
Generating Subfields
Mark van Hoeij

(joint work with Jürgen Klüners)

Let K/k be a finite separable field extension of degree n. We describe an
algorithm that computes all subfields of K that contain k. We assume that a
primitive element α of K/k is given as well as its minimal polynomial f ∈ k[x].
The main result is that all subfields can be presented as intersections of a small
number of subfields, and that those subfields can be calculated efficiently. The
concepts of principal and generating subfields are introduced.

1. The main theorem

Let K̃ be a field containing K and f = f1 · · · fr be the factorization of f over
K̃ where the fi ∈ K̃[x] are irreducible and monic, and f1 = x− α. We define the
fields K̃i := K̃[x]/(fi) for 1 ≤ i ≤ r. We denote elements of K as g(α) where g is
a polynomial of degree < n, and define for 1 ≤ i ≤ r the embedding

φi : K → K̃i, g(α) 7→ g(x) mod fi.

Note that φ1 is just the identity map id : K → K̃. We define for 1 ≤ i ≤ r:

Li := Ker(φi − id) = {g(α) ∈ K | g(x) ≡ g(α) mod fi}.

The Li are closed under multiplication, and hence fields, since φi(ab) = φi(a)φi(b) =
ab for all a, b ∈ Li.

Theorem 1. If L is a subfield of K/k then L is the intersection of Li, i ∈ I for
some I ⊆ {1, . . . , r}.

Proof. Let fL be the minimal polynomial of α over L. Then fL divides f since
k ⊆ L, and fL =

∏
i∈I fi for some I ⊆ {1, . . . , r} because L ⊆ K̃. We will prove

L = {g(α) ∈ K | g(x) ≡ g(α) mod fL} =
⋂
i∈I

Li.

If g(α) ∈ L then h(x) := g(x) − g(α) ∈ L[x] is divisible by x − α in K[x]. The
set of polynomials in L[x] divisible by x − α is (fL) by definition of fL. Then
h(x) ≡ 0 mod fL and hence g(x) ≡ g(α) mod fL. Conversely, g(x) mod fL is in
L[x] (mod fL) because division by fL can only introduce coefficients in L. So if
g(x) ≡ g(α) mod fL then g(α) ∈ K ∩ L[x] = L.

By separability and the Chinese remainder theorem, one has g(x) ≡ g(α) mod
fL if and only if g(x) ≡ g(α) mod fi (i.e. g(α) ∈ Li) for every i ∈ I. �

We can choose for K̃ any field that contains K (the set S := {L1, . . . , Lr} is
independent of this choice). The most convenient choice is to take K̃ = K, but in
some situations it might be better to let K̃ be some completion of K (this would
save time on the factorization of f over K̃, but it complicates computing the Ker
in the definition of Li since this would then have to be done with LLL techniques

1

instead of linear algebra over k. So if one has very efficient factoring code [3] then
taking K̃ = K might still be the best choice).

Definition 1. We call the fields L1, . . . , Lr the principal subfields of K/k. A set
S of subfields of K/k is called a generating set of K/k if every subfield of K/k
can be written as

⋂
T for some T ⊆ S. Here

⋂
T denotes the intersection of all

L ∈ T , and
⋂
∅ refers to K. A subfield L of K/k is called a generating subfield if

it satisfies the following equivalent conditions

(1) The intersection of all fields L′ with L (L′ ⊆ K is not equal to L.
(2) There is precisely one field L (L̃ ⊆ K for which there is no field between

L and L̃ (and not equal to L or L̃).

The field L̃ in condition (2) is called the field right above L. It is clear that L̃
is the intersection in condition (1), so the two conditions are equivalent.

The field K is a principal subfield but not a generating subfield. A maximal
subfield of K/k is a generating subfield as well. Theorem 1 says that the principal
subfields form a generating set. By condition (1), a generating subfield can not be
obtained by intersecting larger subfields, and must therefore be an element of every
generating set. In particular, a generating subfield is also a principal subfield.

If S is a generating set, and we remove every L ∈ S for which
⋂
{L′ ∈ S|L (L′}

equals L, then what remains is a generating set that contains only generating
subfields. It follows that

Proposition 1. S is a generating set if and only if every generating subfield is in
S.

Suppose that K/k is a finite separable field extension and that one has poly-
nomial time algorithms for factoring over K and for linear algebra over k (for
example when k = Q). Then applying Theorem 1 with K̃ = K yields a generating
set S with r ≤ n elements in polynomial time. We may want to minimize r by
removing all elements of S that are not generating subfields. Then r ≤ n− 1. In
principle there are 2r subsets of S to be considered, which may be substantially
more than the number of subfields. So we design the algorithm in Section 2 in
such a way that it finds each subfield only once. This way, when S is given, the
cost of computing all subfields is proportional to the number of subfields.

2. Intersections

In this section we describe an algorithm to compute all subfields of K/k by
intersecting elements of a generating set S = {L1, . . . , Lr}. The complexity is
proportional to the number of subfields of K/k. Unfortunately there exist families
of examples where this number is more than polynomial in n.

To each subfield L of K/k we associate a tuple e = (e1, . . . , er) ∈ {0, 1}r, where
ei = 1 if and only if L ⊆ Li.

2

Algorithm AllSubfields
Input: A generating set S = {L1, . . . , Lr} for K/k.
Output: All subfields of K/k.

(1) Let e := (e1, . . . , er) where e1 = 1 if Li = K and ei = 0 otherwise.
(2) ListSubfields := [K].
(3) Call NextSubfields(S,K, e, 0).
(4) Return ListSubfields.

The following function returns no output but appends elements to ListSubfields,
which is used as a global variable. The input consists of a generating set, a sub-
field L, its associated tuple e = (e1, . . . , er), and the smallest integer 0 ≤ s ≤ r for
which L =

⋂
{Li | 1 ≤ i ≤ s, ei = 1}.

Algorithm NextSubfields
Input: S, L, e, s.

For all i with ei = 0 and s < i ≤ r do
(1) Let M := L ∩ Li.
(2) Let ẽ be the associated tuple of M .
(3) If ẽj ≤ ej for all 1 ≤ j < i then append M to ListSubfields and call

NextSubfields(S,M, ẽ, i).

Subfields that are isomorphic but not identical are considered to be different in
this text. Let m be the number of subfields of K/k. Since S is a generating set,
all subfields occur as intersections of L1, . . . , Lr. The condition in Step (3) in
Algorithm NextSubfields holds if and only if M has not already been computed
before. So each subfield will be placed in ListSubfields precisely once, and the
total number of calls to Algorithm NextSubfields equals m. For each call, the
number of i’s with ei = 0 and s < i ≤ r is bounded by r, so the total number of
intersections calculated in Step (1) is ≤ rm. Step (2) involves testing which Lj
contain M . Bounding the number of j’s by r, the number of subset tests is ≤ r2m.

Theorem 2. Given a generating set for K/k with r elements, Algorithm AllSub-
fields returns all subfields by computing at most rm intersections and at most r2m
subset tests, where m is the number of subfields of K/k.

Thus the cost of computing all subfields is bounded by a polynomial times the
number of subfields.

References

[1] Preliminary implementation: http://www.math.fsu.edu/~hoeij/papers/subfields

[2] J. Klüners, M. Pohst, On Computing Subfields, J. Symb. Comput., 24 (1997), 385–397.

[3] K. Belabas, A relative van Hoeij algorithm over number fields, J. Symb. Comput., 37 (2004),
641–668.

3

