
Second Order Differential Equations with Hypergeometric
Solutions of Degree Three

Vijay Jung Kunwar∗, Mark van Hoeij∗
Department of Mathematics, Florida State University

Tallahassee, FL 32306-3027, USA
vkunwar@math.fsu.edu, hoeij@math.fsu.edu

ABSTRACT
Let L be a second order linear homogeneous differential
equation with rational function coefficients. The goal in
this paper is to solve L in terms of hypergeometric function

2F1(a, b; c | f) where f is a rational function of degree 3.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms; G.4 [Mathematics of Computing]: Mathemati-
cal Software

General Terms
Algorithms

Keywords
Symbolic Computation, Differential Equations, Closed Form
Solutions

1. INTRODUCTION
A linear differential equation with rational function coef-
ficients corresponds to a differential operator L ∈ C(x)[∂]
where ∂ = d

dx
. For example, if L = a2∂

2+a1∂+a0 is a differ-
ential operator with a2, a1, a0 ∈ C(x), then the correspond-
ing differential equation L(y) = 0 is a2y

′′ + a1y
′ + a0y = 0.

We assume that L has no Liouvillian solutions, otherwise L
can be solved quickly using Kovacic’s algorithm [7].

Definition 1.1. If S(x) is a special function that satisfies
a differential operator LS (called a base equation) of order
n, then a function y is called a linear S-expression if there
exist algebraic functions f, r, r0, r1, . . . such that y =

exp(

∫
r dx) ·

(
r0S(f)+r1S(f)′+ · · ·+rn−1S(f)(n−1)

)
. (1)

∗Supported by NSF grant 1017880

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’13, June 26–29, 2013, Boston, Massachusetts, USA.
Copyright 2013 ACM 978-1-4503-2059-7/13/06 ...$15.00.

More generally, we say that y can be expressed in terms of S
if it can be written in terms of expressions of the form (1),
using field operations and integrals.

Higher derivatives are not needed in (1) since they are linear

combinations of S(f), S(f)′, . . . , S(f)(n−1). If LS ∈ C(x)[∂]

is of order n and k = C(x, r, f, r0, r1, . . .) ⊆ C(x) then y
satisfies an equation L ∈ k[∂] of order ≤ n.
If L ∈ C(x)[∂] has order 3 or 4, and S is a special function
that satisfies a second order equation, then the problem of
solving L in terms of S can be reduced, with an algorithm
and implementation [12], to the problem of solving second
order equations. This reduction of order motivates a focus
on second order equations.
If y and S satisfy second order operators, then products
of (1) are not needed, and the form reduces to

y = exp(

∫
r dx) ·

(
r0S(f) + r1S(f)′

)
. (2)

Although form (2) looks technical, it is the most natural
form to consider, because it is closed under the known trans-
formations that send irreducible second order operators in
C(x)[∂] to second order linear operators. Given an input
operator Linp of order 2, finding a solution of the form (2)
corresponds to finding a sequence of transformations that
sends LS to Linp (or a right hand factor of Linp, but we
assume Linp to be irreducible):

(i) Change of variables: y(x) 7→ y(f)
(ii) Gauge transformation: y 7→ r0y + r1y

′

(iii) Exponential product: y 7→ exp(
∫
r dx)

The function f in (i) above is called the pullback function.

These transformations are denoted as
f−→C ,

r0,r1−−−→G and
r−→E

respectively. They send expressions in terms of S to expres-
sions in terms of S. So any solver for finding solutions in
terms of S, if it is complete, then it must be able to deal
with all three transformations. In other words, it must be
able to find any solution of the form (2).
The goal in this paper is the following:

Given Linp ∈ C(x)[∂], irreducible, order 2, find, if it exists,
a nonzero solution of form (2) where S(x) = 2F1(a, b; c |x),
f, r, r0, r1 ∈ C(x) and f has degree 3.

Given Linp, our task is to find:

LS
f−→C M

r0,r1−−−→G

r−→E Linp.

There are algorithms [2] to find the transformations
r0,r1−−−→G

and
r−→E but to apply them we first need M (or equivalently,

f and LS). Thus the crucial part is to compute f .
We compute f from the singularities of M . Since we do not
yet know M , the only singularities of M that we know are
those singularities of Linp that can not disappear (turn into

regular points) under transformations
r0,r1−−−→G and

r−→E .

Definition 1.2. A singularity is called non-removable if

it stays singular under any combination of
r0,r1−−−→G and

r−→E .

A singularity x = p of Linp that can become a regular point

under
r0,r1−−−→G and/or

r−→E need not be a singularity of
M . Such singularities (removable singularities) provide no
information about f . They include apparent singularities
(singularities p where all solutions are analytic at x = p, such

singularities can disappear under
r0,r1−−−→G). More generally,

if there exist functions u, y1, y2 with y1, y2 analytic at x = p
such that uy1, uy2 is a basis of local solutions of L at x = p,
then x = p is removable (such p can be sent to an apparant

singularity with
r−→E).

1.1 Motivation
Equations with a 2F1-type solution are common. We ex-
amined integer sequences u(0), u(1), u(2), . . . from the On-
line Encyclopedia of Integer Sequences (oeis.org) for which
y =

∑
n u(n)xn ∈ Z[x] is (a) convergent, and (b) holo-

nomic, meaning that y satisfies a linear differential operator
L. Among the L’s obtained this way, all second order L’s
(including dozens that had no Liouvillian solutions) turned
out to have 2F1-type solutions. For third order operators we
used order 3→ 2 reduction [12] to find solutions of the form

exp(
∫
rdx)

(
r0(S(f))2 + r1S(f)S(f)′ + r2(S(f)′)2

)
, where

S(x) = 2F1(a, b; c |x).
The key step to find 2F1-type solutions is to find the pull-
back function f , and the 2F1-parameters a, b, c. Classifying
all rational functions f ∈ C(x) that can occur as a pullback
function for some L with d non-removable singular points is
ongoing work, see [8] for d = 4 and [9] for d = 5 (with at
least one logarithmic singularity). For a fixed d, a large ta-
ble is needed to ensure that we can solve every second order
L with d singularities that has a 2F1-type solution. But the
table can be greatly reduced by developing algorithms such
as 2-descent [6]. If f is a rational function with a degree 2
decomposition, then we can apply the 2-descent algorithm
to L to reduce the degree of f in half.
After trying 2-descent, the next case is to solve every L that
has a 2F1-type solution where f is a rational function of
degree 3. This is useful in its own right because it solves
many equations, but it also significantly reduces the tab-
ulation work that is needed (many f ’s from [8],[9] have a
decomposition factor of degree 2 or 3).

1.2 Hypergeometric solutions, an example
Consider the operator L =

2
(
2x2 − 1

) (
8x2 − 1

)
∂2 + 4x

(
24x2 − 7

)
∂ + 24x2 − 3. (3)

L can be solved in terms of 2F1(a, b; c | f) where f is a ra-
tional function of degree 3. We give one such solution (a
second independent solution looks similar):

solL = (1− 2x
√

2)−
1
3 (1 + x

√
2)−

1
6 · 2F1

(1

6
,

1

3
;

5

6
| f
)

(4)

where f =
(2x−

√
2)(4x+

√
2)2

(2x+
√
2)(4x−

√
2)2

.

L is defined over Q, i.e. L ∈ Q(x)[∂] but f 6∈ Q(x); instead
f ∈ Q(

√
2, x). Such a field extension can only occur when f

is not unique (replacing
√

2 by −
√

2 gives another solution).
The non-uniqueness of f in this example is explained by
the fact that L has a symmetry x 7→ −x (The change of
variables x 7→ −x produces an operator L−x that equals L).
The change of variables x 7→

√
x produces an operator L√x

that is still in Q(x)[∂] (this is a trivial case of 2-descent).

L√x = x(2x−1)(8x−1)∂2+(32x2−12x+
1

2
)∂+3x− 3

8
. (5)

Our program produces the following solution of L√x:

solL√x
= 2F1

(1

12
,

1

4
;

1

2
| 2x (8x− 3)2

)
. (6)

Applying x 7→ x2 to (6) produces another solution of L:

SolL = 2F1

(1

12
,

1

4
;

1

2
| 2x2 (8x2 − 3

)2)
. (7)

The pullback function f in (7) has degree 6, but is nicer than
the degree 3 function in (4). So we chose in our implemen-
tation to search only for f ’s which are defined over the field
of constants specified in the input, and to apply 2-descent
for the cases where f requires a field extension.
The following diagrams show the impact of the change of
variables x 7→ f .

Notation: (see section 2 for more details and definitions).
p: non-removable singularity with exponent-difference ∆p.
Ha,b

c,x : hypergeometric differential operator.

L:
p 1√

2

−1√
2

1

2
√
2

−1

2
√
2

∆p
1
6

1
6

1
3

1
3

6

(2 x−
√
2)(4 x+

√
2)2

(2 x+
√
2)(4 x−

√
2)2

H
1
6
, 1
3

5
6
,x

:
p 0 1 ∞

∆p
1
6

1
3

1
6

I

II

Diagram 1

L:
p 1√

2

−1√
2

1

2
√
2

−1

2
√
2

∆p
1
6

1
6

1
3

1
3

6

x2

L√x:
p 0 1

2
1
8
∞

∆p
1
2

1
6

1
3

1
2

H
1
12

, 1
4

1
2
,x

:

6

2x(8x− 3)2

p 0 1 ∞

∆p
1
2

1
6

1
6

I

II

III

Diagram 2

The diagrams give the singularity structures (the p’s and
∆p’s, see section 2 for definitions) of L,L√x and Ha,b

c,x . The

hypergeometric function 2F1(a, b; c |x) is a solution of Ha,b
c,x

(see Section 2.2). Choosing (a, b, c) = (1
6
, 1
3
, 5
6
) makes the

exponent-differences of Ha,b
c,x equal to (1

6
, 1
3
, 1
6
). Then the

pullback function f =
(2x−

√
2)(4x+

√
2)2

(2x+
√
2)(4x−

√
2)2

in Diagram 1 sends

the singularity structure of Ha,b
c,x to that of L.

Diagram 2 has two changes of variables, x 7→ 2x(8x − 3)2

produces the singularity structure of L√x from a hyperge-

ometric equation with exponent-differences (1
2
, 1
6
, 1
6
). After

that, x 7→ x2 produces the singularity structure of L.
Presenting (4) in the general form (2), we get

r = u′

u
∈ Q(x,

√
2) where u = (1 + 2x

√
2)−

1
3 (1 − x

√
2)−

1
6 ,

r0 = 1 and r1 = 0. For (7), we also have r1 = 0 (with
r = 0, r0 = 1). The case r1 6= 0 is more complicated as
this involves integer shifts of the exponent-differences, see
section 2.4 for an example.

1.3 Goal of the paper
The examples in the above diagrams illustrate the effect of
change of variables x 7→ f on the singularities and their
exponent-differences; this paper will use that to reconstruct
f whenever it has degree 3, a problem that turns out to
consist of 18 cases. One of those cases (case sing5.2 in sec-
tion 4.2) was treated previously in section 2.6 in [4]. The
goal in this paper is to cover all cases with f of degree 3.
Combining this work with the 2-descent algorithm from [6]
and the tables from [8, 9] leads to a solver that can find

2F1-type solutions for many second order equations. The
combined solver is very effective; it appears that closed form
solutions exist for every second order L that has a non-zero
convergent solution of the form

∑∞
n=0 u(n)xn with u(n) ∈ Z.

2. PRELIMINARIES AND NOTATIONS
This section gives a brief summary of prior results needed
for this paper. Notations used throughout the paper:

C: a subfield of C.
Linp ∈ C(x)[∂]: input differential operator.
Ha,b

c,x : Gauss hypergeometric differential operator.
S(x) = 2F1(a, b; c|x): hypergeometric function (a solution
of Ha,b

c,x).

e0, e1, e∞: exponent differences of Ha,b
c,x at 0, 1,∞.

f ∈ C(x): a rational function of degree 3.

Ha,b
c,f : obtained from Ha,b

c,x by a change of variables x 7→ f .

S(f) = 2F1(a, b; c | f): a solution of Ha,b
c,f .

2.1 Differential Operators and Singularities
A derivation ∂ = d

dx
on C(x) produces a non-commutative

ring C(x)[∂]. A differential operator of order n is an element
L ∈ C(x)[∂] of the form L =

∑n
i=0 ai∂

i, with ai ∈ C(x) and
an 6= 0. The solution space (set of all solutions in a universal
extension) of L is denoted by V (L) = {y |L(y) = 0}.
After clearing denominators, we may assume ai ∈ C[x].
Then p ∈ C is called a regular (or non-singular) point when
an(p) 6= 0. Otherwise it is called a singular point (or a sin-
gularity). The point p =∞ is called regular if the change of
variable x 7→ 1/x produces an operator L1/x with a regular

point at x = 0. Given p ∈ P1 = C∪{∞}, we define the local

parameter as tp =

{
x− p if x 6=∞
1
x

if x =∞.

Definition 2.1. L ∈ C(x)[∂] is called Fuchsian (or reg-
ular singular) if all its singularities are regular singularities.
A singularity p is a regular singularity when:
(1) (if p 6=∞): tip ·

an−i

an
is analytic at p for 1 ≤ i ≤ n.

(2) (if p =∞): L1/x has a regular singularity at x = 0.
Otherwise p is called irregular singular.

This paper considers only Fuchsian operators, of order 2. For
closed form solutions of non-Fuchsian equations (L having
at least one irregular singularity) see [13].

Theorem 2.2. ([10], Sections 2.1–2.4). Suppose L has
order 2 and p ∈ P1. If x = p is a regular singularity or a
regular point of L, then there exists the following basis of
V (L) at x = p

y1 = te1p
∑∞

i=0 ait
i
p, a0 6= 0 and

y2 = te2p
∑∞

i=0 bit
i
p + cy1 log(tp), b0 6= 0

where e1, e2, ai, bi, c ∈ C such that:
(i) If e1 = e2 then c must be non zero.
(ii) Conversely, if c 6= 0 then e1 − e2 must be in Z.

Notation 2.3. In Theorem 2.2:

1. If c 6= 0 then x = p is called a logarithmic singularity.

2. e1, e2 are called the exponents of L at x = p (they are
computed as the roots of the indicial equation).

3. ∆p(L) := ±(e1 − e2) is the exponent difference at p.

4. If ∆p(L1) ≡ ∆p(L2) mod Z then we say that ∆p(L1)
matches ∆p(L2).

Remark 2.4. Logarithmic singularities are always non-
removable (they stay logarithmic under the transformations
in Definition 1.2). If e1 − e2 ∈ Z and x = p is non loga-
rithmic then x = p is either a regular point or a removable
singularity. Proofs and more details can be found in [5]. The
relation with Theorem 2.2 is as follows:
(1) x = p is non-singular ⇐⇒ {e1, e2} = {0, 1} and c = 0.
(2) x = p is non-removable ⇐⇒ c 6= 0 or e1 − e2 6∈ Z.

Definition 2.5. The singularity structure of L is:
Sing(L) = {(p,∆p(L) mod Z) : p is non-removable}.

It is often more convenient to express singularities in terms
of monic irreducible polynomials.

Definition 2.6. Let C be a field of characteristic 0.
places(C):= {f ∈ C[x] | f is monic and irreducible}

⋃
{∞}.

The degree of a place p is 1 if p =∞ and deg(p) otherwise.

Example 2.7. Consider L in section 1.2.

Sing(L) =
{(1√

2
,

1

6

)
,
(
− 1√

2
,

1

6

)
,
(1

2
√

2
,

1

3

)
,
(
− 1

2
√

2
,

1

3

)}
.

In terms of places(Q) it is written as:

Sing(L) =
{(

x2 − 1

2
,

1

6

)
,
(
x2 − 1

8
,

1

3

)}
.

2.2 Gauss Hypergeometric Equation
The Gauss hypergeometric differential equation (GHE) is:

x(1− x)y′′ + (c− (a + b + 1)x)y′ − aby = 0. (8)

It has three regular singularities, with exponents {0, 1 − c}
at x = 0, {0, c − a − b} at x = 1 and {a, b} at x = ∞. The
corresponding differential operator is denoted by:

Ha,b
c,x = x(1− x)∂2 + (c− (a + b + 1)x)∂ − ab. (9)

One of the solutions at x = 0 is 2F1(a, b; c |x). Computing
a 2F1-type solution of a second order Linp corresponds to
computing transformations from Ha,b

c,x to Linp.

Remark 2.8. The exponent differences of Ha,b
c,x can be ob-

tained from the parameters a, b, c and vice versa:
(e0, e1, e∞) = (1− c, c− a− b, b− a).

Remark 2.9. We assume that Ha,b
c,x has no Liouvillian

solutions. For such Ha,b
c,x , the points 0, 1,∞ are never non-

singular or removable singularities. So if Ha,b
c,x has ep ∈ Z

(with p ∈ {0, 1,∞}) then p is a logarithmic singularity.

2.3 Properties of Transformations
For second order operators, we use the notation L1 −→ L2

if L1 can be transformed to L2 with any combination of the
three transformations from section 1. If L1 −→ L2 then

L1
f−→C

r0,r1−−−→G

r−→E L2. More details can be found in [1].

Remark 2.10.

1.
r0,r1−−−→G and

r−→E are equivalence relations.

2. ∆p remains same under
r−→E but may change by an

integer under
r0,r1−−−→G .

So if L1
f−→C M

r0,r1−−−→G

r−→E Linp for some in-
put Linp with L1,M unknown, then ∆p(M) can be
(mod Z and up to ±) read from ∆p(Linp),

Sing(Linp) = Sing(M).

Hence L1, f,M should be reconstructed from Sing(Linp).

3. If one of e0, e1, e∞ is in 1
2

+Z then Ha,b
c,x is determined,

up to the equivalence relation
r0,r1−−−→G

r−→E , by the triple
(e0, e1, e∞) up to ± and mod Z.
If {e0, e1, e∞}

⋂
(1
2

+ Z) = ∅ then the triple leaves two

separate cases for Ha,b
c,x up to

r0,r1−−−→G

r−→E ; we need
to consider (e0, e1, e∞) up to ± and mod Z, and
(e0 + 1, e1, e∞) up to ±. See Theorem 8, section 5.3 in
[14] for details.

Because of the transformation M
r0,r1−−−→G

r−→E Linp in
remark 2.10 only non-removable singularities of Linp pro-
vide usable data for M and f .

Definition 2.11. Two operators L1, L2 are called projec-

tively equivalent (notation: L1 ∼p L2) if L1
r0,r1−−−→G

r−→E L2.

The following lemma gives the effect of
f−→C on the sin-

gularities and their exponent differences: (see [4] for more
details)

Lemma 2.12. Let e0, e1, e∞ be the exponent differences of
Ha,b

c,x at 0, 1,∞. Let Ha,b
c,f be the operator obtained from Ha,b

c,x

by applying x 7→ f . Let d = ∆p be the exponent difference

of Ha,b
c,f at x = p. Then:

1. If p is a root of f with multiplicity m, then d = me0.

2. If p is a root of 1−f with multiplicity m, then d = me1.

3. If p is a pole of f of order m, then d = me∞.

2.4 An Example Involving All Three Trans-
formations

Let u(0) = 1, u(1) = 828, u(n + 2) =

4(592(n− 1)2 − 977)u(n + 1)− 283(16n2 − 9)u(n))

(n + 2)2
. (10)

This defines a sequence 1, 828, -121212, . . . How to prove
that this is an integer sequence?
Consider the following differential operator:

L̃ = (x− 37)
(
x2 + 3

)
∂2 +

(
x2 + 3

)
∂ − 9

16
(x + 9). (11)

Our implementation solves this equation. One solution is:

solL̃ = s
(
g · 2F1

(1

12
,

5

12
; 1 | f

)
+ h · 2F1

(5

12
,

13

12
; 1 | f

))
.

(12)

where s = 98
1
4

126(3x−13)
5
4

, g = (3x+1)(3x−13), h = 36x+40

and f = 27(x−37)(x2+3)

(3x−13)3
.

One can convert between differential equations and recur-
rences (see ‘gfun’ package in Maple) and find:

solL̃ =

∞∑
n=0

u(n)
(x− 37

27 · 73

)n
(13)

where u(n) are given by the recurrence relation in (10).
The explicit expression (12) can be used to prove
u(n)∈ Z for n = 0, 1, . . . (it is not clear if there is a dif-
ferent way to prove that for this example).

The following diagram shows the effects of
f−→C and

r0,r1−−−→G

on the set of non-removable singularities and their exponent
differences (

r−→E does not affect them):

L̃:

6
y 7→ r0y + r1y

′

p 37
√
−3 −

√
−3 ∞

∆p 0 1 1 3
2

H
1
12

, 5
12

1,f
:

p 37
√
−3 −

√
−3 ∞

∆p 0 0 0 1
2

6

f = 27(x−37)(x2+3)

(3x−13)3

H
1
12

, 5
12

1,x
:

p 0 1 ∞
∆p 0 1

2
1
3

I

II

III

Diagram 3

Suppose y(x) =
∑∞

n=0 u(n)xn is convergent with u(n) ∈ Z,
(n = 0, 1, 2, . . .) and satisfies a second order differential oper-
ator L ∈ Q(x)[∂]. In all known examples such y(x) is either

algebraic or expressible in terms of 2F1 hypergeometric func-
tions. Hence algorithms for finding 2F1-type solutions are
useful for integer sequences.

3. PROBLEM DISCUSSION
Starting with a Fuchsian linear differential operator Linp,
of order 2, and no Liouvillian solutions, we want to find a
solution of such Linp in the form :

y = e
∫
r(r0S(f) + r1S(f)′) (14)

where S(x) = 2F1(a, b; c |x), f, r, r0, r1 ∈ C(x) and f has
degree 3. There are two key steps:

• Compute f and (e0, e1, e∞) such that

Sing(Ha,b
c,f) = Sing(Linp). (15)

(see remark 2.8 for the relation between (e0, e1, e∞)
and (a, b, c))

• Compute projective equivalence ∼p between Ha,b
c,f and

Linp which sends solutions S(f) = 2F1(a, b; c | f) of

Ha,b
c,f to solutions of Linp of the form (14).

If we find f then [2] takes care of the second step. Hence the
crucial part is to compute f (as well as a, b, c, or equivalently,
e0, e1, e∞).
Let f = A/B where A,B ∈ C[x] with gcd(A,B) = 1. The
hypergeometric operator Ha,b

c,x has singularities at
x = 0, 1,∞. So one might expect Linp to have singularities
whenever f = 0, 1 or ∞; i.e. at the roots of A,A−B andB.
If all roots of A,A − B,B would appear among the singu-
larities of Linp, then it would be fairly easy to reconstruct
f = A/B. However, that is not true in general (it is true for
8 out of the 18 cases in Tab. 1 in Section 4.2). For example;
if f has a root p with multiplicity 2 and e0 is a half-integer
(an odd integer divided by 2), then p will be a removable

singularity or a non-singular point of Ha,b
c,f . Such p does not

appear in Sing(Linp).

4. COMPUTING PULLBACK FROM THE
SINGULARITY STRUCTURE

4.1 Relating singularities to f
Let [[a1, . . . , ai], [b1, . . . , bj], [c1, . . . , ck]] denote the branch-
ing pattern of f . It contains the branching orders of f above
0, 1 and ∞ respectively (So f has i distinct roots with mul-
tiplicities a1, . . . , ai. Likewise 1 − f and 1

f
have j resp. k

distinct roots). Using lemma 2.12 and remark 2.4, the sin-

gularities of Ha,b
c,f are as follows:

P0 = {x : f = 0 and (e0 ∈ Z or al e0 /∈ Z) for 1 ≤ l ≤ i}

P1 = {x : 1− f = 0 and (e1 ∈ Z or bl e1 /∈ Z) for 1 ≤ l ≤ j}

P∞ = {x : 1
f

= 0 and (e∞ ∈ Z or cl e∞ /∈ Z) for 1 ≤ l ≤ k}

where (e0, e1, e∞) are the exponent differences of Ha,b
c,x at

(0, 1,∞) respectively. The union of P0, P1 and P∞ are the

non-removable singularities of Ha,b
c,f (or Linp, by eq. (15)).

Since f has degree 3, Linp could have at most 9 singularities.
The least we could have is 2 when we choose the branching
pattern of f as [[3],[1,2],[1,2]] and (e0, e1, e∞) ≡ (± 1

3
, 1
2
, 1
2
)

mod Z. But a hypergeometric equation with two exponent-
differences in 1

2
+ Z has Liouvillian solutions, so we do not

treat this case here. If Linp has 3 non-removable singular-
ities, then we can transform these to 0, 1,∞ via a Möbius
transformation and express the solution accordingly (with a
rational function of degree 1). This case is already treated
in [14]. So we exclude these cases (Liouvillian and 3 non-
removable singularities) from our consideration.

4.2 Tabulating cases
Let d be the total number of non-removable singularities
in Linp. From Section 4.1 we have 4 ≤ d ≤ 9. The first
step is to enumerate all possibilities for exponent differences
e0, e1, e∞ and branching patterns above {0, 1,∞} for each
d. We express all such possibilities for degree 3 rational
function f in the following table:

Notation 4.1.
d: number of non-removable singularities in Linp.
∗, E1, E2, E3: elements of C.
∗
2

: an element of 1
2

+ Z.
∗
3

: an element of (1
3

+ Z) ∪ (2
3

+ Z).

d Case Exponent difference Branching pattern
at 0, 1, ∞ resp. above 0, 1, ∞ resp.

case4.1 ∗
2
, ∗

3
, E1 [1,2], [3], [1,1,1]

case4.2 6= ∗
3
, ∗

3
, E1 [3], [3], [1,1,1]

4 case4.3 6= ∗
2
, 6= ∗

2
, ∗

3
[1,2], [1,2], [3]

case4.4 6= ∗
3
, 6= ∗

2
, ∗

2
[3], [1,2], [1,2]

Liouv 6= ∗
2
, ∗

2
, ∗

2
[1,2], [1,2], [1,2]

case5.1 6= ∗
3
, 6= ∗

3
, E1 [3], [3], [1,1,1]

Liouv ∗
2
, ∗

2
, E1 [1,2], [1,2], [1,1,1]

5 case5.2 6= ∗
2
, ∗

3
, E1 [1,2], [3], [1,1,1]

case5.3 ∗
2
, E1, 6= ∗

3
[1,2], [1,1,1], [3]

case5.4 6= ∗
2
, 6= ∗

2
, ∗

2
[1,2], [1,2], [1,2]

case5.5 6= ∗
3
, 6= ∗

2
, 6= ∗

2
[3], [1,2], [1,2]

case6.1 ∗
3
, E1, E2 [3], [1,1,1], [1,1,1]

6 case6.2 6= ∗
2
, ∗

2
, E1 [1,2], [1,2], [1,1,1]

case6.3 6= ∗
3
, 6= ∗

2
, E1 [3], [1,2], [1,1,1]

case6.4 6= ∗
2
, 6= ∗

2
, 6= ∗

2
[1,2], [1,2], [1,2]

case7.1 6= ∗
3
, E1, E2 [3], [1,1,1], [1,1,1]

7 case7.2 ∗
2
, E1, E2 [1,2], [1,1,1], [1,1,1]

case7.3 6= ∗
2
, 6= ∗

2
, E1 [1,2], [1,2], [1,1,1]

8 case8.1 6= ∗
2
, E1, E2 [1,2], [1,1,1], [1,1,1]

9 case9.1 E1, E2, E3 [1,1,1], [1,1,1], [1,1,1]

Table 1: Cases for degree 3 pullback up to permu-
tation of 0, 1,∞

Two cases (denoted Liouv) in Tab.1 correspond to the hy-
pergeometric equations with two singularities having a half-
integer exponent difference. Such equations have Liouvil-
lian solutions (this follows from Kovacic’ algorithm and also
from Theorem 8, section 5.3 in [14]). Now the main task is
to compute f for the remaining 18 cases. Recall that non
removable singularities of Ha,b

c,f come from (form a subset
of) the roots of f , 1 − f and poles of f . We will use the
singularity structure of Linp to recover f .

4.3 Treating one case
The main algorithm in Section 5 takes as input C, Linp, x
where C is a field of characteristic 0, and Linp ∈ C(x)[∂] has

order 2 and no Liouvillian solutions. It computes Sing(Linp)
and d. Then it loops over the corresponding cases in Tab.1.
For example; if d = 4 then it loops over cases 4.1 – 4.4
in Tab.1. Each case in Tab.1 is a subprogram. Each of
these subprograms takes C, Sing(Linp) as input, checks if
Sing(Linp) is compatible with that particular case, and if
so, returns a set of candidates for f, (e0, e1, e∞) that are
compatible with that particular case. We give details for
only one case, namely Algorithm[5.3] (notation: casei, j is
handled by Algorithm[i.j]). The other cases are treated by
similar programs (details can be found in our implementa-
tion [11]).
Let Linp ∈ C(x)[∂] be input differential operator with 5 non-
removable singularities. In terms of places(C), there are 7
ways to end up with 5 points:

1. One place of degree 5 (note: a place of degree > 1
is always a monic irreducible polynomial of that de-
gree. A place of degree 1 can be either ∞ or a monic
polynomial of degree 1.)

2. Places of degrees 4, 1.

3. Places of degrees 3, 2.

4. Places of degrees 3, 1, 1.

5. Places of degrees 2, 2, 1.

6. Places of degrees 2, 1, 1, 1.

7. Places of degrees 1, 1, 1, 1, 1.

Algorithm[5.3]: Compute f ∈ C(x) of degree 3 and expo-
nent differences (e0, e1, e∞) for Ha,b

c,x corresponding to ‘case5.3’
in Tab.1.

Input: Field C and Sing(Linp) in terms of places(C).

Output: A set of lists [f, (e0, e1, e∞)] where f ∈ C(x)
has degree 3 and branching pattern [1,2], [1,1,1], [3] above

0, 1,∞ such that Sing
(
Ha,b

c,f

)
= Sing(Linp) where (a, b, c)

corresponds to (e0, e1, e∞) by remark 2.8 and (see Tab.1)
e0 ∈ 1

2
+ Z, e1 is arbitrary, and e∞ 6∈ ± 1

3
+ Z.

1. Check if Sing(Linp) is consistent with case 5.3 (if not,
return the empty set and stop) as follows:

The branching pattern [1,2] at f = 0 indicates that f
has two roots a1, a2 ∈ C

⋃
{∞} with multiplicities 1

resp. 2. Then x = a1 will have an exponent-difference
e0 ∈ 1

2
+ Z but x = a2 will be a regular point or

a removable singularity, and so it does not appear in
Sing(Linp).

The branching pattern [3] at f = ∞ indicates that f
has precisely one pole b ∈ C

⋃
{∞}, of order 3. Then

x = b will have an exponent-difference ±3e∞ mod Z.
In case 5.3 we have e∞ 6∈ ± 1

3
+ Z and hence the point

x = b must be a non-removable singularity. Combined
with x = a1 we see that case 5.3 is only possible when
Sing(Linp) has at least two places of degree 1. So
in the above listed 7 cases (5, 4+1, . . .), we can exit
Algorithm[5.3] immediately if we are not in case 4, 6,
or 7.

The branching pattern [1,1,1] at f = 1 indicates that
1 − f has three distinct roots, each of multiplicity 1.

Thus there must be at least three distinct singulari-
ties that match the exponent-difference ±e1 mod Z.
If we can not find three singularities (one place of de-
gree 3, or places of degrees 2 and 1, or three places of
degree 1) whose exponent-differences match (up to ±
and mod Z) then Algorithm[5.3] stops. This condition
determines e1 (up to ± and mod Z).

We know from Kovacic’ algorithm that if there are two
ei ∈ 1

2
+ Z then Ha,b

c,x will have Liouvillian solutions.
Since we exclude Liouvillian cases, it follows that only
e0 is in 1

2
+ Z. We conclude that Sing(Linp) must

have either 1 or 2 singularities in C
⋃
{∞} with an

exponent-difference in 1
2

+Z and that 2 such singular-

ities can only occur when e∞ ∈ ± 1
6

+ Z. So if there
are more than 2, then Algorithm[5.3] stops.

2. Set Cand = ∅ and write f = k1
(x−a1)(x−a2)

2

(x−b)3
where

a1, a2, b ∈ C
⋃
{∞} and k1 ∈ C. We replace any factor

x − ∞ in f by 1 in the implementation. Compute
the set of places with an exponent-difference in 1

2
+Z.

This set may only have 1 or 2 elements that must have
degree 1. Now a1 loops over this set, and e0 is the
exponent-difference at x = a1.

3. Loop b over the places in Sing(Linp) of degree 1, skip-
ping a1, and only considering a1, b for which the re-
maining three singularities have matching exponent-
differences. Let eb be the exponent-difference at x = b.

Now loop e∞ over eb
3
, (eb−1)

3
, (eb+1)

3
. For e1 one can

take the exponent-difference at any of the 3 remaining
singularities. The reason that there are three cases for
e∞ is because we have to determine e∞ mod Z. Now
3e∞ = eb but if a gauge transformation occurred, i.e.
if the r1 in the form (2) in Section 1 is non-zero, then eb
is only known mod Z, and this leaves in general three
candidate values for e∞ mod Z (it suffices to compute
the ei mod Z, see section 5.3 in [14], summarized in
Remark 2.10).

4. Among the remaining 3 singularities, let P ∈ C[x] be
the product of their places (replacing x − ∞ by 1 if
that is among them). So P has degree 3 if ∞ is not
among the 3 remaining singularities, and otherwise it
has degree 2. In each loop, the a1, b appearing in f
are known, while k1 and a2 are unknown. Take the
numerator of 1 − f and compute its remainder mod
P . Equate the coefficients of this remainder to 0. This
gives deg(P) equations for k1, a2. If deg(P) = 2 we
obtain one more equation by setting f(∞) = 1 (the
resulting equation is k1 = 1). Then we have 3 equa-
tions for 2 unknowns k1, a2. Compute the solutions
k1 ∈ C and a2 ∈ C

⋃
{∞}. If any solution exists, then

add the resulting [f, (e0, e1, e∞)] to the set Cand.

5. Return the set Cand (which could be empty, but could
also have one or more members).

Example 4.2.
Take C = Q. Let Sing(Linp) in terms of places(Q) be given
by:

Sing(Linp) =
{

[∞,− 1
2
], [x, 2

7
], [x− 2, 1

2
], [x2 + 26x + 44, 5

7
]
}

.

Our input is the following:

Sing(Linp) =
{

[1,− 1
2
], [x, 2

7
], [x− 2, 1

2
], [x2 + 26x + 44, 5

7
]
}

.
Notations in the steps below come from Algorithm[5.3].

Write f(x) = k1
(x−a1)(x−a2)

2

(x−b)3
.

Step 1: Sing(Linp) satisfies the conditions for ‘sing5.3’;
(1) [1,− 1

2
] and [x − 2, 1

2
] have degree 1 and both have a

half-integer exponent difference.
(2) The exponent differences in [x, 2

7
] and [x2+26x+44, 5

7
]

match, after all, we are working up to ± and mod Z.

Step 2: The candidates for x − a1 are 1 and x − 2. For

the first case, we get f = k1
(x−a2)

2

(x−b)3
and e0 = − 1

2
(note:

we may equally well take 1
2

). For the second case, we get

f = k1
(x−2)(x−a2)

2

(x−b)3
and e0 = 1

2
.

Step 3: For the first case, x−b can only be x−2 and eb = 1
2

(because if we take x − b = x then there would not remain
three singularities with matching exponent-differences). Like-
wise, for the second case, x− b can only be 1 and eb = − 1

2
.

First case: f = k1
(x−a2)

2

(x−2)3
and e∞ = 1

6
(note: we should

consider e∞ ∈ { eb3 , (eb+1)
3

, (eb−1)
3
} since eb is determined

mod Z, and we have to determine e∞ mod Z. However,
(eb+1)

3
= 1

2
is discarded since there should not be two e′is in

1
2

+ Z. And (eb−1)
3

= − 1
6

but an exponent-difference − 1
6

is

equivalent to an exponent-difference 1
6

.)

Second case: f = k1(x− 2)(x− a2)2 and e∞ = − 1
6

.

Step 4: In both cases P = x · (x2 + 26x + 44) and e1 = 2
7

(we could equally well take 5
7

). Dividing the numerator of
1 − f by P produces equations in k1 and a2. In first case
the equations have a solution; {k1 = −32, a2 = − 1

2
}, and

in second case they do not.

Step 5: The output Cand has one element, namely{
[−32 (x+1/2)2

(x−2)3
, (− 1

2
, 2
7
, 1
6
)]
}

.

5. MAIN ALGORITHM
We have developed the algorithms to compute f ’s and possi-
ble exponent differences (e0, e1, e∞) for Ha,b

c,x corresponding
to all 18 cases as given in Tab.1. Now we give our main
algorithm:

Let C ⊆ C be a field and Linp ∈ C(x)[∂] be the input dif-
ferential operator. The main algorithm first computes the
singularity structure of Linp in terms of places(C). Sup-
pose d is the total number of non-removable singularities
of Linp. Now we call all algorithms corresponding to d to
produce a set of candidates for f ∈ C(x) and the expo-
nent differences (e0, e1, e∞) = (1 − c, c − a − b, b − a). For

each member from that list we compute Ha,b
c,x , Ha,b

c,f and ap-

ply projective equivalence [2] between Ha,b
c,f and Linp to find

(if it exists) a nonzero map from V
(
Ha,b

c,f

)
to V (Linp) which

sends solutions S(f) = 2F1(a, b; c | f) of Ha,b
c,f to solutions

e
∫
r(r0S(f) + r1S(f)′) of Linp.

Algorithm: Solve an irreducible second order linear dif-
ferential operator Linp ∈ C(x)[∂] in terms of 2F1(a, b; c | f),
with f ∈ C(x) of degree 3.

Input: A field C of characteristic 0, Linp ∈ C(x)[∂] of order
2 which has no Liouvillian solutions, and a variable x.

Output: A non zero solution y = e
∫
r(r0S(f) + r1S(f)′), if

it exists, such that Linp(y) = 0, where S(f) = 2F1(a, b; c | f),
f, r,r0,r1 ∈ C(x) and f has degree 3.

Step 1: Find the singularity structure of Linp in terms of
places(C). Let d be the total number of non-removable sin-
gularities.

Step 2: Let k be the total number of cases in Tab.1 for d.
For example; if d = 6 then k = 4.
Let Candidates =

⋃
Algorithm[n.a], where a = {1 . . . k}.

That produces a set of lists [f, (e0, e1, e∞)] of all possible
rational function f ∈ C(x) of degree 3 and corresponding
exponent differences (e0, e1, e∞) for Ha,b

c,x .

Step 2.1 : Ha,b
c,x = x(1− x)∂2 + (c− (a + b + 1)x)∂ − ab

where a, b, c come from the relation
(e0, e1, e∞) = (1− c, c− a− b, b− a).
For each element [f, (e0, e1, e∞)] in Candidates (Step 2),
(i) If {e0, e1, e∞}

⋂
1
2
+Z 6= ∅ then Cand := {[f, (e0, e1, e∞)]}

otherwise Cand := {[f, (e0, e1, e∞)], [f, (e0+1, e1, e∞)]} (That
determines Ha,b

c,x up to projective equivalence, see
remark 2.10).
(ii) From each element in Cand above (a) compute a, b, c,
(b) substitute the values of a, b, c in Ha,b

c,x and (c) apply the

change of variable x 7→ f on Ha,b
c,x . That produces a list of

operators Ha,b
c,f .

Step 2.2 : Compute the projective equivalence [2] between

each operator Ha,b
c,f in Step 2.1 and Linp. If the output is

zero, then go back to Step 2.1 and take the next element
from Candidates. Otherwise, we get a map of the form:
G = e

∫
r(r0 + r1∂), where r, r0, r1 ∈ C(x) and ∂ = d

dx
.

Step 2.3: S(f) = 2F1(a, b; c | f) is a solution of Ha,b
c,f . Now

compute G(S(f)). That gives a solution of Linp.

Step 2.4: Repeat the same procedure for each element in
Candidates. That gives us a list of solutions of Linp.

Step 2.5: Choose the best solution (with shortest length)
from the list (to obtain a second independent solution of
Linp, just use a second solution of Ha,b

c,x).

Example 5.1. Consider the operator in Section 2.4;

Linp = (x− 37)
(
x2 + 3

)
∂2 +

(
x2 + 3

)
∂ − 9

16
(x + 9).

Procedure to solve this equation is the following:

Step 1: Read the file hypergeomdeg3.txt from the folder hy-
pergeomdeg3 in www.math.fsu.edu/~vkunwar.

Step 2: Linp ∈ Q(x)[∂]. We want the solution of Linp in the
base field Q. Type hypergeomdeg3({}, Linp, x). (in Maple {}
is the code for Q)

Step 3: The program first finds the singularity structure;

Sing(Linp) =
{

[1,− 3
2
], [x− 37, 0], [x2 + 3, 1]

}
. (our imple-

mentation uses “1” to encode a singularity at ∞, and poly-
nomials to encode finite singularities).

Step 4: We get d = 4. The program loops over the four sub-
programs corresponding to case4.1,. . . case4.4 to compute f :

1. Algorithm[4.1] returns the following: F ={
[f, [−3

2
, 0,

1

3
]], [f, [−3

2
, 1,

1

3
]], [f, [−3

2
, 0,

2

3
]], [f, [−3

2
, 1,

2

3
]]

}
where f = 8 (9 x+10)2

(3 x−13)3
.

Note: this set contains ∼p-duplicates, the four triples
(e0, e1, e∞) all give projectively equivalent Ha,b

c,x so we could
delete three and still find a solution (if it exists). The reason
they were left in the current version of the implementation
is because they may help to find a solution of smaller size.
In the next version, we plan to make the code more efficient
by removing ∼p-duplicates, keeping only those for which the

integer-differences between the exponent-differences of Ha,b
c,f

and Linp are minimized (in this example, only the second
element of F would be kept in this approach).

2. Algorithm[4.2] returns NULL.

3. Algorithm[4.3] and Algorithm[4.4] require at least 3 lin-
ear polynomials in Q[x] for Sing(Linp) which is not the case
here. So Sing(Linp) does not qualify the conditions for these
algorithms.

Hence F gives the Candidates. Note that we are in the case
{e0, e1, e∞}

⋂
1
2

+ Z 6= ∅.

Step 5: Taking first element i = [8 (9x+10)2

(3x−13)3
, [− 3

2
, 0, 1

3
]] in

Candidates and applying Step 2.1 and Step 2.2 of the above
main algorithm, we get G = e

∫
r(r0 + r1∂) with

e
∫
r =

(9
10

x+1)(1
3
x2+1)(− 1

37
x+1)

(1
12

x+1)(− 3
13

x+1)
13
4

, r1 = 1 + 90
19
x− 27

19
x2 and

r0 = 3
38

729x4−19845x3−251919x2+1114345x+239772
(x−37)(3x−13)(9x+10)

.

Step 6: We have S(f) = 2F1

(
13
12
, 17
12

; 5
2
| 8 (9x+10)2

(3x−13)3

)
. Com-

puting G(S(f)) we get y = e
∫
r(r0S(f) + r1S(f)′) as a so-

lution of Linp where e
∫
r, r0, r1 are given in Step 5.

Step 7: Taking second element i = [8 (9x+10)2

(3x−13)3
, [− 3

2
, 1, 1

3
]] in

Candidates we get another solution y with

e
∫
r =

(9
10

x+1)

(1
12

x+1)(− 3
13

x+1)
7
4

, r0 = (2187x3+22284x2−37813x+116484)
98(13−3x)(9x+10)

,

r1 = x2 + 3 and S(f) = 2F1

(
7
12
, 11
12

; 5
2
| 8 (9x+10)2

(3x−13)3

)
.

Steps 8 and 9: Process the third and fourth element. Each
produces a solution that looks quite similar to that given in
Steps 6 and 7.

Step 10: The solution in Step 7 has the shortest length. So
the implementation returns that as a solution of Linp.

After minor simplification this leads to the solution given in
section 2.4.

6. REFERENCES
[1] R. Debeerst, M. van Hoeij, W. Koepf: Solving

Differential Equations in Terms of Bessel Functions,
ISSAC’08 Proceedings, 39-46 (2008).

[2] M. van Hoeij: An implementation for finding
equivalence map, www.math.fsu.edu/∼hoeij/files/equiv.

[3] Q. Yuan, M. van Hoeij: Finding all Bessel type
solutions for Linear Differential Equations with
Rational Function Coefficients, ISSAC’2010
Proceedings, 37-44 (2010).

[4] A. Bostan, F. Chyzak, M. van Hoeij, L. Pech: Explicit
formula for the generating series of diagonal 3D rook
paths, Seminaire Lotharingien de Combinatoire, B66a
(2011).

[5] R. Vidunas: Algebraic transformations of Gauss
hypergeometric functions. Funkcialaj Ekvacioj, Vol 52
(Aug 2009), 139-180.

[6] T. Fang, M. van Hoeij: 2-Descent for Second Order
Linear Differential Equations, ISSAC’2011 Proceedings,
107-114 (2011).

[7] J. Kovacic: An algorithm for solving second order linear
homogeneous equations, J. Symbolic Computations, 2,
3-43 (1986).

[8] M. van Hoeij, R. Vidunas: Belyi functions for
hyperbolic hypergeometric-to-Heun transformations,
arXiv:1212.3803.

[9] M. van Hoeij, V. J. Kunwar: Hypergeometric solutions
of second order differential equations with 5
non-removable singularities, (In Progress).

[10] Z. X. Wang, D. R. Guo: Special Functions World
Scientific Publishing Co. Pte. Ltd, Singapore, 1989.

[11] V. J. Kunwar: An implementation for hypergeometric
solution of second order differential equation with
degree 3 rational function,
www.math.fsu.edu/∼vkunwar/hypergeomdeg3.

[12] M. van Hoeij: Solving Third Order Linear Differential
Equation in Terms of Second Order Equations,
ISSAC’07 Proceedings, 355-360, 2007. Implementation:
www.math.fsu.edu/∼hoeij/files/ReduceOrder.

[13] Q. Yuan: Finding all Bessel type solutions for Linear
Differential Equations with Rational Function
Coefficients, Ph.D thesis and implementation, available
at www.math.fsu.edu/∼qyuan (2012).

[14] T. Fang: Solving Linear Differential Equations in
Terms of Hypergeometric Functions by 2-Descent, Ph.D
thesis and implementation, available at
www.math.fsu.edu/∼tfang (2012).

