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ABSTRACT
In this paper we give a new algorithm to compute Liouvillian so-
lutions of linear difference equations. The first algorithm for this
was given by Hendriks in 1998, and Hendriks and Singer in 1999.
Several improvements have been published, including a paper by
Cha and van Hoeij that reduces the combinatorial problem. But the
number of combinations still depended exponentially on the num-
ber of singularities. For irreducible second order equations, we give
a short and very efficient algorithm; the number of combinations
is 1.

Categories and Subject Descriptors
G.2.1 [Combinatorics]: [Recurrences and difference equations];
I.1.2 [Symbolic and Algebraic Manipulation]: Algorithms—Al-
gebraic algorithms

General Terms
Algorithms

1. INTRODUCTION
Let τ denote the shift operator: τ( f (n)) = f (n + 1). An operator

L1 = τ
2 + a1τ + a0 with a0, a1 ∈ C(n) corresponds to a recurrence

relation u(n + 2) + a1(n)u(n + 1) + a0(n)u(n) = 0. Algorithms for
finding rational resp. hypergeometric resp. Liouvillian solutions
have been given in [2, 4] resp. [7, 5, 6] resp. [11, 12, 3, 14].
The algorithms for hypergeometric solutions use a combinatorial
search, where each of the combinations involves computing poly-
nomial solutions. The algorithms for Liouvillian solutions are also
combinatorial in nature, either because they call an algorithm for
hypergeometric solutions [11, 12, 3], or perform a reduced (but
still exponential) combinatorial search [14].

A second order operator L1 is irreducible if and only if it does
not have hypergeometric solutions. If L1 is irreducible, then the
task of finding a gauge transformation (see Definition 8) from L1 to
an operator of the form L2 = τ

2 + b0 with b0 ∈ C(n) is equivalent
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to finding Liouvillian solutions of L1 ([12, Lemma 4.1]). Finding
such a transformation is useful because τ2+b0 is easily solved with
interlaced hypergeometric terms as follows:
Let the factorization of b0 into monic linear factors be c p1 p2 ···pi

q1q2 ···q j
, c ∈

C, then τ2 + b0 has solutions

Γ(p1/2)Γ(p2/2) · · · Γ(pi/2)
Γ(q1/2)Γ(q2/2) · · · Γ(q j/2)

· cn/2 ·

{
k1, if n even
k2, if n odd

(1)

where k1, k2 are arbitrary constants.

As an example we look at A099364 from ‘The On-Line Encyclo-
pedia of Integer Sequences’ or OEIS ([1]): A099364 is a sequence
named “An inverse Chebyshev transform of (1 − x)2” and satisfies
(n+ 6)u(n+ 2)+ 2u(n+ 1)− (8+ 4n)u(n) = 0. Our implementation
([16] or [15]) returns the solution:

u(n) =
(

1
6

n +
5
6

)
v(n) −

(
1

12
n +

1
2

)
v(n + 1),

where v(n + 2) −
4(n + 2)

n + 7
v(n) = 0 and {v(0) = 0, v(1) = −2}

so v(n) can be represented as in equation (1). Prior algorithms for
Liouvillian solutions will also solve this equation, using a search
that depends exponentially on the number of finite singularities (see
[14] for more details). This paper introduces a new method for find-
ing Liouvillian solutions. It works for irreducible linear difference
equations of order 2. Our algorithm is short and easy to imple-
ment [16], but its primary benefit is that it is very efficient because
Corollary 1 allows us to reduce the number of combinations to 1.

The idea behind the algorithm is as follows (for notations see
Section 2). Suppose that L1 = τ

2 + a1τ + a0 and L2 = τ
2 + b0

with b0, a0, a1 , 0, and b0 unknown. If there exists a gauge trans-
formation G : L1 → L2 then there is an induced transformation be-
tween their symmetric squares Ls2

1 , L
s2
2 , which are of order 3 and

2 respectively. The induced mapping must therefore have a one di-
mensional kernel, which corresponds to a hypergeometric solution
of Ls2

1 . But we can find this hypergeometric solution without a
combinatorial search, because Corollary 1 reduces the problem to
computing a rational solution.

2. PRELIMINARIES
More detailed preliminaries can be found in [15].

D 1. τ will refer to the shift operator acting on C(n)
and Mata×b(C(n)) by τ : n 7→ n + 1.

An operator L =
∑

i aiτ
i acts as Lu(n) =

∑
i aiu(n + i).



D 2. C(n)[τ] is the ring of linear difference operators
where ring multiplication is composition of operators L1L2 = L1 ◦

L2, e.g. (τ − a(n))(τ − b(n)) = τ2 − (a(n) + b(n + 1))τ + a(n)b(n).

We let τ operate on u(n) ∈ CN by u(n) 7→ u(n + 1).

D 3. [‘Galois Theory of Difference Equations’ Exam-
ple 1.3 [10]] Let S = CN/∼ where s1 ∼ s2 if there exists N ∈ N
such that, for all n > N, s1(n) = s2(n).

The reason for using S is that the dimension of the solution space
will be equal to the order of the difference operator (see Theorem
1 below). Working in S also enables us to work in C[n][τ] as well
as in C(n)[τ]. In particular, if L ∈ C(n)[τ] and we multiply away
the denominators of the coefficients to obtain an element of C[n][τ]
then the solution space does not change when working in S .

D 4. V(L) refers to the solution space of the operator
L, i.e. V(L) = {u ∈ S | Lu = 0}, where S is as in Definition 3.

E 1. For L = τ+n+1 we write V(L) = C · (−1)nΓ(n+1)
or V(L) = C · [1,−1, 2,−6, 24,−120, . . . ].

D 5. A unit is a sequence in S that is invertible, i.e. a
sequence that only has finitely many zeros.

T 1. [‘A=B’ Theorem 8.2.1 [9]] Let L =
∑r

k=0 akτ
k be a

linear difference operator of order r on S . If ar and a0 are units,
then dim(ker(L)) = r.

We can view C(n) as a subset of S so the theorem applies to
L ∈ C(n)[τ] with a0, ar , 0.

D 6. A function or sequence v(n) for which v(n+1)/v(n)
is a rational function of n will be called a hypergeometric term.
Such a v(n) will be called a hypergeometric solution of any L ∈
C(n)[τ] for which Lv = 0. It corresponds to a first order right hand
factor of L, namely τ − r(n) where r(n) = v(n + 1)/v(n).

A hypergeometric function is a function
∑∞

n=0 v(n)xn where v(n)
is a hypergeometric term.

2.1 Gauge Transformations
Let D = C(n)[τ]. If L ∈ D \ {0} then D/DL is a D−module.

D 7. L1 is gauge equivalent to L2 when D/DL1 and
D/DL2 are isomorphic as D−modules.

L 1. L1 is gauge equivalent to L2 if and only if there exists
G ∈ D such that G(V(L1)) = V(L2) and L1, L2 have the same order.
Thus G defines a bijection V(L1)→ V(L2).

Note: If D/DL1 � D/DL2 then G in the Lemma corresponds to
the image in D/DL1 of the element 1 ∈ D/DL2.

D 8. The bijection defined by G in Lemma 1 above will
be called a gauge transformation.

D 9. Let r(n) = cp1(n)e1 · · · p j(n)e j ∈ C(n) with C ⊆
C. Let the ei ∈ Z, let the pi(n) be irreducible in C[n], and let
si ∈ C be the sum of the roots of pi(n). Then r(n) is said to be in
shift normal form if − deg(pi(n)) < Re(si) 6 0, for i = 1, . . . , j.
We denote SNF(r(n)) as the shift normalized form of r(n) which
is obtained by replacing each pi(n) by pi(n + ki) for some ki ∈ Z
such that pi(n + ki) is in shift normal form. Two rational functions,

r1(n), r2(n) will be called shift equivalent, denoted r1(n)
SE
≡ r2(n), if

SNF(r1(n)) = SNF(r2(n)).

R 1. Let r1, r2 ∈ C(n). If r1(n)
SE
≡ r2(n) then there exists

r ∈ C(n) such that r1/r2 = r(n + 1)/r(n). This is easy to prove if
r1, r2 are irreducible polynomials. The general case reduces to the

irreducible case because the relation
SE
≡ is closed under multiplica-

tion, and the same is true for the group of all r(n + 1)/r(n).

D 10. The companion matrix of a monic difference op-
erator

L = τk + ak−1τ
k−1 + · · · + a0, ai ∈ C(n)

which is satisfied by u(n) will refer to the matrix:

M =



0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 1
−a0 −a1 . . . −ak−2 −ak−1


. (2)

The equation Lu = 0 is equivalent to the system τ(Y) = MY where

Y =


u(n)
...

u(n + k − 1)

 . (3)

D 11. Let L = akτ
k + ak−1τ

k−1 + · · · + a0, ai ∈ C(n).
The determinant of L, det(L) := (−1)ka0/ak, i.e. the determinant of
its companion matrix.

L 2. If there exists a gauge transformation G : V(L1) →

V(L2) then det(L1)
SE
≡ det(L2).

The proof follows by examining the matrix representations of L1,
L2, and G. If Ĝ is the matrix representation of G then det(L2) =
det(L1)τ(det(Ĝ))/det(Ĝ), for details see [15].

2.2 Liouvillian Solutions and Symmetric Prod-
ucts

D 12 (D 6  [6]). Let L1, L2 ∈ C(n)[τ]. The
symmetric product (called term product in [15]) L1 ⊗ L2 of L1 and
L2 is defined as the monic operator L ∈ C(n)[τ] of smallest order
such that L(u1u2) = 0 for all u1, u2 ∈ S with L1u1 = 0 and L2u2 = 0.

The following is an example of the symmetric product of a sec-
ond order L1 = τ

2 + b(n)τ + c(n) with a first order L2 = τ − a(n):

L1 ⊗ L2 = τ
2 + b(n)a(n + 1)τ + c(n)a(n)a(n + 1).

D 13. The symmetric square of L, denoted Ls2, will
refer to the symmetric product of L and L.

Liouvillian solutions are defined in [12] Section 3.2. For irre-
ducible operators they are characterized by the following theorem.

T 2. (Propositions 31-32 in [8], or Lemma 4.1 in [12]):
An irreducible k’th order operator L has Liouvillian solutions if
and only if its companion matrix is gauge equivalent to one that
can be written as

M =


0 1 . . . 0 0
...
...
. . .

...
...

0 0 . . . 0 1
−a 0 . . . 0 0

 , a ∈ C(n).

In other words, L is gauge equivalent to τk + a.



L 3. Let L = a2τ
2 + a1τ + a0, ai ∈ C[n], a0, a2 , 0.

1. If a1 , 0 then

Ls2 =c3τ
3 + c2τ

2 + c1τ + c0,

where:

c3 =a1(n)a2(n + 1)2a2(n)
c2 =a1(n + 1)a2(n)(−a1(n + 1)a1(n) + a0(n + 1)a2(n))
c1 =a0(n + 1)a1(n)(a1(n + 1)a1(n) − a0(n + 1)a2(n))

c0 = − a1(n + 1)a0(n + 1)a0(n)2.
(4)

If a1 = 0 then

Ls2 = a2
2τ

2 − a2
0. (5)

2. Ls2 has order:
{

2, if a1 = 0
3, if a1 , 0

For a proof of the lemma, which relies on the linear indepen-
dence of the solutions of L, see [15].

R 1. The proof of the Lemma below illustrates computa-
tions in Step 4 of Algorithm FindLiouvillian in Section 3.

L 4. Let a , 0. Given a gauge transformation from L =
τ2 + a(n)τ + b(n) to L̂ = τ2 + r(n) one can compute a difference
operator mapping V(Ls2) onto V(L̂s2).

P. Let u(n) ∈ V(L) and v(n) ∈ V(L̂) with v(n) = g0(n)u(n) +
g1(n)u(n + 1), then

v(n)2 = g0(n)2u(n)2 + 2g0(n)g1(n)u(n)u(n + 1) + g1(n)2u(n + 1)2.

The substitution (obtained by squaring u(n + 2) = −a(n)u(n + 1) −
b(n)u(n)):

u(n)u(n + 1) =
u(n + 2)2 − a(n)2u(n + 1)2 − b(n)2u(n)2

2a(n)b(n)

yields:

v(n)2 =
g0(n)(−g1(n)b(n) + g0(n)a(n))

a(n)
u(n)2

−
g1(n)(−g1(n)b(n) + g0(n)a(n))

b(n)
u(n+1)2 +

g0(n)g1(n)
a(n)b(n)

u(n+2)2.

(6)

Since V(Ls2) is spanned by squares, by linear extension equation (6)
will define a map from V(Ls2) to V(L̂s2). To prove that this map
is onto, choose linearly independent u1, u2 ∈ V(L). Applying the
gauge transformation g0(n)τ0 + g1(n)τ produces linearly indepen-
dent v1, v2 ∈ V(L̂). Then v2

1, v
2
2 must be linearly independent as

well, and hence form a basis of V(L̂s2). This basis is the image of
u2

1, u
2
2 under the map given by (6), and hence this map is onto (so

the kernel must then have dimension 3-2 = 1).

L 5. With notations as in Lemma 4, if L is irreducible then

1. L̂ is irreducible

2. L̂s2 is irreducible
P. The first item follows from Definitions 7, 8 and the as-

sumption that L is irreducible. For the second item, assume that τ−s
is a right-hand factor of L̂s2 = τ2 − r2. Then r2 = sτ(s). Suppose
that s is not a square, then take a point p ∈ C with maximal real
part, for which s has a root or pole at p of odd order. Then sτ(s)
has a root or pole at p with odd order, contradicting r2 = sτ(s).
Hence s is a square in C(n), say s = t2. So r = ±tτ(t), and after
possibly multiplying s by

√
−1 we have r = −tτ(t). But then τ − t

is a right-hand factor of L̂ = τ2 + r, contradicting item 1.

3. ALGORITHM FINDLIOUVILLIAN
For explanations and comments on the steps in the algorithm, see

Section 4.
Algorithm FindLiouvillian
Input: L ∈ C[n][τ] a second order, irreducible, homogeneous dif-
ference operator. Write L = a2(n)τ2 + a1(n)τ + a0(n).
Output: A two-term difference operator, L̂, with a gauge transfor-
mation from L̂ to L, if it exists.

1. If a1 = 0 then return L̂ = L and stop.

2. Let u(n) be an indeterminate function. Impose the relation
Lu(n) = 0, i.e.

u(n + 2) = −
1

a2(n)
(a0(n)u(n) + a1(n)u(n + 1)). (7)

3. Let d = det(L) = a0/a2. Let R be a non-zero rational solution
of

LT := Ls2 ⊗ (τ + 1/d),

if such solution exists, else return NULL and stop. A formula
for LT is d(n+ 2)d(n+ 1)d(n)c3(n)τ3 − d(n+ 1)d(n)c2(n)τ2 +

d(n)c1(n)τ − c0(n) where the ci are from (4).

4. Let g be an indeterminate and let v(n) = gu(n) + u(n + 1).
Compute d0, d1, d2 ∈ C(n)[g] such that

v(n)2 = d0u(n)2 + d1u(n + 1)2 + d2u(n + 2)2. (8)

(To compute d0, d1, d2 first substitute Equation (7) into Equa-
tion (8).)

5. Let S denote a non-zero solution of τ + d, so τ(S ) = −d(n)S
and τ2(S ) = d(n + 1)d(n)S . Substitute the following

u(n)2 = R(n)S (n)

u(n + 1)2 = −R(n + 1)d(n)S (n)

u(n + 2)2 = R(n + 2)d(n + 1)d(n)S (n)

(9)

into Equation (8) to get v(n)2 = S (n)A for some A ∈ C(n)[g].

6. Solve A = 0 for g and choose one solution. A is a quadratic
equation so this solution is in C(n) or in a quadratic extension
of C(n). If g < C(n) then return an error message and stop.

7. Return L̂ as well as the transformation V(L̂)→ V(L) :

L̂ = τ2 + b(n)
τ(δ)
δ

(10)

u(n) =
1
δ

((g(n + 1) − a(n))v(n) − v(n + 1)) (11)

where a(n) = a1/a2, b(n) = a0/a2, δ = g(n)g(n + 1) −
g(n)a(n) + b(n), and v(n) denotes a solution of L̂.

R 2. The formula for the gauge transformation given in
Step 7 was found by computing the inverse of the gauge transfor-
mation v(n) = gu(n)+u(n+1) introduced in Step 4 (where the value
of g is computed in Steps 5 and 6).

E 2. Consider nu(n+2)−u(n+1)−(n2−1)(2n−1)u(n) =
0. By downloading FindLiouvillian [16] and running it on nτ2 −



τ − (n2 − 1)(2n − 1) one obtains:

d = − (n2 − 1)(2n − 1)/n

LT =n (n + 3) (2n + 3) (n + 1)2 τ3−

n (n + 2)
(
2n3 + 3n2 − n + 1

)
τ2−

(n + 2) (n + 1)
(
2n3 + 3n2 − n + 1

)
τ+

n (n + 2) (n − 1) (n + 1) (2n − 1)

(denominators were multiplied away by taking the primitive part)

R =
1
n
, A =

1
n
· (g2 + (3n − 2)g + (2n − 1)(n − 1))

g = 1 − n, δ = 1 − n2

and finally:

L̂ = τ2 − (2n − 1)(n + 2), u(n) =
1
n

v(n) +
1

n2 − 1
v(n + 1).

The algorithm is explained in Section 4 below. As mentioned in
the Introduction, the main point is to show that the hypergeometric
solution of Ls2 corresponds to a rational solution of Ls2 ⊗ (τ +
1/ det(L)) as this is what allows us to eliminate the combinatorial
aspect of the algorithm.

4. EXPLANATION
Idea: Assume that L = τ2 + a1τ + a0, a1 , 0 is Liouvillian and
irreducible, then there exists a gauge transformation L → L̂ for
some L̂ of the form τ2 + r (see Theorem 2). dim(V(Ls2)) = 3
and dim(V(L̂s2)) = 2 so the transformation Ls2 → L̂s2 has a
1−dimensional kernel corresponding to a right hand factor of Ls2

(i.e. Ls2 has a hypergeometric solution, namely RS in Step 5). This
gives us the gauge transformation from V(L) to V(L̂). In order that
Step 3 only needs to search for a solution ∈ C(n) (which is easier
than computing a more general hypergeometric solution) we work
with the symmetric product of Ls2 and τ − 1/ det(L) and use The-
orem 3.

4.1 Algorithm Step 3
Let L be from Input and let L̂ be a two-term operator.

R 2. A symmetric product of a second order two-term op-
erator with a first order difference operator is again a second order
two-term operator. It follows that we may disregard the symmetric
product, i.e. we need only search for a gauge transformation.

L 6. Let A1, A2,G2 ∈ C(n)[τ], ord(A1) = 3, ord(A2) = 2,

and assume that G2(V(A1)) = V(A2), i.e. V(A1)
G2
� V(A2). Then

A1 has a first order right hand factor, as well a a second order left
hand factor that is gauge equivalent to A2.

P. V(GCRD(A1,G2)) = V(A1)∩V(G2) = ker(G2 : V(A1)�
V(A2)) which has dimension 3 − 2 = 1 and so A1 has a first order
right hand factor, L1 = GCRD(A1,G2). Write A1 = L2L1, G2 =

G̃L1 then G̃ : V(L2) → V(A2) shows that L2 is gauge equivalent to
A2.

For the theorem below we now substitute Ls2, L̂s2 for A1, A2,
respectively, from the preceding Lemma.

T 3. Let L̂ = r2τ
2+r0 and let L = a2τ

2+a1τ+a0, ai , 0.
Suppose there is a gauge transformation G : V(L) → V(L̂) then by
Lemma 4 there is G2 : V(Ls2)→ V(L̂s2). Let L1 = GCRD(G2, Ls2)
(which has order 1 by Lemma 6) and write Ls2 = L2L1. Then

det(L1)
SE
≡ − det(L).

P. 1. det(L)
SE
≡ det(L̂), see Lemma 2.

2. det(Ls2)
SE
≡ det(L)3, see the formula for Ls2 in Lemma 3.

3. det(L̂s2) = − det(L̂)2 SE
≡ − det(L)2, see Lemma 3 with a1 = 0

and Item 1, respectively.

4. det(Ls2) = det(L2L1)
SE
≡ det(L2) det(L1).

5. L2 is gauge equivalent to L̂s2, see Lemma 6.

6. det(L2)
SE
≡ det(L̂s2) = − det(L̂)2 SE

≡ − det(L)2, see Items 5,3,1.

7. det(L1)
SE
≡ − det(L), see Items 4,2,6.

C 1. Let L, L̂,G be as in Theorem 3 so that Ls2 =

L2L1 then there exists a rational solution of Ls2 ⊗ (τ + 1/ det(L)).

Step 3 computes this rational solution. The solution is rational
because the first order factor has determinant shift equivalent to 1
(the solution is r(n) from Remark 1). Lemma 5 combined with
Lemma 6 shows that if L is irreducible, then L2 in the corollary is
irreducible, which implies that the rational solution is unique (up to
constant multiples).

4.2 Algorithm Step 4
L 7. If T1 : g1τ + g0 with g1 , 0 defines a gauge transfor-

mation from L to a two-term operator then T2 : τ + g0/g1 is also a
gauge transformation from L to a two-term operator.

The two transformations differ by the term product u 7→ g1u and
so the Lemma’s claim follows from Remark 2. (The case g1 = 0
defines a term product.)

4.3 Algorithm Step 5
Equation (8) defines the map Ls2 → L̂s2 and RS is in the kernel.

Both u(n)2 and RS satisfy Ls2, see steps 2 and 3. (Recall that
RS is the hypergeometric solution of Ls2 that we computed using
Corollary 1.)

4.4 Algorithm Step 6
It can be proven that if there exists a gauge transformation from

L ∈ C(n)[τ] to an operator of the form τ2 + α where α is algebraic
overC(n) then there also exists a gauge transformation G : L→ L̃ =
τ2 + α̃ with G, L̃ ∈ C(n)[τ]. Note that if L ∈ C(n)[τ], C ⊂ C then
an algebraic extension of C may occur, see the following example.

E 3. L1 = τ
2 − τ− n2 + 1 and L2 = τ

2 − (n+ i)(n+ 1− i).
are gauge equivalent with L1 ∈ Q(n)[τ] and L2 ∈ Q(n)[τ,

√
−1].

Both 1
n−iτ + 1, which sends L2 to L1, and its inverse are ∈ C(n)[τ].

5. ADDITIONAL WORK
It is interesting to note that if we introduce a minus sign in Step 3

of Algorithm FindLiouvillian, setting d := −a0/a2, then the algo-
rithm turns into the so-called eigenring method (Section 4 in [4]).
Specifically, the τ + g computed in the algorithm (this time, use
both solutions of A) will then be right-hand factors of L (this is not
a complete algorithm for factoring L, it works if L has precisely
two first order right-hand factors in C(n)[τ]).

To generalize our algorithm to n’th order, we need to compute a
gauge transformation from L to L⊗ (τ− ζn) where ζn is an n’th root
of unity. So we need to find or write an implementation that can
compute gauge transformations while allowing algebraic numbers
in the input.



6. REFERENCES
[1] N. J. A. Sloane. The On-Line Encyclopedia of Integer

Sequences. World-Wide Web URL
www.research.att.com/∼njas/sequences/

[2] S. A. Abramov. Rational solutions of linear difference and
q-difference equations with polynomial coefficients. In
(Russian) Programmirovanie, 6: 3-11, 1995; translation in
Program. Comput. Software 21, 6: 273-278, (1995).

[3] S.A. Abramov, M.A. Barkatou, D.E. Khmelnov. On
m-Interlacing Solutions of Linear Difference Equations,
LNCS, 5743, p. 1-17 (2009).

[4] M. A. Barkatou. Rational Solutions of Matrix Difference
Equations: The Problem of Equivalence and Factorization,
ISSAC’1999, p. 277–282, (1999).

[5] M. van Hoeij. Finite singularities and hypergeometric
solutions of linear recurrence equations. In Journal of Pure
and Applied Algebra, 139: 109-131, 1999.

[6] T. Cluzeau, M. van Hoeij. Computing Hypergeometric
Solutions of Linear Recurrence Equations. In Applicable
Algebra in Engineering, Communication and Computing,
17(2): 83-115, 2006.

[7] M. Petkovšek. Hypergeometric solutions of linear
recurrences with polynomial coefficients. In Journal of
Symbolic Computation, 14(2-3): 243-264, 1992.

[8] R. Feng, M. F. Singer, M. Wu. Liouvillian solutions of
difference-differential equations. To appear in Journal of
Symbolic Computation, 2009.

[9] M. Petkovšek, H. S. Wilf, D. Zeilberger. A = B. With a
foreword by Donald E. Knuth. A. K. Peters, Ltd., Wellesley,
MA, 1996.

[10] M. van der Put, M. F. Singer. Galois theory of difference
equations. In Lecture Notes in Mathematics, vol. 1666,
Springer, Berlin, 1997.

[11] P.A. Hendriks An algorithm for determining the difference
Galois group for second order linear difference equations. In
Journal of Symbolic Computation, 26: 445âĂŞ462 1998.
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