Solving Linear Recurrence Equations

Y. Cha, M. van Hoeij, and G. Levy

July 26, 2010

Y. Cha, M. van Hoeij, and G. Levy

Solving Linear Recurrence Equations

向下 イヨト イヨト

An example

Let
$$u(0) := 0$$
, $u(1) := 1$, and
 $u(n+2) := \frac{(n+2)((9n+15)u(n) + (6n+28)u(n+1))}{(n+7)(3n+2)}$.
Then $u(2) = 4$, $u(3) = 12$, $u(4) = 34$, etc.

Can we prove that u(n) is an integer for every positive integer n?

白 ト く ヨ ト く ヨ ト

Given only the initial conditions and recurrence relation

$$u(n+2) = \frac{(n+2)((9n+15)u(n) + (6n+28)u(n+1))}{(n+7)(3n+2)}$$

it is difficult to prove that u(n) is an integer sequence.

To prove that u(n) is an integer sequence, it would help to:

- have some combinatorial description (e.g. u(n) is the number of objects with a certain property),
- or, to find a relation between u(n) and some other sequence for which a combinatorial description is known.

マロト イヨト イヨト

The On-Line Encyclopedia of Integer Sequences

The OEIS has a large number of integer sequences, many of which are given with references, formulas, combinatorial descriptions, and lots of other useful information. Thousands of database sequences satisfy a second order recurrence.

So, if our example is an integer sequence, there is a good chance that it is related to a database sequence.

Database solver:

- For each of the thousands of database recurrences, check if it can be related to our example under gauge transformations $(v(n) = r_0(n)u(n) + r_1(n)u(n+1))$ and term products.
- Since the number of database recurrences is so large, we need fast techniques (a table of *p*-curvatures) to select the right one quickly.

In our example, the *p*-curvature matches with that of the database sequence named 'A001006.' The term product (multiplying by a hypergeometric term) is trivial, and the gauge transformation is

$$u(n) = r_0(n) \cdot A001006(n) + r_1(n) \cdot A001006(n+1)$$

where

$$r_0(n) = \frac{3(n+1)(n+2)}{(n+4)(n+5)}, \quad r_1(n) = \frac{3(n^2+3n-2)}{(n+4)(n+5)}.$$

So the implementation of our database solver finds that u(n) equals

$$\frac{3(n+1)(n+2)}{(n+4)(n+5)} \cdot A001006(n) + \frac{3(n^2+3n-2)}{(n+4)(n+5)} \cdot A001006(n+1).$$

This relates our example u(n) to a sequence A001006 (Motzkin numbers) about which many things are known, see the references/comments/formulas in OEIS.

Proving that u(n) is an integer sequence has now become much easier.

(The world wide web URL at the OEIS for A001006 is: http://www.research.att.com/ \sim njas/sequences/A001006.)

・ロ・ ・ 日・ ・ 田・ ・ 田・

Switch to Maple worksheets

Next

- Quickly demonstrate the other solvers included in our program.
- Demonstrate features through the examples.
- Show how the solvers in our program are complementary.
- Software available at http://www.math.fsu.edu/~glevy.

向下 イヨト イヨト