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Preliminaries

Definition

τ will refer to the shift operator acting on C(n) by τ : n 7→ n + 1.

An operator L =
∑

i aiτ
i acts as Lu(n) =

∑
i aiu(n + i).

Definition

C(n)[τ ] is the ring of linear difference operators where ring
multiplication is composition of operators L1L2 = L1 ◦ L2.

Definition

Let S = CN/∼ where s1 ∼ s2 if there exists N ∈ N such that, for
all n > N, s1(n) = s2(n).
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Definition

V (L) refers to the solution space of the operator L, i.e.
V (L) := {u ∈ S | Lu = 0}.

If L =
∑k

i=0 aiτ
i , a0, ak 6= 0, then dim(V (L)) = k

(‘A=B’ Theorem 8.2.1).

Definition

A function or sequence v(n) such that v(n + 1)/v(n) = r(n) is a
rational function of n will be called a hypergeometric term.
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Tools

Let D = C(n)[τ ]. If L ∈ D with L 6= 0 then D/DL is a D−module.

Definition

L1 is gauge equivalent to L2 when D/DL1 and D/DL2 are
isomorphic as D−modules.

Lemma

L1 is gauge equivalent to L2 if and only if ∃ G ∈ D such that
G (V (L1)) = V (L2) and L1, L2 have the same order. Thus G
defines a bijection V (L1)→ V (L2).

Definition

The bijection defined by G in the preceding lemma will be called a
gauge transformation.
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Definition

The companion matrix of a monic difference operator

L = τk + ak−1τ
k−1 + · · ·+ a0, ai ∈ C(n)

will refer to the matrix:

M =


0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 1
−a0 −a1 . . . −ak−2 −ak−1

 .
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The equation Lu = 0 is equivalent to the system τ(Y ) = MY
where

Y =

 u(n)
...

u(n + k − 1)

 .

Definition

Let L = akτ
k + ak−1τ

k−1 + · · ·+ a0, ai ∈ C(n). The determinant
of L, det(L) := (−1)ka0/ak , i.e. the determinant of its companion
matrix.
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Definition

Two rational functions will be called shift equivalent, denoted

r1
SE≡ r2, if

τ − r1/r2 has a rational solution

or, equivalently,

the difference modules for τ − r1 and τ − r2 are isomorphic.

Lemma

If there exists a gauge transformation G : V (L1)→ V (L2) then

det(L1)
SE≡ det(L2).
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Liouvillian

Liouvillian solutions are defined in Hendriks-Singer 1999
Section 3.2. For irreducible operators they are characterized by the
following theorem:

Theorem (Propositions 31-32 in Feng-Singer-Wu 2009 or
Lemma 4.1 in Hendriks-Singer 1999)

An irreducible k’th order operator L has Liouvillian solutions if and
only if L is gauge equivalent to τk + α, α ∈ C(n).
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Finding a gauge equivalence to τk + α is desirable because it is
easily solved with interlaced hypergeometric terms, e.g.
τ2 − 4(n + 2)/(n + 7) has solutions:

Γ(n2 + 1)

Γ(n2 + 7
2)
· 2n ·

{
k1, if n even

k2, if n odd

where k1, k2 are arbitrary constants.
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Definition

Let L1, L2 ∈ C(n)[τ ]. The symmetric product of L1 and L2 is
defined as the monic operator L ∈ C(n)[τ ] of smallest order such
that L(u1u2) = 0 for all u1, u2 ∈ S with L1u1 = 0 and L2u2 = 0.

Definition

The symmetric square of L, denoted Ls2, will refer to the
symmetric product of L and L (i.e. with itself).

Lemma

Let L = a2τ
2 + a1τ + a0, a0, a2 6= 0.

Ls2 has order:

{
2, if a1 = 0

3, if a1 6= 0
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Commutative Diagram

L = a2τ
2 + a1τ + a0, a1 6= 0

L̃ = τ2 + α
G = τ + g

α, g ∈ C(n), unknown V (L)
G−−−−→ V (L̃) −−−−→ 0y u

↓
u2

y v
↓
v2

0→ V (GCRD(G2, L
s2))

dim 1

→ V (Ls2)
dim 3

G2−−−−→ V (L̃s2)
dim 2

−−−−→ 0
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Algorithm

Algorithm Find Liouvillian:
Input: L ∈ C[n][τ ] a second order, irreducible, homogeneous
difference operator.
Let L = a2(n)τ2 + a1(n)τ + a0(n) and let
Ls2 = c3τ

3 + c2τ
2 + c1τ + c0.

Output: A two-term difference operator, L̂, with a gauge
transformation from L̂ to L, if it exists.

1 If a1 = 0 then return L̂ = L and stop.

2 Let u(n) be an indeterminate function. Impose the relation
Lu(n) = 0, i.e.

u(n + 2) = − 1

a2(n)
(a0(n)u(n) + a1(n)u(n + 1)).
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Algorithm (continued)

3 Let d = det(L) = a0/a2. Let R be a non-zero rational
solution of

LT := Ls2 ⊗ (τ + 1/d),

if such a solution exists, else return NULL and stop.

4 Let g be an indeterminate and let
G := τ + g : V (L) −→ V (L̂)

Compute corresponding G2 : V (Ls2)→ V (L̂s2).

5 From R (solution of LT ) take the corresponding solution of
Ls2, plug this corresponding solution into G2, and equate to
0.

6 The equation computed above is quadratic in g . Solve the
equation for g and choose one solution.
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Example

Let L = nτ2 − τ − (n2 − 1)(2n − 1), Lu(n) = 0:

d =− (n2 − 1)(2n − 1)/n

LT =n (n + 3) (2n + 3) (n + 1)2 τ3−
n (n + 2)

(
2n3 + 3n2 − n + 1

)
τ2−

(n + 2) (n + 1)
(
2n3 + 3n2 − n + 1

)
τ+

n (n + 2) (n − 1) (n + 1) (2n − 1)

R =
1

n
, A =

1

n
· (g2 + (3n − 2)g + (2n − 1)(n − 1))

g = 1− n, δ = 1− n2
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Example (continued)

leading to the output:

L̂v(n) = v(n + 2)− (2n − 1)(n + 2)v(n),

u(n) =
1

n
v(n) +

1

n2 − 1
v(n + 1).
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