
Generating Subfields

Mark van Hoeij
∗

Florida State University
Tallahassee, FL 32306

hoeij@math.fsu.edu

Jürgen Klüners
†

Mathematisches Institut
der Universität Paderborn

Universität Paderborn
Warburger Str. 100

33098 Paderborn, Germany
klueners@math.uni-

paderborn.de

Andrew Novocin
Laboratoire LIP (U. Lyon,
CNRS, ENS Lyon, INRIA,

UCBL)
46 Allée d’Italie

69364 Lyon Cedex 07, France
andy@novocin.com

ABSTRACT

Given a field extension K/k of degree n we are interested
in finding the subfields of K containing k. There can be
more than polynomially many subfields. We introduce the
notion of generating subfields, a set of up to n subfields
whose intersections give the rest. We provide an efficient
algorithm which uses linear algebra in k or lattice reduction
along with factorization. Our implementation shows that
previously difficult cases can now be handled.

Categories and Subject Descriptors

I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms; G.4 [Mathematics of Computing]: Mathemati-
cal Software

General Terms

Algorithms

Keywords
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1. INTRODUCTION
Let K/k be a finite separable field extension of degree n

and α a primitive element of K over k with minimal poly-
nomial f ∈ k[x]. We explore the problem of computing
subfields of K which contain k. We prove that all such sub-
fields (there might be more than polynomially many) can be
expressed as the intersections of at most n particular sub-
fields which we will call the ‘generating subfields’. We give
an efficient algorithm to compute these generating subfields.
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Previous methods progress by solving combinatorial prob-
lems on the roots of f , such as [4, 5, 8, 13]. Similar to our
algorithm [11] starts by factoring f over K and then tries to
find all subfield polynomials (see Definition 2.5) by a com-
binatorial approach. Such approaches can be very efficient,
but in the worst cases they face a combinatorial explosion.
The paper [14] proceeds by factoring resolvent polynomials
of degree bounded by

(

n
⌊n/2⌋

)

. By introducing the concept of

generating subfields we restrict our search to a small number
of target subfields. This new fundamental object allows for
polynomial time algorithms.

We can find the generating subfields whenever we have a
factorization algorithm for f over K or any K̃/K and the
ability to compute a kernel in k. For k = Q this implies a
polynomial-time algorithm as factoring over Q(α) and linear
algebra over k = Q are polynomial time. When one desires
all subfields we give such an algorithm which is additionally
linear in the number of subfields.

For the number field case we are interested in a specialized
and practical algorithm. Thus we replace exact factorization
over Q(α) by a p-adic factorization and the exact kernel
computation by approximate linear algebra using the famous
LLL algorithm for lattice reduction [15]. We take advantage
of some recent practical lattice reduction results [18] and
tight theoretical bounds to create an implementation which
is practical on previously difficult examples.

ROADMAP: The concept of the principal and generat-
ing subfields are introduced in Section 2.1. In Section 2.2
we explain how to compute all subfields in a running time
which is linearly dependent on the number of subfields. For
the number field case we will use the LLL algorithm and this
case is handled in detail in Section 3. Finally we compare
our approach with the state of the art in Section 4.

NOTATIONS: For a polynomial g we let ‖ g ‖ be the
ℓ2 norm on the coefficient vector of g. For a vector v we
let v[i] be the ith entry. Unless otherwise noted ‖ · ‖ will
represent the ℓ2 norm.

2. A GENERAL ALGORITHM

2.1 Generating subfields
In this section we introduce the concept of a generating set

of subfields and prove some important properties. Let K̃ be
a field containing K. We remark that we can choose K̃ = K,
but in some case it might be better to choose a larger K̃
from an algorithmic point of view. E.g. in the number field



case we choose a p-adic completion (see Section 3). Let

f = f1 · · · fr be the factorization of f over K̃ where the
fi ∈ K̃[x] are irreducible and f1 = x − α. We define the

fields K̃i := K̃[x]/(fi) for 1 ≤ i ≤ r. We denote elements
of K as g(α) where g ∈ k[x] is a polynomial of degree < n,
and define for 1 ≤ i ≤ r the embedding

φi : K → K̃i, g(α) 7→ g(x) mod fi.

Note that φ1 is just the identity map id : K → K̃. We define
for 1 ≤ i ≤ r:

Li := Ker(φi − id) = {g(α) ∈ K | g(x) ≡ g(α) mod fi}.

The Li are closed under multiplication, and hence fields,
since φi(ab) = φi(a)φi(b) = ab for all a, b ∈ Li.

Theorem 2.1. If L is a subfield of K/k then L is the
intersection of Li, i ∈ I for some I ⊆ {1, . . . , r}.

Proof. Let fL be the minimal polynomial of α over L.
Then fL divides f since k ⊆ L, and fL =

∏

i∈I fi for some

I ⊆ {1, . . . , r} because L ⊆ K̃. We will prove

L = {g(α) ∈ K | g(x) ≡ g(α) mod fL} =
⋂

i∈I

Li.

If g(α) ∈ L then h(x) := g(x) − g(α) ∈ L[x] is divisible
by x − α in K[x]. The set of polynomials in L[x] divis-
ible by x − α is the principal ideal (fL) by definition of
fL. Then h(x) ≡ 0 mod fL and hence g(x) ≡ g(α) mod fL.
Conversely, g(x) mod fL is in L[x] (mod fL) because di-
vision by fL can only introduce coefficients in L. So if
g(x) ≡ g(α) mod fL then g(α) ∈ K ∩ L[x] = L.

By separability and the Chinese remainder theorem, one
has g(x) ≡ g(α) mod fL if and only if g(x) ≡ g(α) mod fi
(i.e. g(α) ∈ Li) for every i ∈ I.

Lemma 2.2. The set S := {L1, . . . , Lr} is independent of

the choice of K̃.

Proof. Let f = g1 · · · gs ∈ K[x] be the factorization of f
into irreducible factors over K. Suppose that fi divides gl.
Let L resp. Li be the subfield corresponding to gl resp. fi.
Assume g(α) ∈ L, in other words g(x) ≡ g(α) mod gl. Then
g(x) ≡ g(α) mod fi because fi divides gl. Hence g(α) ∈ Li.

Conversely, assume that g(α) ∈ Li. Now h(x) := g(x) −
g(α) is divisible by fi, but since h(x) ∈ Li[x] ⊆ K[x] it
must also be divisible by gl since gl is irreducible in K[x]
and divisible by fi. So g(x) ≡ g(α) mod gl in other words
g(α) ∈ L. It follows that L = Li.

Definition 2.3. We call the fields L1, . . . , Lr the princi-
pal subfields of K/k. A set S of subfields of K/k is called a
generating set of K/k if every subfield of K/k can be written
as
⋂

T for some T ⊆ S. Here
⋂

T denotes the intersection
of all L ∈ T , and

⋂ ∅ refers to K. A subfield L of K/k is
called a generating subfield if it satisfies the following equiv-
alent conditions

1. The intersection of all fields L′ with L ( L′ ⊆ K is
not equal to L.

2. There is precisely one field L ( L̃ ⊆ K for which there
is no field between L and L̃ (and not equal to L or L̃).

The field L̃ in condition 2. is called the field right above L.
It is clear that L̃ is the intersection in condition 1., so the
two conditions are equivalent.

The field K is a principal subfield but not a generating
subfield. A maximal subfield of K/k is a generating subfield
as well. Theorem 2.1 says that the principal subfields form
a generating set. By condition 1., a generating subfield can
not be obtained by intersecting larger subfields, and must
therefore be an element of every generating set. In particu-
lar, a generating subfield is also a principal subfield.

If S is a generating set, and we remove every L ∈ S for
which

⋂{L′ ∈ S|L ( L′} equals L, then what remains is
a generating set that contains only generating subfields. It
follows that

Proposition 2.4. S is a generating set if and only if ev-
ery generating subfield is in S.

Suppose that K/k is a finite separable field extension and
that one has polynomial time algorithms for factoring over
K and linear algebra over k (for example when k = Q). Then

applying Theorem 2.1 with K̃ = K yields a generating set
S with r ≤ n elements in polynomial time. We may want
to minimize r by removing all elements of S that are not
generating subfields, then r ≤ n− 1.

The computation of the principal subfields Li reduces to
linear algebra when we know a factorization of f over K.
In this case we get a k-basis of Li by a simple kernel com-
putation. In the number field case, the factorization of f
over K could be slow, in which case we prefer to use a larger
field K̃ ) K where the factorization is faster. In Section 3
this is done for k = Q, but this can be generalized to an
arbitrary global field. Then we let K̃ be some completion of
K. This reduces the cost of the factorization, however, one
now has to work with approximations for the factors fi of
f , which means that we get approximate (if K̃ is the field of
p-adic numbers then this means modulo a prime power) lin-
ear equations. Solving approximate equations involves LLL
in the number field case and [2, 7] in the function field case.

2.2 All subfields
Now suppose that one would like to compute all sub-

fields of K/k by intersecting elements of a generating set
S = {L1, . . . , Lr}. We present an algorithm with complex-
ity proportional to the number of subfields of K/k. Unfor-
tunately there exist families of examples where this number
is more than polynomial in n. Note that we have repre-
sented our subfields k ≤ Li ≤ K as k-vector subspaces of
K. This allows the intersection L1 ∩ L2 to be found with
linear algebra as the intersection of two subspaces of a vec-
tor space. To each subfield L of K/k we associate a tuple
e = (e1, . . . , er) ∈ {0, 1}r, where ei = 1 if and only if L ⊆ Li.

Algorithm AllSubfields

Input: A generating set S = {L1, . . . , Lr} for K/k.
Output: All subfields of K/k.

1. Let e := (e1, . . . , er) be the associated tuple of K.

2. ListSubfields := [K].

3. Call NextSubfields(S,K, e, 0).

4. Return ListSubfields.



The following function returns no output but appends ele-
ments to ListSubfields, which is used as a global variable.
The input consists of a generating set, a subfield L, its
associated tuple e = (e1, . . . , er), and the smallest integer
0 ≤ s ≤ r for which L =

⋂{Li | 1 ≤ i ≤ s, ei = 1}.

Algorithm NextSubfields

Input: S,L, e, s.

For all i with ei = 0 and s < i ≤ r do

1. Let M := L ∩ Li.

2. Let ẽ be the associated tuple of M .

3. If ẽj ≤ ej for all 1 ≤ j < i then append M to
ListSubfields and call NextSubfields(S,M, ẽ, i).

Definition 2.5. Let L be a subfield of K/k. Then the
minimal polynomial fL of α over L is called the subfield

polynomial of L.

Remark 2.6. Let g ∈ K[x] be a monic polynomial. Then
the following are equivalent:

1. g = fL for some subfield L of K/k.

2. f1 | g | f and [Q(α) : Q(coefficients(g))] = deg(g).

3. f1 | g | f and the Q–vector space {h(x) ∈ Q[x] |
deg(h) < deg(f), h mod g = h mod f1} has dimen-
sion deg(f)/deg(g).

Remark 2.7. For each subfield L, we can compute sub-
field polynomial fL with linear algebra. Testing if L ⊆ M
then reduces to testing if fL is divisible by fM . For many
fields K this test can be implemented efficiently by choos-
ing a non-archimedian valuation v of K with residue field F

such that the f mod v (the image of f in F[x]) is defined
and separable. Then fL is divisible by fM in K[x] if and
only if the same is true mod v, since both are factors of a
polynomial f whose discriminant does not vanish mod v.

Subfields that are isomorphic but not identical are con-
sidered to be different in this paper. Let m be the number
of subfields of K/k. Since S is a generating set, all sub-
fields occur as intersections of L1, . . . , Lr. The condition in
Step (3) in Algorithm NextSubfields holds if and only if M
has not already been computed before. So each subfield will
be placed in ListSubfields precisely once, and the total num-
ber of calls to Algorithm NextSubfields equals m. For each
call, the number of i’s with ei = 0 and s < i ≤ r is bounded
by r, so the total number of intersections calculated in Step
(1) is ≤ rm. Step (2) involves testing which Lj contain M .
Bounding the number of j’s by r, the number of subset tests
is ≤ r2m. One can implement Remark 2.7 to keep the cost
of each test low.

Theorem 2.8. Given a generating set for K/k with r el-
ements, Algorithm AllSubfields returns all subfields by com-
puting at most rm intersections and at most r2m subset
tests, where m is the number of subfields of K/k.

2.3 Quadratic subfields
In this section we will show that, although there might be

more than polynomially many subfields, the set of quadratic
subfields of K/k can be computed in polynomial time (The-
orem 2.9 below). The main goal in this section is not the
theorem itself, rather, the main goal is to illustrate a the-
oretical application of our “generating subfields” framework
(Theorem 2.9 had already been proven by Hendrik Lenstra
(private communication) using a different approach.)

Let Q(K/k) denote the subfield generated over k by {a ∈
K|a2 ∈ k}, and let C2 denote the cyclic group of order
2. If K = Q(K/k), in other words the Galois group of f
is Cs

2 for some s, then n = 2s and f splits over K into
linear factors f1 · · · fn where f1 = x−α. Furthermore, there
are precisely n − 1 generating subfields L2, . . . , Ln and n
principal subfields L1, . . . , Ln where L1 = K.

Conversely, suppose there are n principal subfields. Every
principal subfield corresponds to at least one factor of f over
K, and hence to precisely one factor since f has degree n. So
f must split into linear factors, and each Li corresponds to
precisely one linear factor fi. Then the minimal polynomial
of α over Li is f1fi when i ∈ {2, . . . , n}. The degree of f1fi
is 2, so there are n − 1 subfields of index 2, which implies
that the Galois group is Cs

2 for some s.

Theorem 2.9. If factoring over K and linear algebra over
k can be done in polynomial time then all quadratic subfields
of K/k can be computed in polynomial time.

The principal subfields of Q(K/k) are subfields of index
2, and hence correspond to automorphisms of Q(K/k) over
k of order 2. This way it is not difficult to show that the
quadratic subfields of Q(K/k) can be computed in polyno-
mial time; for the above theorem it suffices to prove that the
following algorithm computes Q(K/k) in polynomial time.

Algorithm Q

Input: A separable field extension K/k where K = k(α).
Output: Q(K/k).

1. Let n := [K : k]. If n is odd then return k.

2. Compute the set S of generating subfields.

3. If K/k has n − 1 distinct subfields of index 2 then
return K.

4. Choose a generating subfield Li ∈ S with index > 2,
and let L̃i be the field right above Li, so Li ( L̃i :=
⋂{Lj ∈ S |Li ( Lj}.

5. If [L̃i : Li] = 2 then return Q(L̃i/k), otherwise return
Q(Li/k).

In the first call to Algorithm Q, we can compute a gener-
ating set in Step (2) in polynomial time using Theorem 2.1

with K̃ := K. For the recursive calls we use:

Remark 2.10. If S is a generating set for K/k and if L
is a subfield of K/k, then {L⋂L′|L′ ∈ S} is a generating
set of L/k.

For Step (3) see the remarks before Theorem 2.9. If we reach
Step (4) then K 6= Q(K/k). The field Li in Step (4) exists



by Lemma 2.11 below. Let L̃i be the field right above Li. If
[L̃i : Li] = 2 then L̃i 6= K so the algorithm terminates.

Let a ∈ Q(K/k). We may assume that a2 ∈ k. Now L̃i is
contained in any subfield L′ of K/k that properly contains

Li. So if a 6∈ Li then Li(a) contains L̃i and hence equals

L̃i since [Li : Li(a)] = 2. Then a ∈ L̃i. We conclude

Q(K/k) ⊆ L̃i. If [L̃i : Li] 6= 2 then the assumption a 6∈ Li

leads to a contradiction since Li(a) can not contain L̃i in
this case. So Q(K/k) ⊆ Li in this case, which proves that
Step (5) is correct.

Lemma 2.11. If K/k does not have n−1 distinct subfields
of index 2 then there exists a generating field of index > 2.

Proof. Assume that every generating (and hence every
maximal) subfield has index 2. So the subfields of index 2
form a generating set. Let G be the automorphism group
of K/k. If K/Li and K/Lj are Galois extensions, then so
is K/(Li ∩ Lj) since Li ∩ Lj is the fixed field of the group
generated by the Galois groups of K/Li and K/Lj . If [K :
Li] = 2 then K/Li is Galois. Let k′ be the intersection of
all subfields Li of index 2. Then K/k′ is Galois. However,
k′ must equal k, otherwise the set of subfields of index 2 can
not be a generating set. It follows that K/k is Galois.

If n is not a power of 2, then there exists a maximal sub-
field of odd index. If n = 2s with s > 1 then the Galois
group must have an element of order 4 (G can not be Cs

2

since the number of subfields of index 2 is not n− 1). This
element of order 4 corresponds to a linear factor fi of f in
K[x]. Let Li be its corresponding principal subfield. Then
Li is contained in m maximal subfields where m is either 1 or
3. Let f̌i be the minimal polynomial of α over Li. If m = 3
then every irreducible factor of f̌i/(x− α) corresponds to a
subfield of index 2. This is a contradiction since fi divides
f̌i/(x− α).

3. THE NUMBER FIELD CASE

3.1 Introduction
In this section we describe an algorithm for producing a

generating set when K = Q(α). Factoring f over K, though
polynomial time, may be slow, thus we design an algorithm
that uses an approximation of a p-adic factorization and LLL
instead. We show that when the algorithm terminates1, it
returns the correct output.

For a prime number p, let Qp denote the field of p-adic
numbers, Zp the ring of p-adic integers, and Fp = Z/(p). We
choose a prime number p with these three properties: p does
not divide the leading coefficient of f ∈ Z[x], the image f
of f in Fp[x] is separable, and has at least one linear factor
which we denote f1 (asymptotically, the probability that
a randomly chosen prime p has these properties is ≥ 1/n,
where equality holds when K/k is Galois).

By factoring f in Fp[x] and applying Hensel lifting, we
obtain a factorization of f = f1 · · · fr over Qp where f1 has
degree 1. By mapping α ∈ K to the root α1 of f1 in Qp we
obtain an embedding K → Qp, and so we can view K as a
subfield of K̃ := Qp.

The advantage of taking Qp (instead of K) for K̃ is that it

saves time on factoring f over K̃. Since p does not divide the

1a bound for the running time can be obtained in a similar
way as in [3]

denominators of the coefficients of f , the factors f1, . . . , fr
of f over Qp lie in Zp[x]. We can not compute these factors
with infinite accuracy, but only to some finite accuracy a,
meaning that f1, . . . , fr are only known modulo pa.

For each of the factors, fi, we will need to find the prin-
cipal subfield Li which was defined in Section 2.1 as the
kernel of φi− id. To do this we will make use of a knapsack-
style lattice in the style of [18]. To get the best performance
we would like to design a lattice such that boundably short
vectors correspond with elements in Li.

A natural approach would be to use 1, α, . . . , αn−1 as a
basis, and search for linear combinations whose images un-
der φi − id are 0 (mod pa). However, we will use a different
basis. Denote Z[α]<n := Z ·α0 + · · ·+Z ·αn−1 (note: if f is
monic then this is simply Z[α] but we do not assume that f

is monic). Then the basis 1
f ′(α)

, . . . , αn−1

f ′(α)
of 1

f ′(α)
· Z[α]<n

allows us to prove more practical bounds (this phenomena
has also been observed in other contexts [6]). Using this
basis of K we prove the existence of a Q-basis of Li which
has a bounded representation. We delay the proof of this
theorem until section 3.4.

Theorem 3.1. Let Li, the target principal subfield, have

degree mi over Q. For β ∈ 1
f ′(α)

·Z[α]<n with β =
∑

bi
αi

f ′(α)

we associate the vector vβ := (b0, . . . , bn−1). Then there ex-
ists mi linearly independent algebraic numbers β1, . . . βmi

∈
Li ∩ 1

f ′(α)
· Z[α]<n each with ‖vβk

‖ ≤ n2‖f‖2.

3.2 The computation of a principal subfield
Now we can continue the description of the computation

of the principal subfield Li corresponding to the factor fi
of degree di. As mentioned before we will represent our

elements in the basis 1
f ′(α)

, . . . , αn−1

f ′(α)
. Each of these basis

elements will be represented as the column of an identity
matrix to which we attach entries for the image of that basis
element under φi − id. Since these images are only known
modulo pa we must also adjoin columns which allow for this
modular reduction. Suppose the degree of fi is di, then our
lattice is spanned by the columns of the following (n+di)×
(n + di) integer matrix:

Bi :=





















1
. . .

1
c0,0 . . . c0,n−1 pa

...
. . .

...
. . .

cdi−1,0 . . . cdi−1,n−1 pa





















(1)

where ck,j is the kth coefficient of xj

f ′(x)
modfi− xj

f ′(x)
modf1

reduced modulo pa. To interpret a vector v in the column
space of this matrix we take the first n entries b0, . . . , bn−1

and then compute (
∑

bjα
j)/f ′(α). A vector corresponding

to an element in Li will have its final di entries be 0 modulo
pa. Thus Theorem 3.1 shows us that the lattice generated by
columns of Bi contains a dimension mi sublattice which has
a small basis. This allows us to use the new sub-lattice re-
duction techniques of [18] on Bi. Thus, rather than standard
LLL, we use LLL_with_removals which performs lattice re-
duction but removes any vectors in the final position whose
G-S norm is above a given bound. The following lemma is
derived from [15] and justifies these removals.



Lemma 3.2. Given a basis b1, . . . ,bd of a lattice Λ, and
let b∗

1, . . . ,b
∗
d be the output of Gram-Schmidt orthogonaliza-

tion. If ‖ b∗
d ‖ > B then any vector in L with norm ≤ B is

a Z-linear combination of b1, . . . ,bd−1.

This technique is common and is used in [10, 18]. As
the removal condition requires Gram-Schmidt norms we can
state that LLL reduced bases tend to be numerically stable
for Gram-Schmidt computations so a floating point Gram-
Schmidt computation could be used for efficiency (see [19]).
Also FLINT 1.6 [9] has an LLL with removals routine which
takes a bound and returns the dimension of the appropriate
sub-lattice.

In this way using LLL_with_removals with the bound
from Theorem 3.1 will allow us to reduce the dimension.
In Figure 1 we give a practical algorithm which will create a
basis of a subfield of K which is highly likely to be Li. We
will use D := diag{1, . . . , 1, C, . . . , C} as a matrix for scal-
ing the last di rows of Bi by a scalar C. Since the vectors
guaranteed by Theorem 3.1 come from Li we know that the
final di entries must be 0. Thus multiplication on the left
by D and removals will eventually ensure that vectors with
zero entries are found by LLL.

Input: fi
Output: hk which probably generate Li

1. Create lattice Bi from equation (1)
2. A := LLL with removals(Bi, n

2 ‖ f ‖)
3. m := dim(A)
4. while ∃l > n, j such that A[l, j] 6= 0 :
5. A := D ·A
6. A := LLL with removals(A,n2 ‖ f ‖)
7. m := dim(A)
8. if m ∤ n increase precision repeat principal
9. for 1 ≤ k ≤ m:

10. hk :=
∑n

j=1
A[j,k]xj−1

f ′(x)

Figure 1: principal algorithm

Using LLL on the matrix entire Bi will suffice for this
paper. However, in practice the di final rows of Bi can also
be reduced one at a time. In this way one could potentially
arrive at a solution without needing all rows of Bi. Such
an approach is seen in [18] and could be adapted to this
situation.

The algorithm in figure 1 will produce m p-adic polyno-
mials hk, which are likely to correspond with algebraic num-
bers which generate Li as a Q-vector space. It is possible
that m is not mi but some other divisor of n. In partic-
ular, if the p-adic precision is not high enough then there
could be entries in the lattice basis which are 0 modulo pa

but not exactly 0. In that case one of the hk would not be
from Li. Even so the Q-vector space generated by the hk

must at least contain Li. The reason is that at least mi lin-
early independent algebraic numbers from Li remain within
the lattice after LLL_with_removals thanks to the bound of
Theorem 3.1 and Lemma 3.2.

Theorem 3.1 can also be used to make a guess for a start-
ing precision of pa. Since any reduced basis has Gram-
Schmidt norms within a factor 2n+di of the successive min-
ima and the determinant of Bi is pa·di then we should ensure
than pa·di is at least (2n+din2‖f‖)n.

3.3 Confirming a principal subfield
In this section we will assume that we have elements in

approximate p-adic form which are likely to generate a prin-
cipal subfield (in other words, the output of the algorithm
in Figure 1). Our goal is to certify that the elements indeed
generate the target Li. We give an algorithm which will
construct the subfield polynomial g, of Li or return failure,
in which case more p-adic precision is needed. We choose
the subfield polynomial as it will provide a proof that we
have a principal subfield and can be stored in a relatively
compact way thanks to our new basis. Of course other rep-
resentations and proofs are possible.

From here on our algorithmic objective will be to output
the minimal polynomial g ∈ Li[x] of alpha over Li. This g
is the subfield polynomial of Li and its coefficients generate
Li. We know m elements hk modulo pa, we know that m|n
and that φi − id(hk) ≡ 0 modulo pa for each k. Recall that
the hk were from columns of a lattice basis A. First we will
create a p-adic candidate subfield polynomial which we then
subject to 3 certification checks.

Candidate g: Create an index set T := {j|φj(hk) ≡
id(hk) mod pa∀hk}, that is find the p-adic factors of f which
also agree with f1 on the elements corresponding to the
basis from A. T will contain at least 1 and i. Now let
gcand :=

∏

j∈T fj mod pa. This is done in steps 1–5 of Fig-
ure 2

Input: h1 . . . hm, f1, . . . fr ∈ Qp[x], f ∈ Z[x] precision a
Output: g subfield poly, or fail

1. T := {}
2. for each 1 ≤ j ≤ r:
3. if (hk mod fj = hk mod f1) mod pa∀k then:
4. T := T ∪ j
5. gcand := lc(f) ·

∏
j∈T fj mod pa

where lc(f) is the leading coefficient of f
6. Create lattice M using (2)
7. M :=LLL(M)
8. gtemp = 0
9. for each coefficient gk of xk in gcand:
10. create Mgk lattice using (3)
11. Check 1 find v in LLL(Mgk )

with v[n+ 1] = 0 and v[n+ 2] = 1

12. gtemp := gtemp +
∑n

j=1
v[j]αj−1

f ′(α)
xk

13. gcand := gtemp ∈ Q(α)[x]
14. Check 2 ensure gcand|f exactly
15. Check 3 ensure (hk mod gcand = hk mod f1) ∀k
16. return g := gcand

Figure 2: final_check algorithm

Check 1: Let Λ(A) ⊆ Z[α]<n

f ′(α)
be the lattice generated

by the algebraic numbers corresponding with columns of A.
We now attempt to find an exact representation of gcand
by converting each coefficient into an algebraic number in

Λ(A) ∩ Z[α]<n

f ′(α)
. We’ll do this by attempting to find linear

combinations of hk which exactly equal each coefficient of
gcand.

Note that this gcand is a polynomial with p-adic coeffi-
cients, these coefficients can be quickly Hensel lifted using
the fact that f = g · (f/g) mod pa if more precision is
needed. Now we want to express these coefficients in the

basis Z[α]<n

f ′(α)
∩ Λ(A). To do this we will use a lattice basis

similar to A with a slight adjustment. Rather than finding
algebraic numbers whose images under φi− id are zero, we’ll



find combinations of the hk whose p-adic valuations match
a coefficient of gcand.

Lets call vhk
the coefficient vector of hk, and the corre-

sponding p-adic valuation cj := hk(α1) (that is, hk modulo
f1). Also we pick a large scalar constant C (to ensure that
LLL works on reducing the size of the p-adic row). We let
the columns of the new matrix be (vhj

, C · cj)T , and the
column (0, . . . , 0, C · pa).

M :=

(

vT
h1

. . . vT
hm

0

C · c1 . . . C · cm C · pa
)

(2)

A vector in the column space of this matrix is a repre-
sentation of a combination of the elements from hk along
with a p-adic valuation of that element. Now for each co-
efficient we’ll use this matrix to find a combination which
matches that coefficient. In practice we LLL-reduce M be-
fore adjoining data from the coefficients of gcand, but here
we present an augmented M without altering the columns
first (for clarity).

For each coefficient gk of gcand augment each column of M
with a zero, then adjoin a new column (0, . . . , 0, C · gk, 1)T .
This is what the coefficient matching matrix looks like:

M :=





vT
h1

. . . vT
hm

0 0

C · c1 . . . C · cm C · pa C · gk
0 . . . 0 0 1



 (3)

Run LLL on this matrix (provided C is large enough) then
find the vector which has its final two entries as 0,1, the first

n entries are an expression of gk in Z[α]<n

f ′(α)
. If this works for

every coefficient of gcand then the check has passed.
Check 2: Ensure that gcand|f in Q(α)[x].
Check 3: Ensure that hk mod gcand = hk mod f1 for

each hk.

Theorem 3.3. If all checks pass then the Q-linear com-
bination of the elements corresponding to the lattice basis
A generate Li the target principal subfield, and gcand is the
subfield polynomial of Li.

Proof. By construction of gcand and A we know that
the span over Q of the elements corresponding to A, the
hk, contains Li. Let’s call this span V , so Li ⊆ V . Since
gcand divides f and fi divides gcand then h mod gcand = h
mod f1 implies h mod fi = h mod f1. By check 1 this
implies that V ⊆ Li thus the span over Q of the elements
from the lattice is Li.

Now x−α, fi|gcand mod pa and gcand|f exactly then fi|gcand
and (x−α)|gcand exactly. Now by Remark 2.6 we know gcand
is the subfield polynomial of Li.

If check 1 fails then perhaps try a larger constant C, other-
wise if any check fails increase the p-adic precision via Hensel
lifting and try again.

3.4 Bounds for the coefficients
The only aim of this section is to prove Theorem 3.1. The

techniques described in this section are not used in the al-
gorithm.

In order to get our desired bounds it is useful to introduce
the notation of a codifferent, see [16, Chapter 4.2] for more
details.

Lemma 3.4. Let f ∈ Z[x] be primitive and irreducible,
with degree n. Let α be a root of f . Let OK be the ring of

integers in K = Q(α) and let O∗
K be the co-different which

is defined as:

O∗
K = {a ∈ K|∀b∈OK

Tr(ab) ∈ Z}.
Then

O∗
K ⊆ 1

f ′(α)
Z[α]<n (4)

.

Proof. Let a ∈ O∗
K , so Tr(ab) ∈ Z for any b ∈ OK .

The content of a polynomial g = c0x
0 + · · ·+ cdx

d ∈ K[x] is
defined as the fractional ideal c(g) = OKc0+· · ·+OKcd. Let
g1 = x− α and g2 = f/g1. Gauss’ lemma says c(g1)c(g2) =
c(g1g2). Then c(g1)c(g2) = c(f) = OK , (f is primitive) and
since g1 has a coefficient equal to 1 it follows that c(g2) ⊆
OK , in other words g2 ∈ OK [x]. Now ag2 ∈ a ·OK [x]<n and
by definition of O∗

K we see that Tr(ag2) ∈ Z[x]<n. So

Tr(ag2) = Tr(a
f(x)

x− α
) =

∑

ai
f(x)

x− αi
∈ Z[x]<n

where ai and αi denote the conjugates of a and α. Evaluat-
ing the right-hand side at x = α = α1 gives af ′(α) ∈ Z[α]<n

and hence a ∈ 1/f ′(α) · Z[α]<n.

Now suppose that we have an β ∈ O∗
K , then we can write

f ′(α)β =

n−1
∑

i=0

biα
i with bi ∈ Z. (5)

In our applications β is an element of a principal subfield
and we would like to bound the size of bi. In the following we
need the complex embeddings and some norms of algebraic
numbers.

Definition 3.5. Let K = Q(α) be a number field of de-
gree n and f be the minimal polynomial of α. Then we
denote by φ1, . . . , φn : K → C, α 7→ αi the n complex em-
beddings, where α1, . . . , αn are the complex roots of f . We
assume that α1, . . . , αr1 are real and the complex roots are
ordered such that αr1+i = ᾱr1+r2+i for 1 ≤ i ≤ r2.

For β ∈ K we define the norms

‖β‖1 :=

n
∑

i=1

|φi(β)| and ‖β‖2 :=

√

√

√

√

n
∑

i=1

|φi(β)|2.

Note the well known estimates:

‖β‖2 ≤ ‖β‖1 ≤ √
n‖β‖2.

We are able to give the promised bounds.

Lemma 3.6. Let β be given as in (5) with coefficient vec-
tor b := (b0, . . . , bn−1). Then we have ‖b‖2 ≤ n‖β‖1‖f‖2 ≤
n1.5‖β‖2‖f‖2.

Proof. Let h(x) :=
∑n−1

i=0 bix
i. Let αi := φi(α) and

βi := φi(β), then we get: h(αi) = βif
′(αi) for 1 ≤ i ≤ n.

Using Lagrange interpolation we get:

h(x) =
n
∑

i=1

βif
′(αi)

f(x)/(x− αi)

f ′(αi)
≤

n
∑

i=1

βi
f(x)

x− αi
.

Now:

‖b‖2 = ‖h‖2 =
n
∑

i=1

|βi|‖f/(x− αi)‖2



≤ max
i

‖f/(x− αi)‖2
n
∑

i=1

|βi| ≤ n‖f‖2‖β‖1,

‖f/(x−αi)‖2 ≤ n‖f‖2 is proved in [17, cor4.7]. The second
estimate follows then trivially from ‖ · ‖1 ≤ √

n ‖ · ‖2.
Now our goal is the following. Let L be a principal sub-

field of degree m which we would like to compute. We want
to find a Q-basis of L represented in our 1

f ′(α)
Z[α]<n–basis.

Note that O∗
L ⊆ O∗

K ⊆ 1
f ′(α)

· Z[α]<n. In order to apply

Lemma 3.6 we need to bound ‖βi‖2 for m linearly indepen-
dent elements β1, . . . , βm ∈ L. We will use the following
theorem.

Theorem 3.7 (Banaszczyk). Let Λ ⊂ Rm be a lattice
and denote by Λ∗ := {y ∈ Rm | ∀x ∈ Λ : 〈x, y〉 ∈ Z} the
dual lattice. Furthermore denote by λi, λ

∗
i the i-th successive

minima of Λ,Λ∗, respectively. Then λiλ
∗
m+1−i ≤ m for 1 ≤

i ≤ m.

The proof can be found in [1, Theorem 2.1]. In our appli-
cation we have that λ1 =

√
m, so we get the upper bound

λ∗
m ≤ √

m. There are canonical ways to map number fields
to lattices, but we have the slight problem that the bilinear
form L×L → Q, (x, y) 7→ Tr(xy) is not positive definite, if L
has non-real embeddings. We assume the same order of the
complex embeddings of L as in Definition 3.5, so we have
m = r1 + 2r2 (recall that m = [L : Q]). Defining γi = φi(γ)
and δi = φi(δ) we get:

Tr(γδ) =
m
∑

i=1

γiδi.

The corresponding scalar product looks like:

〈γ, δ〉 :=
m
∑

i=1

γiδ̄i.

For totally real number fields L those two notions coincide
and then we get that the dual lattice equals O∗

L and we can
apply Theorem 3.7 directly to get the desired bounds. First
we introduce the canonical real lattice Λ := Ψ(OL) ⊆ Rm

associated to 〈γ, δ〉 via

Ψ : L → Rm, (6)

β 7→ (β1, . . . , βr1 ,
√

2ℜ(βr1+1), . . . ,
√

2ℜ(βr1+r2),√
2ℑ(βr1+1), . . . ,

√
2ℑ(βr1+r2)).

Note that now the standard scalar product of Rm coincides
with the (complex) scalar product defined above. This is
the reason for the weight

√
2 in the above definition. Denote

by 〈·, ·〉1 the standard scalar product of Rm. Furthermore
denote by

〈x, y〉2 :=

r1+r2
∑

i=1

xiyi −
m
∑

i=r1+r2+1

xiyi.

Then we have

〈γ, δ〉 = 〈Ψ(γ),Ψ(δ)〉1 and Tr(γδ) = 〈Ψ(γ),Ψ(δ)〉2.
Now we are able to compare our two dual objects, the dual
lattice Λ∗ of Λ corresponding to 〈·, ·〉1 and the codifferent.

Lemma 3.8. Using the above notations. Then θ : Rm →
Rm,

(x1, . . . , xm) 7→ (x1, . . . , xr1+r2 ,−xr1+r2+1, . . . ,−xm)

induces an isomorphism Λ∗ → Ψ(O∗
L) of Z–modules.

Proof. θ is linear and has the property

〈x, y〉1 = 〈x, θ(y)〉2 for all x, y ∈ Rm.

We need to show that θ(Λ∗) = Ψ(OL). Note that θ2 is the
identity and therefore this is equivalent to θ(Ψ(OL)) = Λ∗.
Denote by ω1, . . . , ωm a Z–basis of OL. Then Λ = ZΨ(ω1)+
. . .+ZΨ(ωm). Choose γ ∈ O∗

L arbitrarily. Then Tr(ωiγ) ∈ Z
for 1 ≤ i ≤ m and therefore

〈Ψ(ωi), θ(Ψ(γ))〉1 = 〈Ψ(ωi),Ψ(γ))〉2 = Tr(ωiγ) ∈ Z.

Therefore θ(Ψ(γ)) ∈ Λ∗ and we have shown θ(Ψ(O∗
L)) ⊆ Λ∗.

Denote by τ1, . . . , τm ∈ O∗
L the dual basis of ω1, . . . , ωm. Be-

cause of duality (e.g. see [16, Proof of Prop. 4.14]) we know
that disc(τ1, . . . , τm) = disc(ω1, . . . , ωm)−1 = d−1

L . Further-
more θ(Ψ(τi)) (1 ≤ i ≤ m) are linearly independent ele-
ments of Λ∗ and the discriminant of the Z–module generated
by those elements is |d−1

L | since the corresponding determi-
nants differ by a power of −1 because we have to consider
the twists between our two bilinear forms. Therefore we
know a subset θ(Ψ(O∗

L)) ⊆ Λ∗ which has the correct lattice
discriminant. Therefore we get equality.

Now we are able to get our bound by applying Lemma 3.8
and Theorem 3.7.

Lemma 3.9. Let L be a number field of degree m. Then
O∗

L contains m Q–linearly independent elements γ1, . . . , γm
such that ‖γi‖2 ≤ √

m for 1 ≤ i ≤ m.

Proof. As before let Λ := Ψ(OL), where Ψ is defined
in (6). Now we claim that the first successive mimimum λ1

equals
√
m by taking the element Ψ(1). Let γ ∈ OL and

γ 6= 0. Then

1 ≤ |Norm(γ)| =

(

m
∏

i=1

|γi|2
)1/2

≤
(∑m

i=1 |γi|2
m

)m/2

=

( 〈Ψ(γ),Ψ(γ)〉1
m

)m/2

,

where the inequality is the one between geometric and arith-
metic means. Now we get that 〈Ψ(γ),Ψ(γ)〉1 ≥ m which
finishes the proof that λ1 =

√
m.

Applying Theorem 3.7 we find m linearly independent
elements y1, . . . , ym ∈ Λ∗ with euclidean length bounded
by m/

√
m =

√
m. By using Lemma 3.8 we find elements

θ(yi) ∈ Ψ(O∗
L) which have the same euclidean length. By

choosing γi := Ψ−1(θ(yi)) for 1 ≤ i ≤ m we finish our
proof.

Now we are able to prove our theorem. Note that the field
L takes the role of the principal subfield Li in the statement.

Proof of Theorem 3.1. Using Lemma 3.9 we find mi

linearly independent elements βj in O∗
L with 2-norm bounded

by
√
mi. When we interpret those elements in K, we get

n/mi copies of the complex embeddings, which gives that
the 2-norm as elements of K is bounded by

√
n. Now apply

Lemma 3.6.

4. AN EXAMPLE
The aim of this section is to compare our algorithm with

the previous state of the art. We want to indicate that our
approach can be useful in practice. The algorithm most



efficient in practice at the time of this paper is based on
[12]. That algorithm uses a combinatorial approach in or-
der to find block systems corresponding to a subfield. The
drawback of that algorithm is that it might have to test ex-
ponentially many possibilities before it finds the right block
system.

Our algorithm is more robust, in the sense that there is
no risk of an exponentially large computation time due to a
combinatorial problem. We compare our algorithm with [12]
by taking an example which was given in [12].

We use the degree 60 field generated by a root of the
polynomial

f(t) := t60+36t59+579t58+5379t57+30720t56+100695t55+
98167t54 − 611235t53 − 2499942t52 − 1083381t51 +15524106t50 +
36302361t49 − 22772747t48 − 205016994t47 − 194408478t46 +
417482280t45 + 954044226t44 + 281620485t43 − 366211766t42 −
1033459767t41 − 8746987110t40 − 15534020046t39 +
23906439759t38 + 104232578583t37 + 31342660390t36 −
364771340802t35 − 547716092637t34 + 583582152900t33 +
2306558029146t32 + 998482693677t31 − 3932078004617t30 −
5195646620046t29 + 2421428069304t28 + 10559164336236t27 +
3475972372302t26 − 22874708335419t25 − 33428241525914t24 +
21431451023271t23 + 90595197659892t22 + 50882107959528t21 −
67090205528313t20−117796269461541t19−74369954660792t18+
25377774560496t17+126851217660123t16+104232393296166t15−
29072256729168t14 − 83163550972215t13 − 24296640395870t12 +
14633584964262t11 + 8865283658688t10 + 5364852154893t9 −
1565702171883t8 − 7601782249737t7 − 2106132289551t6 +
3369356619543t5 + 3717661159674t4 + 1754791133184t3 +
573470363592t2 + 74954438640t+ 3285118944

which is the splitting field of the polynomial t5 + t4 −
2t3 + t2 + t + 1. The Galois group of this polynomial is the
alternating group A5 and therefore all elements have order
1, 2, 3, or 5.

For lower degree examples, the algorithm from [12] is gen-
erally faster, however, to compute this degree 60 example, it
needed some assistance to prevent the combinatorial prob-
lem from becoming prohibitively large. Our algorithm is
more robust in the sense that it handles such examples with-
out difficulties or assistance. The algorithm [12], with some
assistance, took a couple of hours for this example. On the
same machine, our algorithm (without assistance) can find
each principal subfield in 3–5 seconds. One can construct
examples where the difference in running time becomes ex-
ponentially larger. For example, construct an S5-example of
degree 120. Our algorithm is sufficiently robust to handle
such degrees.
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