
Generating Subfields

Mark van Hoeij, Jürgen Klüners, Andrew Novocin

ISSAC’2011

Mark van Hoeij, Jürgen Klüners, Andrew Novocin Generating Subfields

Notations.

Let k(α) be a field extension of k of degree n with minpoly f .

Goal: Find all subfields of k(α) over k, hopefully efficient in
practice as well as in theory.

Theoretical issue: There could be more than polynomially many
subfields. To obtain polynomial time complexity, we compute only
a “generating set” of subfields (every subfield of k(α) over k will
be an intersection of these “generating subfields”).

Practical issue: For the number field case, we can use LLL, which
requires a cut-off bound. To optimize CPU time, we need to
minimize this bound. The hardest part of the paper is to prove a
cut-off bound that is linear in ||f ||2.

Mark van Hoeij, Jürgen Klüners, Andrew Novocin Generating Subfields

Applications

Example 1. Use a CAS to solve this system of equations:

a2 − 2ab + b2 − 8 = 0, a2b2 − (a2 + 2a + 5)b + a3 − 3a + 3 = 0

Result: a = α, b =

−17α7

1809
+

61α6

3618
+

371α5

1809
−1757α4

3618
−563α3

603
+

6013α2

3618
+

3184α

1809
+

7175

3618

where α is a solution of

x8 − 20x6 + 16x5 + 98x4 + 32x3 − 12x2 − 208x − 191 = 0.

Example 1 has a simpler solution:

a =
√

3 +
4
√

2−
√

2, b =
√

3 +
4
√

2 +
√

2 (1)

To find it we first need subfields of Q(α).

Mark van Hoeij, Jürgen Klüners, Andrew Novocin Generating Subfields

Applications

Bostan and Kauers [Proc AMS 2010] gave an algebraic expression
for the generating function for Gessel walks, using two minpoly’s
with a combined size of 172 Kb. By computing subfields, this
expression could be reduced to just 300 bytes, a 99.8% reduction.
The idea is:

When char(k) = 0, then a tower of extensions

k ⊆ k(α1) ⊆ k(α2) ⊆ k(α3) = K

can be given by a single extension K = k(α).

In general, the primitive element theorem will produce an α with
a minpoly f (x) of large size. Thus we can expect to reduce
expression sizes using the reverse process (computing subfields).

Mark van Hoeij, Jürgen Klüners, Andrew Novocin Generating Subfields

The Subfield Polynomial

Let k ⊆ k(α) be an algebraic extension with minpoly f . Let
k ⊆ L ⊆ K be a subfield. Let g ∈ L[x] be the minpoly of α over L.

Definition: We can this g the subfield-polynomial of L.

Remark: The subfield L is generated by the coefficients of g . The
coefficients of f /g form a spanning set of L as a k-vector space.

Note: A subfield-poly is also a factor of f in k(α)[x]. So we could
find all subfields by trying out every factor of f in k(α)[x].

Mark van Hoeij, Jürgen Klüners, Andrew Novocin Generating Subfields

Factors of f

Let f = f1 · f2 · · · fr be a factorization of f in k(α)[x]. We can
assume that f1 = x − α.

Finding Subfields, Exponential Complexity:
For each of the 2r monic factors of f in k(α)[x], compute the field
generated by the coefficients of that factor.

Finding Subfields, Polynomial Complexity:
We perform a computation for each polynomial f2, f3, . . ., fr .
Problems:

1 These f2, f3, . . . are not subfield-polynomials (i.e. we do not
get a subfield by simply looking at their coefficients).

2 We do not get all subfields in this way.

Mark van Hoeij, Jürgen Klüners, Andrew Novocin Generating Subfields

Finding subfields

Let f = f1 · f2 · · · fr be a factorization of f in k(α)[x], where
f1 = x − α. For each i = 2, . . . , r , even though fi is not a
subfield-poly, we can still define a corresponding subfield, as
follows:

Li = {h(α) | h(x) ∈ k[x]<n and h(x) ≡ h(α) mod fi}.

If h(x) ∈ k[x] with degree < n, then the condition

h(x) ≡ h(α) mod fi

translates into k-linear equations for the coefficients of h. Thus, Li

can be computed by solving a system of k-linear equations.

Mark van Hoeij, Jürgen Klüners, Andrew Novocin Generating Subfields

A generating set

A set S of subfields of k(α) over k is called a generating set if
every subfield of k(α) over k is an intersection of members of S .

Theorem: Let L2, L3, . . . , Lr be the subfields from the previous
slide. Then {L2, L3, . . . , Lr} is a generating set.

Theorem: If k = Q then a generating set can be computed in
polynomial time.

By computing intersections, we find all subfields. The cost
depends linearly on the number of subfields (this number can be
more than polynomial in n).

Mark van Hoeij, Jürgen Klüners, Andrew Novocin Generating Subfields

Factoring over a completion

Polynomial time 6=⇒ efficient in practice.

Let k = Q and K = Q(α). To factor f in K [x], we could use
Belabas’ algorithm. It first factors f over some completion K̃ of K ,
and then uses LLL techniques.

Let K̃ be Qp, where p is chosen such that f has a root in Qp

(that way Q(α) ⊆ Qp).

Idea: Instead of:

factoring over K̃
LLL
=⇒ factoring over K

LinSolve
=⇒ subfields of K

we can do directly:

factoring over K̃
LLL
=⇒ subfields.

Mark van Hoeij, Jürgen Klüners, Andrew Novocin Generating Subfields

Factoring over a completion

A nice result: In general, f will have more factors over K̃ than
over K , in other words, if we factor f = f1 · · · fr then r will increase
if we use a completion K̃ instead of K itself.
Nevertheless, the set {L2, . . . , Lr} will stay the same!

If we use a factor fi in K [x], where K = k(α), then the subfield Li

is determined by solving k-linear equations.

But when fi ∈ K̃ [x] then fi can only be computed with finite
accuracy (mod pa for some finite a) (assume from now k = Q).
Then the linear equations are also computed with finite accuracy.

To solve them we need LLL.

Mark van Hoeij, Jürgen Klüners, Andrew Novocin Generating Subfields

Factoring over a completion, then LLL

Recall that the idea to improve efficiency was to replace:

factoring over K̃
LLL
=⇒ factoring over K

LinSolve
=⇒ subfields of K

by:

factoring over K̃
LLL
=⇒ subfields.

We use LLL-with-removals which is a modification of LLL that
removes the last vector whenever it has a Gram-Schmidt length
that exceeds a specified bound B. This bound B needs to be sharp
because:

If B is too low, then the algorithm won’t be correct.

If B is higher than necessary, then we do not get an optimal
running time, which defeats the purpose of this approach.

Mark van Hoeij, Jürgen Klüners, Andrew Novocin Generating Subfields

The cut-off bound B

Roughly speaking, if B has twice as many digits as it needs to
have, then our algorithm would be about 4 times slower than it
should be. If the goal is practical efficiency instead of theoretical
complexity, then such a constant factor matters.

Necessary condition for B: The lattice to which we apply LLL
corresponds to a Z-module Λ inside K = Q(α). Suppose that L is
the subfield that we are aiming to find. The number B needs to be
large enough so that inside Λ, there exists a basis b1, . . . , bd of L
for which each bi corresponds to a vector with length ≤ B.

This condition ensures that, after calling LLL-with-removals with
bound B, a basis of L will still exist in the span of the remaining
vectors. It allows us to prove correctness of the algorithm.

Mark van Hoeij, Jürgen Klüners, Andrew Novocin Generating Subfields

The lattice that LLL works with

We could choose

Λ = Z · 1 + Z · α + · · ·+ Z · αn−1. This would lead to a huge
bound for B.

Λ = Z · 1/f ′(α) + Z · α/f ′(α) + · · ·+ Z · αn−1/f ′(α).
See also Dahan and Schost ISSAC’2004. In this setting, a
vector (v0, v1, · · ·) in the LLL-output does not represent the
algebraic number

∑
viα

i . Instead, this vector represents

v0α
0 + · · · vn−1α

n−1

f ′(α)

This leads fairly quickly to a bound B that depends
quadratically on ||f ||2. We then have an algorithm that works
well in practice.

Mark van Hoeij, Jürgen Klüners, Andrew Novocin Generating Subfields

A problem remains

A bound B that depends quadratically on ||f ||2 is fairly easy to
prove, using standard techniques from number theory. One
considers the ring of algebraic integers OK , which is a Z-module.
The subfield L contains the Z-module OL, and OL = OK

⋂
L. The

rings OK and OL have many nice properties that we can use to
quickly prove a quadratic bound. End of story?

Problem: We wrote an implementation, and observed that in
practice, a bound that is linear in ||f ||2 always holds.

So the quadratic bound appears to be not sharp, we could cut
log(B) by a factor 2, which will make the algorithm 4 times faster!
How to prove this linear bound?

Mark van Hoeij, Jürgen Klüners, Andrew Novocin Generating Subfields

Proving a linear bound

It does not suffice to bound elements of OL, a linear bound can
not be proven in that way. Instead, we have to work with the
Z-module 1/f ′(α) · (Zα0 + · · ·Zαn−1) intersected with L. Working
with this Z-module makes the proof much more technical.

We prove that this Z-module contains the dual (under the trace
bilinear form) of OL, and then use Banaszcyk’s transference
theorem to translate a bound for elements of OL into a better
bound for elements of this Z-module. We then get a linear bound
for the vectors that LLL works with.

The hardest two pages of the paper are devoted to proving this
linear bound. The end result of this work is a speedup of a factor 4.

Mark van Hoeij, Jürgen Klüners, Andrew Novocin Generating Subfields

	

