 , p2 = (q + 1)/n +
 , p3 = (q + 2)/n +
 , . . . ,
pn = (q + n − 1)/n +
 . The set gp(L) at the singular-

ity p of L is the same as the set gpi
(L̃) at each of the n

singularities p1, . . . , pn of L̃.
So in this example, singularity p = 0+
 of L corresponds

to two singularities p1 = 0+
 and p2 = 1/2+
 of L̃, each of
which has the same set of valuation growths {−2,−1, 0, 1, 2}
as L has at p. We verified with a Maple computation that
gpi

(L̃), for i = 1, 2, is indeed equal to {−2,−1, 0, 1, 2}. Note

that L̃ has another singularity, given by a root of 8x2+16x+9
(or of 8x2 + 32x + 33 which is 1-equivalent to it). Since this
singularity corresponds to a regular point of L, we conclude
that this must be an apparent singularity, and indeed, we
verified with a Maple computation that the set of valuation
growths is {0} at this singularity.

If we solve L̃ with the algorithm hypergeomsols in Maple,
then it has to choose an element of gp1

(L̃) and an element of

gp2
(L̃), and there are 5× 5 = 25 ways to make such choices.

Thus, the number of combinations coming from the finite
singularities is 25. In contrast, our algorithm had only 2
combinations to check. For order 3, the algorithm in [9] calls
hypergeomsols several times (see [2] to reduce the number
of such calls) and if N is the number of combinations that
hypergeomsols has to check in one such call, then the number
of combinations in our algorithm is at most N r where r =
max{log(3!)/log(33), log(3)/log(23)} = 0.54.... So we have
reduced the combinatorial problem by roughly the square
root.

6. POSSIBLE IMPROVEMENTS
For equations of order d ≥ 4, the situation is similar to

order 3, in the sense that for each singularity we need to
determine d numbers n1, . . . , nd. Again, from a0/ad we can
compute n1 + · · · + nd, while from gp(L) we can obtain the
minimum and maximum of n1, . . . , nd. This time, however,
these three pieces of data (minimum, maximum, and sum)
are no longer sufficient to determine n1, . . . , nd up to a per-
mutation. However, they do allow to find a finite set of
candidates for (n1, . . . , nd). This way one obtains an al-
gorithm for d ≥ 4. The multiplicity of the minimum resp.
maximum in n1, . . . , nd can be found by computing the rank
of the linear maps Ep,r resp. Ep,l defined in [10]. This helps
to further decrease the combinatorial problem.

In [9], computing Liouvillian solutions of L is reduced to
computing hypergeometric solutions of some other operator
that we denoted as L̃. Although we did not use L̃ in our
algorithm, one can nevertheless interpret our algorithm as a
way to reduce the combinatorial problem that occurs when
computing the hypergeometric solutions of L̃. This way one
can see that techniques to speed up computation of hyperge-
ometric solutions can be adapted to speed up our algorithm
as well. For instance, the p-curvature can be used in the
same way as in [7].

For many irreducible operators one can quickly rule out
the existence of Liouvillian solutions by computing the p-
curvature, or by computing local data at infinity (the dom-
inant term in the formal solutions). Such local data can be
computed quickly, so implementing such a test improves the
overall performance of the algorithm.

Another issue is that even though we have drastically re-
duced the number of combinations to be checked, the CPU
time per combination in our approach is more than the CPU
time per combination in the L̃ approach. In our approach,
for each combination the algorithm checks if there is a gauge
transformation, while in the L̃ approach, for each combina-
tion one has to check if there is a polynomial solution. It
is not difficult to address this issue because one can trans-
late a combination in our approach to a combination for
L̃, and after this, the cost per combination is reduced to
the cost of computing polynomial solutions. In essence this
approach would be quite similar to [9] except that one has
much fewer combinations to check. To properly implement
this, one needs to combine this approach with [2], because
[9] perform some other unnecessary computations as well
(other than checking too many combinations when solving

L̃) and those other problems are addressed in [2].
For order 2 there is another way to find Liouvillian so-

lutions that is even faster than the approach in this pa-
per; the number of combinations is only 1. Unfortunately,
this approach does not generalize to order > 2. Given
L = a2τ

2 + a1τ + a0 ∈ C(x)[τ], with a0a1a2 6= 0 and L irre-
ducible, compute an operator M ∈ C(x)[τ] of order 3 such
that u2v ∈ V (M) for every u ∈ V (L) and v ∈ V (a0τ − a2).
Then (assuming L is irreducible) L has non-zero Liouvillian
solutions iff M has a non-zero rational solution. Moreover,
the Liouvillian solutions of L can be quickly computed from
a rational solution of M . This approach has been imple-
mented by graduate student Giles Levy.

7. REFERENCES
[1] S.A. Abramov, M. A. Barkatou, M. van Hoeij,

Apparent Singularities of Linear Difference Equations
with Polynomial Coefficients, AAECC, 17, p.
117–133, (2006).

[2] S.A. Abramov, M.A. Barkatou, D.E. Khmelnov, On
m-Interlacing Solutions of Linear Difference
Equations, preprint (2009).

[3] S. A. Abramov and M. Bronstein, On solutions of
linear functional systems, ISSAC’2001, p. 1–6, (2001).

[4] M. A. Barkatou, Rational Solutions of Matrix
Difference Equations: The Problem of Equivalence and
Factorization, ISSAC’1999, p. 277–282, (1999).

[5] R. Bomboy, Réductibilité et résolubilité des équations
aux différences finies, PhD thesis, (2001).
www-sop.inria.fr/cafe/personnel/Raphael.Bomboy

[6] Y. Cha, M. van Hoeij, Implementation for Tausqsols,
www.math.fsu.edu/~hoeij/files/DifferenceLiouv

(2008).

[7] T. Cluzeau, M. van Hoeij, Computing hypergeometric
solutions of linear difference equations, AAECC,
17(2), p. 83–115, (2006).

[8] R. Feng, M. F. Singer, M. Wu, Liouvillian Solutions of
Linear Difference-Differential Equations, preprint,
arXiv:0810.1574v1, (2008).

[9] P. A. Hendriks, M. F. Singer, Solving difference
equations in finite terms, J. Symbolic Comput., 27, p.
239–259, (1999).

[10] M. van Hoeij, Finite singularities and hypergeometric
solutions of linear recurrence equations, J. Pure Appl.
Algebra, 139, p. 109–131, (1999).

[11] D. Khmelnov, Search for Liouvillian solutions of
linear recurrence equations in the MAPLE computer
algebra system, Programming and Computer Software,
34, No. 4, p. 204–209, (2008).

[12] M. Petkovšek, Hypergeometric solutions of linear
difference equations with polynomial coefficients, J.
Symbolic Comput., 14, p. 243–264, (1992).

[13] M. van der Put, M. F. Singer, Galois Theory of
Difference Equations , Springer-Verlag, 1666, Lecture
Notes in Mathematics, (1997).

