Solving Linear Recurrence Equations

Y. Cha, M. van Hoeij, and G. Levy

July 26, 2010

An example

Let $u(0):=0, u(1):=1$, and

$$
u(n+2):=\frac{(n+2)((9 n+15) u(n)+(6 n+28) u(n+1))}{(n+7)(3 n+2)} .
$$

Then $u(2)=4, u(3)=12, u(4)=34$, etc.
Can we prove that $u(n)$ is an integer for every positive integer n ?

An example

Given only the initial conditions and recurrence relation

$$
u(n+2)=\frac{(n+2)((9 n+15) u(n)+(6 n+28) u(n+1))}{(n+7)(3 n+2)}
$$

it is difficult to prove that $u(n)$ is an integer sequence.

To prove that $u(n)$ is an integer sequence, it would help to:

- have some combinatorial description (e.g. $u(n)$ is the number of objects with a certain property),
- or, to find a relation between $u(n)$ and some other sequence for which a combinatorial description is known.

The On-Line Encyclopedia of Integer Sequences

The OEIS has a large number of integer sequences, many of which are given with references, formulas, combinatorial descriptions, and lots of other useful information. Thousands of database sequences satisfy a second order recurrence.

So, if our example is an integer sequence, there is a good chance that it is related to a database sequence.

Database solver:

- For each of the thousands of database recurrences, check if it can be related to our example under gauge transformations $\left(v(n)=r_{0}(n) u(n)+r_{1}(n) u(n+1)\right)$ and term products.
- Since the number of database recurrences is so large, we need fast techniques (a table of p-curvatures) to select the right one quickly.

Back to the example

In our example, the p-curvature matches with that of the database sequence named 'A001006.' The term product (multiplying by a hypergeometric term) is trivial, and the gauge transformation is

$$
u(n)=r_{0}(n) \cdot A 001006(n)+r_{1}(n) \cdot A 001006(n+1)
$$

where

$$
r_{0}(n)=\frac{3(n+1)(n+2)}{(n+4)(n+5)}, \quad r_{1}(n)=\frac{3\left(n^{2}+3 n-2\right)}{(n+4)(n+5)} .
$$

Back to the example

So the implementation of our database solver finds that $u(n)$ equals

$$
\frac{3(n+1)(n+2)}{(n+4)(n+5)} \cdot A 001006(n)+\frac{3\left(n^{2}+3 n-2\right)}{(n+4)(n+5)} \cdot A 001006(n+1)
$$

This relates our example $u(n)$ to a sequence A001006 (Motzkin numbers) about which many things are known, see the references/comments/formulas in OEIS.

Proving that $u(n)$ is an integer sequence has now become much easier.
(The world wide web URL at the OEIS for A001006 is: http://www.research.att.com/~njas/sequences/A001006.)

Switch to Maple worksheets

Next

- Quickly demonstrate the other solvers included in our program.
- Demonstrate features through the examples.
- Show how the solvers in our program are complementary.
- Software available at http://www.math.fsu.edu/~glevy.

