Liouvillian Solutions of Irreducible Second Order Linear Difference Equations

Mark van Hoeij and Giles Levy

July 28, 2010

Preliminaries

Definition

τ will refer to the shift operator acting on $\mathbb{C}(n)$ by $\tau: n \mapsto n+1$.

An operator $L=\sum_{i} a_{i} \tau^{i}$ acts as $L u(n)=\sum_{i} a_{i} u(n+i)$.

Definition

$\mathbb{C}(n)[\tau]$ is the ring of linear difference operators where ring multiplication is composition of operators $L_{1} L_{2}=L_{1} \circ L_{2}$.

Definition

Let $S=\mathbb{C}^{\mathbb{N}} / \sim$ where $s_{1} \sim s_{2}$ if there exists $N \in \mathbb{N}$ such that, for all $n>N, s_{1}(n)=s_{2}(n)$.

Definition

$V(L)$ refers to the solution space of the operator L, i.e.
$V(L):=\{u \in S \mid L u=0\}$.

If $L=\sum_{i=0}^{k} a_{i} \tau^{i}, a_{0}, a_{k} \neq 0$, then $\operatorname{dim}(V(L))=k$
($\mathrm{A}=\mathrm{B}$ ' Theorem 8.2.1).

Definition

A function or sequence $v(n)$ such that $v(n+1) / v(n)=r(n)$ is a rational function of n will be called a hypergeometric term.

Tools

Let $D=\mathbb{C}(n)[\tau]$. If $L \in D$ with $L \neq 0$ then $D / D L$ is a D-module.

Definition

L_{1} is gauge equivalent to L_{2} when $D / D L_{1}$ and $D / D L_{2}$ are isomorphic as D-modules.

Lemma

L_{1} is gauge equivalent to L_{2} if and only if $\exists G \in D$ such that $G\left(V\left(L_{1}\right)\right)=V\left(L_{2}\right)$ and L_{1}, L_{2} have the same order. Thus G defines a bijection $V\left(L_{1}\right) \rightarrow V\left(L_{2}\right)$.

Definition

The bijection defined by G in the preceding lemma will be called a gauge transformation.

Definition

The companion matrix of a monic difference operator

$$
L=\tau^{k}+a_{k-1} \tau^{k-1}+\cdots+a_{0}, a_{i} \in \mathbb{C}(n)
$$

will refer to the matrix:

$$
M=\left(\begin{array}{ccccc}
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & 0 & 1 \\
-a_{0} & -a_{1} & \ldots & -a_{k-2} & -a_{k-1}
\end{array}\right)
$$

The equation $L u=0$ is equivalent to the system $\tau(Y)=M Y$ where

$$
Y=\left(\begin{array}{c}
u(n) \\
\vdots \\
u(n+k-1)
\end{array}\right)
$$

Definition

Let $L=a_{k} \tau^{k}+a_{k-1} \tau^{k-1}+\cdots+a_{0}, a_{i} \in \mathbb{C}(n)$. The determinant of $L, \operatorname{det}(L):=(-1)^{k} a_{0} / a_{k}$, i.e. the determinant of its companion matrix.

Definition

Two rational functions will be called shift equivalent, denoted $r_{1} \stackrel{\text { SE }}{\equiv} r_{2}$, if

- $\tau-r_{1} / r_{2}$ has a rational solution
or, equivalently,
- the difference modules for $\tau-r_{1}$ and $\tau-r_{2}$ are isomorphic.

Lemma

If there exists a gauge transformation $G: V\left(L_{1}\right) \rightarrow V\left(L_{2}\right)$ then $\operatorname{det}\left(L_{1}\right) \stackrel{\mathrm{SE}}{\equiv} \operatorname{det}\left(L_{2}\right)$.

Liouvillian

Liouvillian solutions are defined in Hendriks-Singer 1999
Section 3.2. For irreducible operators they are characterized by the following theorem:

```
Theorem (Propositions 31-32 in Feng-Singer-Wu 2009 or
Lemma 4.1 in Hendriks-Singer 1999)
```

An irreducible k 'th order operator L has Liouvillian solutions if and only if L is gauge equivalent to $\tau^{k}+\alpha, \alpha \in \mathbb{C}(n)$.

Finding a gauge equivalence to $\tau^{k}+\alpha$ is desirable because it is easily solved with interlaced hypergeometric terms, e.g. $\tau^{2}-4(n+2) /(n+7)$ has solutions:

$$
\frac{\Gamma\left(\frac{n}{2}+1\right)}{\Gamma\left(\frac{n}{2}+\frac{7}{2}\right)} \cdot 2^{n} \cdot \begin{cases}k_{1}, & \text { if } n \text { even } \\ k_{2}, & \text { if } n \text { odd }\end{cases}
$$

where k_{1}, k_{2} are arbitrary constants.

Definition

Let $L_{1}, L_{2} \in \mathbb{C}(n)[\tau]$. The symmetric product of L_{1} and L_{2} is defined as the monic operator $L \in \mathbb{C}(n)[\tau]$ of smallest order such that $L\left(u_{1} u_{2}\right)=0$ for all $u_{1}, u_{2} \in S$ with $L_{1} u_{1}=0$ and $L_{2} u_{2}=0$.

Definition

The symmetric square of L, denoted $L^{(2)}$, will refer to the symmetric product of L and L (i.e. with itself).

Lemma

Let $L=a_{2} \tau^{2}+a_{1} \tau+a_{0}, a_{0}, a_{2} \neq 0$.
$L^{(® 2}$ has order: $\left\{\begin{array}{l}2, \text { if } a_{1}=0 \\ 3, \text { if } a_{1} \neq 0\end{array}\right.$

Commutative Diagram

$$
\begin{aligned}
& L=a_{2} \tau^{2}+a_{1} \tau+a_{0}, a_{1} \neq 0 \\
& \tilde{L}=\tau^{2}+\alpha \\
& G=\tau+g \\
& \alpha, g \in \mathbb{C}(n) \text {, unknown }
\end{aligned}
$$

$$
\begin{aligned}
& 0 \rightarrow V\left(G C R D\left(G_{2}, L^{(\subseteq 2}\right)\right) \rightarrow V\left(L^{(® 2}\right) \xrightarrow{G_{2}} V\left(\tilde{L}^{(® 2}\right) \longrightarrow 0 \\
& \operatorname{dim} 1 \\
& \operatorname{dim} 3 \\
& \operatorname{dim} 2
\end{aligned}
$$

Algorithm

Algorithm Find Liouvillian:
Input: $L \in \mathbb{C}[n][\tau]$ a second order, irreducible, homogeneous difference operator.
Let $L=a_{2}(n) \tau^{2}+a_{1}(n) \tau+a_{0}(n)$ and let $L^{(® 2}=c_{3} \tau^{3}+c_{2} \tau^{2}+c_{1} \tau+c_{0}$.
Output: A two-term difference operator, \hat{L}, with a gauge transformation from \hat{L} to L, if it exists.
(1) If $a_{1}=0$ then return $\hat{L}=L$ and stop.
(2) Let $u(n)$ be an indeterminate function. Impose the relation $L u(n)=0$, i.e.

$$
u(n+2)=-\frac{1}{a_{2}(n)}\left(a_{0}(n) u(n)+a_{1}(n) u(n+1)\right)
$$

Algorithm (continued)

(3) Let $d=\operatorname{det}(L)=a_{0} / a_{2}$. Let R be a non-zero rational solution of

$$
L_{T}:=L^{(®) 2} \otimes(\tau+1 / d),
$$

if such a solution exists, else return NULL and stop.
(9) Let g be an indeterminate and let

$$
G:=\tau+g: V(L) \longrightarrow V(\hat{L})
$$

Compute corresponding $G_{2}: V\left(L^{® 2}\right) \rightarrow V\left(\hat{L}^{® 2}\right)$.
(6) From R (solution of L_{T}) take the corresponding solution of $L^{(® 2}$, plug this corresponding solution into G_{2}, and equate to 0.
(1) The equation computed above is quadratic in g. Solve the equation for g and choose one solution.

Example

$$
\begin{aligned}
& \text { Let } L=n \tau^{2}-\tau-\left(n^{2}-1\right)(2 n-1), L u(n)=0 \text { : } \\
& d=-\left(n^{2}-1\right)(2 n-1) / n \\
& L_{T}=n(n+3)(2 n+3)(n+1)^{2} \tau^{3}- \\
& n(n+2)\left(2 n^{3}+3 n^{2}-n+1\right) \tau^{2}- \\
& (n+2)(n+1)\left(2 n^{3}+3 n^{2}-n+1\right) \tau+ \\
& n(n+2)(n-1)(n+1)(2 n-1) \\
& R=\frac{1}{n}, \quad A=\frac{1}{n} \cdot\left(g^{2}+(3 n-2) g+(2 n-1)(n-1)\right) \\
& g=1-n, \quad \delta=1-n^{2}
\end{aligned}
$$

Example (continued)

leading to the output:

$$
\begin{gathered}
\hat{L} v(n)=v(n+2)-(2 n-1)(n+2) v(n), \\
u(n)=\frac{1}{n} v(n)+\frac{1}{n^{2}-1} v(n+1) .
\end{gathered}
$$

