
THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCE

ALGORITHMS FOR COMPUTING CONGRUENCES BETWEEN MODULAR FORMS

By

RANDY HEATON

A Dissertation submitted to the
Department of Mathematics
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Degree Awarded:
Summer Semester, 2012

Randy Heaton defended this dissertation on June 28, 2012.

The members of the supervisory committee were:

Amod Agashe
Director

Mark van Hoeij
Co-Directing Dissertation

Simon Capstick
University Representative

Ettore Aldrovandi
Committee Member

The Graduate School has verified and approved the above-named committee members, and certifies
that the dissertation has been approved in accordance with the university requirements.

ii

ACKNOWLEDGMENTS

In matters that are non-mathematical, I’m gratefull to my parents who motivated me and supported
me financially for the early part of my education. My ex-wife Michelle created a home environment
that allowed me to focus my efforts during the hardest part of my graduate career; during this time,
she sustained me with her love and also supported us both during the months before I began my
TA-ship. I’m grateful to Dr. Bettye Anne Case for her guidance, personal and professional, and for
the detail with which she took to the task of improving the lives of graduate students. I’m especially
grateful for the friendships cultivated in Lov 251, and later elsewhere. They have made my life full
and opened me to immensly rewarding perspectives, almost none of which have been mathematical
(directly).

Amod Agashe advised me since my second year in graduate school and patiently worked with
me through my thesis. His direction and advice have been critical in shaping my understanding of
number theory. Mark van Hoeij co-advised me through the later part of my thesis work. During this
time, I learned from him how to be a better problem solver. Many of the techniques and ideas in
this thesis were taken from generous descriptions given to me by these advisors. In addition, Ettore
Aldrovandi has been for several years a resource on varying matters and a patient teacher.

I’ve had a number of correspondances that have informed my understanding of mathematics and
helped me execute the writing of this thesis. To give an incomplete list, conversations with William
Stein, Jeremy Rouse, Ernie Croot, Mike Burmester, Craig Citro, Eko Hiranaka, and David Valdivia
have been very fruitfull.

iii

TABLE OF CONTENTS

List of Tables . vi

Abstract . vii

1 Introduction: Modular Forms, Primes of Congruence, and the Birch and Swinnerton-
Dyer Conjecture 1
1.1 Modular Forms . 1

1.1.1 Hecke Operators and the structure of S2(Γ0(N)) 2
1.1.2 Computing with Modular Forms . 3
1.1.3 Modular Elliptic Curves . 6
1.1.4 Congruence Primes . 7

1.2 The Birch and Swinnerton-Dyer Conjecture . 7
1.3 Motivation for this Thesis: Cancellations in the Conjectural Birch and Swinnerton-

Dyer Formula . 9

2 Intersection Numbers Between Spaces of Cuspidal Modular Forms 11
2.1 Introduction . 11
2.2 Proof of Theorem 1 . 12
2.3 The Algorithm . 15

2.3.1 Computing a Basis for T⊗Q . 15
2.3.2 Solving the Linear System . 16

3 Computing a q-Expansion Basis for S2(Γ0(N)) to high precision 17
3.1 Introduction . 17
3.2 Matrices for Operators on Invariant Subspaces . 19

3.2.1 Example: Matrices for Hecke Operators on the New Subspace when the
Old and Eisenstein Subspaces Dominate 19

3.2.2 Restricting to Irreducible T-Invariant Subspaces G f 20
3.2.3 The Algorithm . 22

3.3 Local Saturation . 24
3.3.1 Computing Integral Bases of q-Expansions 27

3.4 Applications . 27
3.4.1 Computing Congruence Primes . 27
3.4.2 Cancellations in the Conjectural Birch and Swinnerton-Dyer Formula . . . 29

.1 Finding an element of T|N with distinct eigenvalues 29

.2 Computing a multiplicative bound Ω for [sat(M) : M] 30

iv

.3 Code . 30
.3.1 Algorithms 1 and 2 . 30
.3.2 Algorithms 3 and 4 . 33
.3.3 Algorithm 8 . 43

References . 44

Biographical Sketch . 46

v

LIST OF TABLES

3.1 Tests at composite levels. 23

3.2 Tests at prime levels. 24

3.3 Tests at levels where newforms with integer coefficients dominate the new subspace
and we compute a large portion of coefficients by counting points on the associated
elliptic curves mod p. 24

3.4 Saturating a Q basis for S2(Γ0(N),Q) to compute a basis for S2(Γ0(N),Z) at levels
500 and 1000 at varying precisions. 26

3.5 Saturating Q bases for S2(Γ0(N),Q) computed with SAGE’s saturation() and using
Algorithm 6 . 27

3.6 Computing an integral basis for S2(Γ0(N)) . 27

vi

ABSTRACT

Let N be a positive integer. We first discuss a method for computing intersection numbers between
subspaces of S2(Γ0(N),C). Then we present a new method for computing a basis of q-expansions
for S2(Γ0(N),Q), describe an algorithm for saturating such a basis in S2(Γ0(N),Z), and show how
these results have applications to computing congruence primes and studying cancellations in the
conjectural Birch and Swinnerton-Dyer formula.

vii

CHAPTER 1

INTRODUCTION: MODULAR FORMS, PRIMES OF
CONGRUENCE, AND THE BIRCH AND

SWINNERTON-DYER CONJECTURE

In this chapter, we define modular forms and congruence primes and give a description of the con-
jectural Birch and Swinnerton-Dyer Formula. The material will serve as background for chapters
one and two of this thesis. We close the chapter with a description of the motivation for this thesis
in terms of the BSD conjecture and an overview of chapters two and three.

1.1 Modular Forms

In this section, we present some background information about modular forms. For more infor-
mation, see [6] or [7].

Throughout this section, we take Γ to be a (multiplicative) subgroup of SL2(Z). When N is a
positive integer, we denote by Γ0(N) the subgroup of SL2(Z) of matrices of that reduce modulo N

to a matrix of the form
(

a b
0 d

)
. The integer N will also be referred to as the level of Γ0(N). The

group Γ acts on the complex upper half plane H by linear fractional transformations.

Definition 1. Let k be a positive integer. A meromorphic function f on H is said to be weakly

modular of weight k for Γ if it satisfies f (az+b
cz+d) = (cz+d)k f (z) for all

(
a b
c d

)
in Γ.

Because
(

1 1
0 1

)
lies in Γ0(N) and acts as the translation z 7→ z + 1, any weakly modular

function for Γ0(N) is periodic with period 1. So there exists a function g such that f (z) = g(q)
where q = e2πiz. We say that f is holomorphic at ∞ if the associated function g is holomorphic at
q = 0. Such an f will have a Fourier expansion f (z) = g(q) = ∑

∞
n=0 an(f)qn.

The orbits of Q∪∞ under the action of Γ are called cusps for Γ. Let r be a cusp. Because

any two elements of Q∪∞ are SL2(Z)-equivalent, we can find αr =
(

a b
c d

)
∈ SL2(Z) such that

αr(∞) = r. Then we say that f is holomorphic at the cusp r if (cz+d)−k f (αr(z)) is holomorphic at
∞.

1

Definition 2. Let k be a positive integer. A modular form of weight k for Γ is a holomorphic
function f on H that satisfies:

1. f is weakly modular of weight k for Γ.

2. f is holomorphic at the cusps for Γ.

A cusp form is a modular form f that satisfies the additional condition that the constant coeffi-
cient a0(f) in the Fourier expansion of f is zero. The set of cusp forms of weight k for the group Γ

is denoted Sk(Γ).
We denote by Y0(N) the Riemann surface H/Γ0(N). By adjoining to Y0(N) the set of cusps for

Γ0(N), we get a compact Riemann surface (i.e. an algebraic curve over C) called the modular curve
for Γ0(N) and denoted X0(N).

Theorem 1. S2(Γ0(N)) is a vector space over C whose dimension is the genus of X0(N).

Proof. See [6] Corollary 1.13.

1.1.1 Hecke Operators and the structure of S2(Γ0(N))

In this section we introduce Hecke operators, which act on S2(Γ0(N)), and describe the structure
of S2(Γ0(N)) with respect to this action. To this end, we start by defining an inner product on
S2(Γ0(N)).

Definition 3. Let f and g be two cusp forms in S2(Γ0(N)). We define the Petersson inner product
to be

〈 f ,g〉= i
8π2

∫
X0(N)

f (z)g(z)dz (1.1.1)

For n ∈ Z, we define the Hecke operator Tn as follows:

Definition 4. If p is prime and (p,N) = 1, the Hecke operator Tp is defined by

Tp(f (z)) =
1
p

p−1

∑
i

f
(z+ i

p

)
+ p f (pz) (1.1.2)

If p is prime and (p,N) > 1, then

Tp(f (z) =
1
p

p−1

∑
i=0

f
(z+1

p

)
. (1.1.3)

For n > 0,
Tpn+1 = TpTpn−〈p〉Tpn−1 (1.1.4)

If n = ∏i pei
i gives a prime factorization of n, then we set

Tn = ∏
i

Tpei
i
. (1.1.5)

2

We define the Hecke Algebra of S2(Γ0(N)) as Z[T1,T2,T3, . . .] and denote it by T.

Let M and N be two positive integers with M|N. If d| NM and f ∈ S2(Γ0(M)), it is easy to check
that f (dz) ∈ S2(Γ0(N)). The map βd : S2(Γ0(M))→ S2(Γ0(N)) defined by βd : f (z) 7→ f (dz) is
called the d-degeneracy map from level M. On Fourier coefficients, we have

βd :
∞

∑
i=1

ai(f)qi 7→
∞

∑
i=1

ai(f)qdi. (1.1.6)

Definition 5. We define the old subspace of S2(Γ0(N)) to be the subspace of cusp forms that are
images of degeneracy maps from all levels M|N. We define the new subspace as the space orthog-
onal to the old subspace under the Petersson inner product. We call a form a newform if it is an
eigenform for all operators in the Hecke Algebra, lies in the new subspace, and if its first Fourier
coefficient is normalized to one.

The following is the main result of [5] and characterizes the structure of S2(Γ0(N)) in terms of
new and old forms.

Theorem 2. If f is a newform at some level N f dividing N, then define S f to be the subspace of
S2(Γ0(N)) generated by all degeneracy images of f from S2(Γ0(N f)) into S2(Γ0(N)). Then

S2(Γ0(N)) =⊕ f S f , (1.1.7)

where the sum is taken over all newforms f at levels N f |N.

Proof. See [7] Chapter 5.

1.1.2 Computing with Modular Forms

In this section, we give a brief description of how coefficients of newforms can be calculated.
For a detailed exposition of these concepts, see Chapter 3 of [18] or Chapter 2 of [Cre97].

One can show that for all positve integers n and for all f ∈ S2(Γ0(N)),

a1(Tn(f)) = an(f). (1.1.8)

In the case that f is a newform, equation1.1.8 says that an(f) is equal to the eigenvalue of Tn

corresponding to f . Thus, in order to compute the Fourier coefficients of newforms, one may
identify eigenspaces of the action of T on the new subspace of S2(Γ0(N)), which we will denote
S2(Γ0(N))new, and calculate the corresponding eigenvalues. The rest of this section deals with how
to identify eigenspaces of a space that is isomorphic to S2(Γ0(N))new as a module over T.

The Hecke algebra acts on H1(X0(N),Z) (see [6] pp 32 for an algebraic description or [18] 3.1
for a geometric description). For a cycle γ in H1(X0(N),Z)⊗R, and a form f in S2(Γ0(N)), the
integral 2πi

∫
γ

f (z)dz defines a nondegenerate pairing

〈,〉 : S2(Γ0(N))×H1(X0(N),Z)⊗R→ C. (1.1.9)

This pairing is compatible with the action of T on H1(X0(N),Z) referenced above and gives a du-
ality between S2(Γ0(N)) and H1(X0(N),Z) ⊗ R as 2g-
dimensional real vector spaces, making the two spaces isomorphic as Hecke modules.

3

What’s left is to identify the subspace of H1(X0(N),Z)⊗R corresponding to S2(Γ0(N))new and
compute the Hecke action on this subspace. While this may be difficult to do directly, a method
called modular symbols can be used to compute the Hecke action on a cycle in H1(X0(N),Z)⊗R by
considering a certain corresponding action on the initial and terminal points of the cycle’s preimage
in H∪Q∪∞.

Let M2 be the free abelian group with a basis of symbols {α,β} where α,β range over the
elements of Q∪∞, modulo the relation

{α,β}+{β ,γ}+{γ,α}= 0 (1.1.10)

and modulo any torsion (e.g. since equation 1.1.10 implies that 3{α,α} = 0, we set {α,α} = 0).
There is an action of GL2(Q) on M2: if g ∈ GL2(Q), define g({α,β}) = {g(α),g(β)}. We define
the modular symbols space for Γ0(N), denoted M2(Γ0(N)), as the quotient of M2 by the submodule
generated by elements of the form x−g(x) for all x ∈M2 and g ∈ Γ0(N), and modulo any torsion.
Let B2(Γ0(N)) be the free abelian group generated by the cusps for Γ0(N) and for β ∈ Q∪∞, let
{β} denote the class of β in B2(Γ0(N)). Let δ : M2(Γ0(N))→B2(Γ0(N)) be given by δ : {α,β} 7→
({α}−{β}). Denote by S2(Γ0(N)) the kernel of δ . Let φ : S2(Γ0(N))→H1(X0(N),Z) be the map
which sends the pair {α,β} to the image in X0(N) of a geodecic path in path in H from α to β . It
was shown by Manin that the map φ gives an isomorphism:

S2(Γ0(N))∼= H1(X0(N),Z). (1.1.11)

One can define an action of the Hecke algebra on S2. For p be a prime not dividing N, define

Tp
(
{α,β}

)
=
(

p 0
0 1

)
{α,β}+ ∑

r mod p

(
1 r
0 p

)
{α,β}.

And for a prime p|N, define

Tp
(
{α,β}

)
= ∑

r mod p

(
1 r
0 p

)
{α,β}.

For n > 0,
Tpn+1 = TpTpn−〈p〉Tpn−1

If n = ∏i pei
i gives a prime factorization of n, then we set

Tn = ∏
i

Tpei
i
.

The Hecke action defined in this way is compatible with the isomorphism in equation 1.1.11 (as we
show in the next subsection).

Theorem 3.13 and Proposition 3.21 of [18] give a finite presentation for S2(Γ0(N)). For d|N,

let φd : S2(Γ0(N))→ S2(Γ0(N)) be given by φd({α,β}) 7→
(

d 0
0 1

)
{α,β}. One can show that

the subspace of S2(Γ0(N)) corresponding to S2(Γ0(N))new is the intersection of the kernels of φd
ranging over all d|N with d > 1. We’ll call this subspace S2(Γ0(N))new.

Fourier coefficients for newforms in S2(Γ0(N))new can thus be calculated by finding a basis for
S2(Γ0(N))new, expressing the action of operators Tn on S2(Γ0(N))new as matrices in terms of this
basis, and computing the eigenvalues of these matrices.

4

Decomposition of S2(Γ0(N)) and a Hecke-Module Isomorphism with S2(Γ0(N)). In this
section, we make explicit a correspondance between S2(Γ0(N,C)) and a subspace of S2(Γ0(N))⊗C.
To this end, we present a useful decomposition of S2(Γ0(N))⊗C.

Following the notation in [13], let S2(Γ0(N,C)) denote the space of antiholomorphic modular

forms and consider the map i : f (z) 7→ f (−z̄). Denote by η the element
[
−1 0
0 1

]
in M2(Q).

Since η normalizes Γ0(N), then for any cusp form f and any γ =
[

a b
c d

]
in Γ0(N), we have

i(f (γ(z))) = i(f (η−1γη(z))) = (cz̄+d)2 f (z), so the map i is an isomorphism from S2(Γ0(N,C)) to
S2(Γ0(N,C)). We define the so-called star involution on S2(Γ0(N))⊗C as i∗ : {α,β} 7→ {−α,−β}.

Let S2(Γ0(N))+ denote the subspace of S2(Γ0(N)) invariant under the action of i∗ (e.g. con-
sisting of symbols {α,β} such that {α,β} and i∗({α,β}) = {−α,−β} are Γ0(N)-equivalent), and
let S2(Γ0(N))− be the subspace anti-invariant under i∗. We will make use of the decomposition
S2(Γ0(N)) = S2(Γ0(N))+⊕S2(Γ0(N))−.

Consider the pairing 〈,〉 : (S2(Γ0(N,C))⊕ S2(Γ0(N,C)))× S2Γ0(N)) → C given by 〈 f +
g,{α,β}=

∫
β

α
f (z)dz+

∫
β

α
g(z)dz̄. Theorem 3 in [13] shows that this pairing is nondegenerate.

Since

〈i(f +g),{α,β}〉 = −
∫

β

α

f (−z̄)dz̄+
∫

β

α

g(−z̄)dz (1.1.12)

=
∫ −β

−α

f (z)dz+
∫ −β

−α

g(z)dz̄ (1.1.13)

= 〈 f +g, i∗({α,β})〉, (1.1.14)

(1.1.15)

the map i∗ is adjoint to i with respect to 〈,〉.
This discussion leads to:

Proposition 1. 〈,〉 induces a nondegenerate pairing S2(Γ0(N,C))×S2(Γ0(N))+→ C.

Proof. Define 〈,〉′ : S2(Γ0(N,C))×S2(Γ0(N))+→ C by

〈 f ,{α,β}〉′ = 〈 f + i(f),{α,β}〉 (1.1.16)

= 〈 f ,{α,β}〉+ 〈 f , i∗({α,β}〉 (1.1.17)

= 2〈 f ,{α,β}〉 (1.1.18)

(1.1.19)

Theorem 1.42 in [18] shows that the Hecke operators Tn, as defined on the respective spaces, are
self-adjoint with respect to the pairings 〈,〉 and 〈,〉′. Thus we have a Hecke module isomorphism φ

from S2(Γ0(N))+⊗C to the dual of S2(Γ0(N,C)) (denoted S2(Γ0(N,C))∗) given by φ : s 7→ 〈·,s〉′
for s ∈ S2(Γ0(N)+.

We use the map φ as defined above to establish a correspondance between S2(Γ0(N,C))
and S2(Γ0(N))+ ⊗C as Hecke modules as follows. Decompose S2(Γ0(N,C)) as a direct sum
of T ⊗ C-invariant submodules: S2(Γ0(N,C)) = ⊕iSi. Then define S∗j ⊂ S2(Γ0(N,C))∗ as
AnnS2(Γ0(N,C))∗(⊕i 6= jSi).

5

Proposition 2. For any j, S j is isomorphic to S∗j as Hecke modules.

Proof. The two spaces are isomorphic C-vector spaces since they are of the same dimension; the
isomorphism as Hecke modules follows from the natural action of T⊗C on the functionals {γ :
f 7→ c| f ∈ S2(Γ0(N,C)),c ∈ C} given by t(γ(f)) = γ(t(f)).

The isomorphism above is non-cannonical, thus it does not indicate a computable Hecke-
compatible map between forms in S2(Γ0(N,C)) and symbols in S2(Γ0(N))+⊗C. It does how-
ever show how to associate to each T⊗C-invariant subspace Si ⊂ S2(Γ0(N,C)) a corresponding
subspace in S2(Γ0(N))+⊗C, namely: φ−1(S∗i).

1.1.3 Modular Elliptic Curves

The modular curve X0(N) has a canonical model over Q, as we describe now. Consider the
elliptic curve E/Q(j) = y2 + xy = x3− 36

j−1728 x− 1
j−1728 . Let C be any subgroup of E(Q(j)) of

order N. Let FN be the smallest extension of Q(j) such that σ(C) = C for all σ ∈ Gal(Q(j)/FN).
Then the field FN is isomorphic to the function field of a curve X/Q. The solution X to this moduli
problem is canonical in the sense that it is not dependent on the subgroup C. The curve X exhibits
the propety that X(Q) is isomorphic to the set of rational points of X0(N) and is taken to be the
model of X0(N) over Q. We denote X by X0N) again for ease of notation.

The group H1(X0(N),Z) injects into Hom(S2(Γ0(N)),C) via the identification γ 7→ (f 7→∫
γ

2π f dz) for γ ∈ H1(X0(N),Z) and f ∈ S2(Γ0(N)).
Denote by J0(N) the Jacobian variety of X0(N) over Q. Thus J0(N) is an abelian variety over Q

whose group of complex points is Pic0(X0(N)). The isomorphism given by the Abel-Jacobi map

Pic0(X0(N),C)∼= Hom(S2(Γ0(N)),C)/H1(X0(N),Z)

defines an action of T on J0(N).
Let f be a newform of level N with integral coefficients. Let I f = AnnT(f). We associate to f

an abelian variety A f over Q defined by

A f = J0(N)/I f J0(N). (1.1.20)

If f has integral coefficients, then A f is an elliptic curve over Q (see [6]).

Definition 6. If f has integral Fourier coefficients, an elliptic curve E constructed as A f is called
a modular elliptic curve. We also say that E is the curve associated to f or that f is the newform
associated to E

The following theorem was once known as the Taniyma-Shimura conjecture. It is now called
the Modularity Theorem. See the book [7] for many similar statements from geometric, algebraic,
topological, and complex-analytic perspectives.

Theorem 3 (Breuil, Conrad, Diamond, Taylor). An elliptic curve over the rational field is isogenous
to an elliptic curve of the form A f for some newform f with integer coefficients.

6

1.1.4 Congruence Primes

Definition 7. Let p be a prime and let X and Y be two subspaces of S2(Γ0(N)). We call p a
congruence prime linking X and Y if there exist forms f ∈ X and g ∈ Y with integer Fourier
coefficients which are not both multiples of p such that an(f)≡ an(g) mod p for all n. In this case,
we write f ≡ g mod p. If f is a cusp form, then we also say that p is a congruence prime linking f
and Y in the event that p is a congruence prime linking the span of f to Y .

Perhaps surprisingly, congruence primes linking spaces X and Y are quite common. In fact, it
happens that there always exist primes of congruence linking any two complementary subspaces of
S2(Γ0(N)). (This follows from [12] proposition 10.6.)

The article [14] gives several characterizations about congruence primes linking complementary
subspaces of S2(Γ0(N)). We are often interested in congruence primes linking a single newform to
the rest of the space S2(Γ0(N)). The article [10] gives several characterizations of such primes.

Lemma 1. Let f be a newform with integer coefficients. The prime p is a congruence prime linking
the subspace generated by f to a subspace Y in S2(Γ0(N)) if and only if f is congruent modulo p
to a cusp form with integer Fourier coefficients in Y .

Proof. In the “if" direction, the result follows by definition. Conversely, if p is a congruence prime
linking the C-span of f to the subspace Y , then there exists some c f and g ∈ Y with integer coeffi-
cients such that c f ≡ g mod p. We can assume that c is a unit modulo p because if p|c, then c f and
g would both be multiples of p. Let d ∈ Z be such that dc≡ 1 mod p. Then f ≡ dg mod p.

1.2 The Birch and Swinnerton-Dyer Conjecture
In this section, we state the conjectural Birch and Swinnerton-Dyer formula and describe the

elliptic curve invariants that occur therein: the L-function, the Tate-Shaferavich group, the elliptic
regulator, the tamagawa product, and the real period.

Let K be a local field that is complete with respect to a valuation ν . Let E/K be a curve given
by

y2 +a1xy+a3y = x3 +a2x2 +a4x+a6. (1.2.1)

We say that equation 1.2.1 is a minimal Weierstrass equation for E at ν if

1. ν(ai)≥ 0 for all i

2. The discriminant of equation 1.2.1 is minimal under the restriction in item 1.

Let F is a number field and let ν be any finite or archimedean prime. Then we say that an equation
for E/F is minimal at ν if the same equation is minimal over Fν . In the case that an equation for
E/F is minimal at all places ν , we call the equation a global minimal Weierstrass equation for E
and denote the equation Emin. It can be shown that all elliptic curves over Q have a global minimal
Weierstrass equation.

Let E/Q be an elliptic curve defined over the rationals. The curve E is said to have good
reduction at p if the reduction of a global minimal Weierstrass equation for E modulo p, denoted
Ẽ, has no singular points. We say E has multiplicative reduction at p if Ẽ has a node. If E is of
multiplicative reduction and the slopes of the tangent lines at the node in Ẽ are both elements of

7

Fp (respectively, are not both elements of Fp), we say that E is of split reduction (respectively, we
say that E is of non-split reduction). Finally, if Ẽ has a cusp, we say E has additive reduction at p.
These definitions are independant of the global minimal Weierstrass equation chosen for E. In the
case that E has good reduction at p, define ap = p+1−|Ẽ(Fp)|.

Definition 8. Let p be a prime. We define the local L-factor of E at p, denoted L(E/Qp,s), to be

• (1−ap p−s + p1−2s)−1 if E has good reduction at p,

• (1− p−s)−1 if E has split reduction at p,

• (1+ p−s)−1 if E has non-split reduction at p,

• 1 if E has additive reduction at p.

Definition 9. We define the global L-function of E, denoted L(E/Q,s), by

L(E/Q,s) = ∏
p

L(E/Qp,s) (1.2.2)

where p ranges over the prime numbers.

Let E/Q be an elliptic curve. If r is a rational number, let M(r) denote max(|s|, |t|) where s and
t are integers such that r=s/t and (s, t)=1. If f : E(Q)→ Q is an even function, then let h f be a
function on E(Q) given by

h f (P) = log(M(f (P)) (1.2.3)

for P 6= 0.
Let f : E(Q)→Q be an even function. Define ĥ : E(Q) 7→ R by

ĥ(P) =
1

deg(f)
lim

N→∞

h f (2NP)
4N . (1.2.4)

The function ĥ does not depend on the function f (see [17] lemma 6.3). The Neron-Tate pairing
〈·, ·〉 is given by

〈P,Q〉= ĥ(P+Q)− ĥ(P)− ĥ(Q) (1.2.5)

Definition 10. Let {P1...Pr} be a set of generators for E(Q)/Etors(Q). The elliptic regulator,
R(E/Q), is the determinant of the matrix whose ij-th entry is 〈Pi,Pj〉.

The invariant differential of a Weierstrass equation y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 is
dx/(2y+a1x+a3).

Let E be an elliptic curve over Q. Let ω be the invariant differential of a global minimal
Wierstrass equation Emin for E (i.e. with minimal discriminant everywhere and integral coefficients).
The real period of E, denoted Ω, is the quantity

∫
Emin(R) ω .

For a prime p, let E0(Qp) denote the set of points P ∈ E(Qp) which map to nonsingular points
of Ẽ(Fp) when reduced modulo p. The group E0(Qp) is of finite index in E(Qp)(see [17] chapter
VIII).

8

Definition 11. If p is a prime number, then the Tamagawa number at p, denoted cp, is the order
|E(Qp)/E0(Qp)|

It follows immediately from definition that cp = 1 for all primes p of good reduction.

Definition 12. We define the Tate-Shaferavich group X(E/Q) as the group

X(E/Q) = ker
{

H1(Gal(Q/Q),E(Q))→∏
p

H1(Gal(Qp/Qp),E(Qp))
}
. (1.2.6)

For more information and some geometric interpretations of X(E/Q), see [17] Chapter X.
Let E/Q be an elliptic curve. Let Lr(E/Q,1) denote the r-th derivative of L(E/Q,s) evaluated

at s = 1.

Conjecture 1 (Birch and Swinnerton-Dyer).

Lr(E/Q,1)
r! Ω

=
|X(E/Q)| · R(E/Q) · ∏p cp

|Etors(Q)|2
(1.2.7)

We call equation 1.2.7 the conjectural Birch and Swinnerton-Dyer formula.

1.3 Motivation for this Thesis: Cancellations in the Conjectural
Birch and Swinnerton-Dyer Formula

In this section, let E/Q be a modular elliptic curve associated to the newform f of level N.
The right hand side of equation 1.2.7 has been studied extensively (see the introduction in [11]).
In particular, in regard to the relationship between the Tamagawa product Πpcp and the order of
Etors(Q), M. Emerton [8] showed that when N is prime, Πpcp = |Etors(Q)|.

When N is not prime, |Etors(Q)| need not equal Πpcp. In fact, this first occurs when N = 42.
D. Lorenzini [11] has shown that if ` > 3 is a prime number, then the order of the `-primary part of
Etors(Q) divides Πpcp.

In the other direction, Agashe [1] has conjectured that:

Conjecture 2 (Agashe). If an odd prime ` divides Πpcp, then either ` divides the order of Etors(Q)
or the newform f is congruent modulo ` to a form in the old space.

The following partial result towards conjecture 2 is given in [1].

Proposition 3. Let ` be an odd prime such that either ` - N or for all primes r that divide N,
` - (r−1). If ` divides the order of the geometric component group of E at p for some prime p||N,
then either E[`] is reducible or the newform f is congruent to a newform of level dividig N/p (for
all Fourier coefficients whose indices are coprime to N`) modulo a prime ideal over ` in a number
field containing the Fourier coefficients of both newforms.

In fact, in [1] the author conjectures more specifically that:

Conjecture 3 (Agashe). If an odd prime ` divides cp for some prime p, then either ` divides the
order of Etors(Q) or the newform f is congruent modulo ` to a form in the subspace generated by
degeneracy map images of newforms of levels dividing N/p.

9

Agashe was able to test these conjectures using the SAGE [19] command congruence_number()
for curves of conductor up to 1000, at which point computations became too slow to gather more
data. Since many interesting cases did not lie in this range, more data was desired and it was decided
that a more efficient algorithm for computing congruence numbers would be useful for this and other
purposes. The question of how to develop such an algorithm was the motivation for this thesis.

The first idea was to compute intersection numbers between subspaces of S2(Γ0(N)) by calcu-
lating orders of certain quotients of H1(X0(N),Z). Chapter two of this thesis is about this method
and its implementation. The performance of this approach was not as fast as was hoped for, so we
tried other ideas (see Chapter three) until we found a method that performed significantly better (see
Table 3.3 in Section 3.2 for a comparison). The method we use involves computing q-expansions
for modular forms to high precision and may have applications elsewhere.

10

CHAPTER 2

INTERSECTION NUMBERS BETWEEN SPACES OF
CUSPIDAL MODULAR FORMS

In this chapter, we define intersection numbers and prove a result relating intersection numbers
between spaces of cuspidal modular forms to the cooresponding annihilator ideals in the Hecke
algebra T⊗Q. We describe an algorithm for computing intersection numbers using this result.

2.1 Introduction

Throughout this chapter, take N > 5 to be an integer. Take g to be a newform of level Ng

dividing N and let [g] be its Galois conjugacy class. Denote by S([g],C) the subspace in S2(Γ0(N),C)
generated by degeneracy map images of forms in [g]. Denote by S([g],Q) the Q vector space of all
such forms with rational Fourier coefficients. Then S2(Γ0(N),Q) = ⊕[g]S([g],Q) where the sum is
over the Galois conjugacy classes of newforms at levels dividing N.

If X = ⊕[g]S([g],C) and Y = ⊕[f]S([f],C) are two subpaces of S2(Γ0(N),C), we define the inter-
section number between X and Y as the order of intersection between the two associated abelian va-
rieties (J0(N)/AnnT(X))∨ and (J0(N)/AnnT(Y))∨. One reason for studying intersection numbers
between such spaces X and Y as a means to study congruence primes between X and Y , since [4]
shows that the congruence primes also divide the intersection number.

Given a basis B = {s1 . . .s2g} for H1(X0(N),Z), the matrix for to the Hecke operator t relative
to the basis B is the unique matrix M that satisfies

t(si) =
2g

∑
j=1

Mi j(s j). (2.1.1)

Alternatively, taking H1(X0(N),Z) as a Z[T] module, we get a linear representation ρL : T→
GL2g(Z). Choosing a basis B for H1(X0(N),Z) induces an associated matrix representation, ρ . In
this context, the matrix for the Hecke operator t is ρ(t).

If M is a matrix with rational entries, then let d denote the least common multiple of all of
the denominators of entries of M. We denote by Mint the matrix given by d ·M, the integer matrix
produced by clearing denominators in M.

If M is an n×m matrix with integer coefficients, we define the torsion order of M to be the
product of the diagonal entries of the Smith Normal Form of M. We denote the torsion order of M

11

as tors(M). The torsion order of M is so called because it is the order of the torsion part of the group
Zm/Col(M) where Col(M) the denotes subgroup of Zm generated by the columns of M.

Given a set of n×m matrices, {M1, . . . ,Mk}, we denote by M1 . . .Mk the n× (mk) matrix pro-
duced by the horizontal augmentation of the {Mi}.

We have the following result.

Theorem 4. Let X = ⊕[g]S([g],C) and Y = ⊕[f]S([f],C) be two disjoint and complementary sub-
spaces of S2(Γ0(N)). Let XH and YH denote the images of ⊕[g]S([g],Q) and ⊕[f]S([f],Q) respec-
tively in H1(X0(N),Z)⊗Q under the isomorphism described in section 1.1.2. Let {t1, . . . , tm}
and {r1, . . . ,rm} be generators for the annihilator ideals in TZ⊗Q of XH , YH respectively . Let
{T1 . . .Tm} and {R1 . . .Rn} be matrices for {t1, . . . , tm} and {r1, . . .rn} respectively relative to some
basis for H1(X0(N),Z). Then the intersection number between X and Y is

tors(T1int . . .TmintR1int . . .Rnint)
tors(T1int . . .Tmint) · tors(R1int . . .Rnint)

(2.1.2)

In section 2.2, we prove Theorem 1. In section 3.2, we present an algorithm for computing
intersection numbers, and this section can be read independantly of section 2.2.

2.2 Proof of Theorem 1

If X is a subspace of S2(Γ0(N)) of the form⊕[g]S([g],C), then denote by IX the annihilator ideal of
⊕[g]S([g],Q) in the Hecke algebra TZ. Denote by I(X ,Q) the annihilator ideal of ⊕[g]S([g],Q) in TZ⊗Q.

Lemma 2. If X and Y are disjoint subspaces of S2(Γ0(N)) both of the form ⊕[g]S([g],C), then the
intersection number between X and Y is the order of the group

H1(X0(N),Z)
H1(X0(N),Z)[IX]+H1(X0(N),Z)[IY]

(2.2.1)

Proof. This is Lemma 4.1 of [2].

Lemma 1 is the basis for our computation. However, directly finding generators for IX and
IY is computationally difficult. The remaining lemmas in the proof of Theorem 1 show how to
modify Lemma 1 so that one may instead use generators for I(X ,Q) and I(Y,Q), which are less costly
to compute.

For later reference, we now establish a small fact regarding group orders.

Lemma 3. Let G be a finitely generated abelian group, and let H1 and H2 be subgroups of G. If
K1 ⊆ H1 and K2 ⊆ H2 are subgroups of finite index in H1 and H2 respectively, then∣∣∣∣H1 +H2

K1 +K2

∣∣∣∣= |H1/K1| · |H2/K2|
|(H1∩H2)/(K1∩K2)|

(2.2.2)

Proof. Consider the following commutative diagram of exact sequences.

12

0 0 0y y y
0 −−−−→ K1∩K2 −−−−→ K1×K2 −−−−→ K1 +K2 −−−−→ 0y y y
0 −−−−→ H1∩H2 −−−−→ H1×H2 −−−−→ H1 +H2 −−−−→ 0y y y

H1∩H2
K1∩K2

H1×H2
K1×K2

H1+H2
K1+K2y y y

0 0 0

The Nine Lemma completes the bottom row so that

0 −−−−→ H1∩H2
K1∩K2

−−−−→ H1×H2
K1×K2

−−−−→ H1+H2
K1+K2

−−−−→ 0 (2.2.3)

is exact. In particular
H1 +H2

K1 +K2

∼=
(H1×H2)/(K1×K2)
(H1∩H2)/(K1∩K2)

. (2.2.4)

The result follows.

The following lemma will be used to help calculate the order of the group in equation (2.2.1).
For a group G, denote the order of the torsion subgroup of G as tors(G).

Lemma 4. Let G be a finitely generated abelian group, and let H1 and H2 be subgroups of G
such that G/H1 and G/H2 are both torsion-free and G

H1+H2
is finite. If K1 ⊆ H1 and K2 ⊆ H2 are

subgroups of finite index in H1 and H2 respectively, then∣∣∣∣ G
H1 +H2

∣∣∣∣= ∣∣∣∣ G
K1 +K2

∣∣∣∣ · tors(G/(K1∩K2))
tors(G/K1) · tors(G/K2)

(2.2.5)

Proof. By the Third Isomorphism Theorem we have

∣∣∣∣ G
H1 +H2

∣∣∣∣=
∣∣∣∣ G

K1+K2

∣∣∣∣∣∣∣∣H1+H2
K1+K2

∣∣∣∣ (2.2.6)

However, by Lemma 3 above, ∣∣∣∣H1 +H2

K1 +K2

∣∣∣∣= |H1/K1| · |H2/K2|
|(H1∩H2)/(K1∩K2)|

(2.2.7)

so that equation 2.2.6 becomes∣∣∣∣ G
H1 +H2

∣∣∣∣= |G/(K1 +K2)| · |(H1∩H2)/(K1∩K2)|
|H1/K1| · |H2/K2|

. (2.2.8)

13

By the Third Isomorphism Theorem, for both i = 1 and i = 2 we have

G/Hi ∼=
G/Ki

Hi/Ki
(2.2.9)

as well as

G/(H1∩H2)∼=
G/(K1∩K2)

(H1∩H2)/(K1∩K2)
(2.2.10)

Since, G/Hi are torsion-free, equation 2.2.9 says that |Hi/Ki| = tors(G/Ki). Likewise, equation
2.2.10 indicates |(H1∩H2)/(K1∩K2)|= tors(G/(K1∩K2). So equation 2.2.8 becomes∣∣∣∣ G

H1 +H2

∣∣∣∣= |G/(K1 +K2)| · tors(G/(K1∩K2))
tors(G/K1) · tors(G/K2)

(2.2.11)

as desired.

Similar to the notation for matrices defined in the introduction, if I is an ideal in TZ⊗Q with
generators {t1, . . . , tn}, we will write Iint to denote the ideal in TZ generated by {z1t1, . . . ,zntn}, where
zi ∈ Z is the smallest positive integer such that ziti ∈ TZ. In this case, we will also denote ziti by
tiint . (Note that Iint depends on the choice of generators {ti} and on the integers {zi}, so there does
not exist a one-to-one correspondance between ideals in T⊗Q and ideals in TZ of the form Iint.
However, we supress this fact in the following because this dependance does effect the results as
stated.)

Lemma 5. If X and Y are disjoint, complementary subspaces of S2(Γ0(N)) both of the form
⊕[g]S([g],C), Then I(X ,Q)intH1(X0(N),Z) is a subgroup of finite index in H1(X0(N),Z)[IY] and I(Y,Q)intH1(X0(N),Z)
is a subgroup of finite index in H1(X0(N),Z)[IX]. And the order of the group in equation (2.2.1) is
equal to ∣∣∣∣ H1(X0(N),Z)

I(Y,Q)int
H1(X0(N),Z)+I(X ,Q)int

H1(X0(N),Z)

∣∣∣∣
tors
(

H1(X0(N),Z)
I(X ,Q)int

H1(X0(N),Z)

)
· tors

(
H1(X0(N),Z)

I(Y,Q)int
H1(X0(N),Z)

) (2.2.12)

Proof. It is obvious that I(X ,Q)(H1(X0(N),Z)⊗Q is isomorphic to (H1(X0(N),Z)⊗Q)[I(Y,Q)], since
they are both just YH . It is not difficult to see that this induces an isomorphism between IX H1(X0(N),Z)⊗
Q and H1(X0(N),Z)[IY]⊗Q. Since the two spaces are equal upon tensoring with Q, and IX H1(X0(N),Z)⊆
H1(X0(N),Z)[IY], IX H1(X0(N),Z) is a subgroup of finite index in H1(X0(N),Z)[IY]. Likewise,
IY H1(X0(N),Z) is a subgroup of finite index in H1(X0(N),Z)[IX].

We will now show how the quanties in the numerator and denominator of equation (2.2.12) are
equal to those occuring in equation (2.1.2), which will prove Theorem 1. Let B = {s1, . . .s2g} be a
basis for H1(X0(N),Z). Let {t1, . . . , tm} and {r1, . . . ,rn} be generators I(X ,Q) and I(Y,Q) respectively.
Let {T1 . . .Tm} and {R1 . . .Rn} be matrices for {t1, . . . , tn} and {r1, . . .rm} relative to B.
The group H1(X0(N),Z)

I(X ,Q)int
H1(X0(N),Z) has a presentation

〈s1 . . .s2g| tiint (s j) for i = 1 . . .m, j = 1 . . .2g〉. (2.2.13)

14

The group H1(X0(N),Z)
I(Y,Q)int

H1(X0(N),Z) has a presentation

〈s1 . . .s2g|riint (s j) for i = 1 . . .n, j = 1 . . .2g〉. (2.2.14)

The group H1(X0(N),Z)
I(Y,Q)int

H1(X0(N),Z)+I(X ,Q)int
H1(X0(N),Z) has a presentation

〈s1 . . .s2g|tiint (s j) for i = 1 . . .m, j = 1 . . .2g,riint (s j) for i = 1 . . .n, j = 1 . . .2g〉. (2.2.15)

Let ei denote the i-th standard basis vector (with n entries, a 1 in the i-th position and 0’s el-
swhere). Then using the map si 7→ ei, the group presented in equation (2.2.13) is isomorphic to
Zn/Col(T1int . . .Tmint), the order of which is precisely tors(T1int . . .Tmint). Similarly, the groups in
(2.2.14) and (2.2.15) can be computed as tors(T1int . . .TmintR1int . . .Rnint) and tors(R1int . . .Rnint) respec-
tively. Theorem 4 follows.

2.3 The Algorithm
Theorem 1 indicates that we can compute the intersection number between X and Y if we are

given generators in TZ⊗Q for I(X ,Q) and I(Y,Q). In order to find generators in TZ⊗Q for I(X ,Q), we
compute a basis for TZ⊗Q, say {t1 . . . tg}, and then solve the linear system in c1 . . .cg over Q of all

equations of the form
g

∑
i=1

citix = 0 as x varies over basis elements of X . Upon solving for the weights

ci, we compute the generators for I(X ,Q) as
g

∑
i=1

citi. Similarly, we can compute generators for IY,Q.

In section 2.3.1, we describe how one may compute a basis for TZ⊗Q. In section 2.3.2, we

show in more detail how one may solve the system of equations of the form
g

∑
i=1

citix = 0 for the

weights ci.

2.3.1 Computing a Basis for T⊗Q
In SAGE, the matrix for Hecke Operator is given by the command matrix(). Because computing

the matrix for a Hecke Operator is easy in SAGE, it is not difficult to check for linear dependancies
between matrices for various Hecke operators until g (the dimension of T⊗Q) have been collected.

Algorithm 1. To compute a basis of matrices for the Hecke Algebra T⊗Q:

1. Initialize a list, denoted by S, containing only the matrix for T2.

2. While |S| is less than g:

(a) Compute a matrix M for a Hecke Operator that has not yet been checked for linear
independence against the elements of S.

(b) Choose at random, |S|+ 1 positions inside a g× g matrix and for each matrix Mi in
S place the corresponding |S|+ 1 entries into a column vector Ci and place the corre-
sponding entries of M into a column vector Cn+1.

(c) Take the determinant of the matrix [C1 . . .Cn+1] (this can be done modulo a small prime).
(d) If the determinant is nonzero, append M to the list.

3. Output list.

15

2.3.2 Solving the Linear System

Let s1 . . .s2g be a basis for H1(X0(N),Z). In SAGE, the command X.modular_symbols() com-

putes a basis for XH whose elements are of the form
2g

∑
i=1

risi. Let M be a matrix whose columns

are of the form

r1
.
.
.

r2g

, where
2g

∑
i=1

risi is a basis element of XH . Then M gives a surjection M :

H1(X0(N),Z) 7→ XH . For an m× n matrix A, denote by vector(A) the row vector of m · n entries
constructed by horizontally augmenting the rows of A. Suppose {t1 . . . tg} is a basis for T⊗Q with
associated matrices {T1 . . .Tg} and suppose that a matrix M : H1(X0(N),Z) 7→ XH gives a surjection.

Then for some weights ci,
g

∑
i=1

citi|X = 0|X if and only if
g

∑
i=1

M(citi) = 0, if and only if
g

∑
i=1

ciM(ti) = 0,

if and only if
c1
.
.
.

cg

 ∈ ker
(

vector(M(T1)
.
.
.

vector(M(Tg)

T)

. (2.3.1)

Thus, in order to solve for generators of I(X ,Q), we employ the following algorithm.

Algorithm 2. To solve the linear system of equations
g

∑
i=1

citix = 0 as x varies over basis elements of

X:

1. Construct M as defined above.

2. For each matrix Ti, multiply M ·Ti and record the entries into a column vector Ci.

3. Compute the solution set
{

c1
.
.
.

cg

}

as ker([C1 . . .Cg]).

4. Output matrices
g

∑
i=1

ciTi.

16

CHAPTER 3

COMPUTING A q-EXPANSION BASIS FOR S2(Γ0(N))
TO HIGH PRECISION

Let N be a positive integer. In this chapter, we describe a new method for computing a basis over
Q of q-expansions for S2(Γ0(N),Q) that performs better than other approaches when the number
of terms computed in the expansion (precision) is high. The method we describe is based on com-
puting matrices for prime-index Hecke operators Tp over irreducible Hecke-invariant subspaces of
S2(Γ0(N),Q).

In the introduction, we give the theoretical motivation for the algorithm, and in Section 3.2,
we give an explicit description. In Section 3.3, we describe an algorithm for saturating a Z-
submodule that is particularly well suited for producing a Z basis for S2(Γ0(N),Z) given a basis
for S2(Γ0(N),Q). In Section 3.4, we discuss some applications of the algorithms in Sections 3.2
and 3.3, namely: experimental computations with elliptic curves concerning cancellations in the
conjectural Birch and Swinnerton-Dyer formula.

3.1 Introduction

Let M be the space of modular symbols for Γ0(N) invariant under the action of involution i∗ as
described in Section 1.1.2 and let m denote its dimension. Let S be the cuspidal modular symbols
corresponding to the kernel of the boundary map described in 1.1.2, and let s denote its dimension.
Let N be the modular symbols corresponding to the new subspace, and let n denote its dimension.
(A basis for N can be computed as described in Section 1.1.2.)

Let G f be the rational structure of a subspace of S⊗C that corresponds (in the sense of Section
1.1.2) to the Galois orbit of a newform f (we will denote this orbit in S2(Γ0(N),C) as Ḡ f), and let
d = deg(L/Q) where L is the normal closure of the number field generated by the coefficients of f .
The subspace G f is invariant under the action of T, (see [6] page 39). We have a tower of inclusions
G f ⊆ N⊆ S ⊆M where G f ,N,S,M are of dimesnions d,n,s, and m respectively and all subspaces
are Hecke-Invariant.

Proposition 4. For any newform f , the Galois orbit Ḡ f of f has a basis of forms with integer
coefficients.

Proof. See page 38 of [6] where this result is implied and used as the main ingredient of Theorem
1.31 in loc. cite.

17

Proposition 5. Let G be a Hecke-invariant subspace of S2(Γ0(N),Q) and let B be a postive integer.
Let {A1 . . .AB} be matrices for the operators {T1 . . .TB} in T|G with respect to some basis for G. For
any matrix entry [i j], the power series A1i jq+A2i jq2 + ...ABi jqB is the q-expansion of some form in
G up to precision B.

Proof. This is essentially a remark in page 306 of [9], only we change from all of S2(Γ0(N),Q) to
G where appropriate and add some context as we follow the model in loc cite. First consider the
paring G×T|G→Q given by (f , t) 7→ a1(t(f)). To see that this pairing is perfect, we observe that
if (·, f) := 0 for some f , then since Proposition 5.3.1 in [7] implies am(f) = a1(Tm(f)), we would
have (Tm, f) = am(f) = 0 for all m, so f = 0. On the other hand, if (t, ·) := 0 for some t ∈ T|G, we
would have am(t(f)) = a1(Tm(t(f))) = a1(t(Tm(f))) = (t,Tm(f)) = 0 for all m, so t = 0. Since the
paring is perfect, any linear map in α ∈HomQ(T|G,Q) can be given as (·, f) for some f ∈G. Then
α(Tm) = am(f) and ∑m α(Tm)qm = f . To complete the proof to its current wording, we add only the
remark that α : T|G→Q with α(t) mapping t to some fixed i j-th entry of t’s matrix with respect to
a given basis of G is indeed a linear map.

While the above proposition shows how one can construct q-expansions from matrices for Hecke
operators, the next theorem and its first corollary show that enough q-expansions can be constructed
in this way to form a basis for all of G f and give an explicit description of which d entries [i j] can
be used to guarantee linear independence among the constructed q-expansions.

(Remark: On a couple of occasions, as in the next theorem, it will be necessary to use the fact
that there exists an operator t in T|N⊗Q such that t i for i ∈ [0,n−1] generate T|N⊗C as a vector
space over C. In particular, t has distinct eigenvalues. This is granted by the fact that the elements
of T|N⊗C are diagonalized over a basis of newforms and form a C-vector space of dimension n,
and thus any vector in Cn will form the diagonal of some element of T|N⊗C.)

Theorem 5. Let g be a nonzero element of Ḡ f . The T⊗C orbit of g is all of Ḡ f ⊗C.

Proof. Recall that L denotes the normal closure of the number field containing the coefficients of f .
Let { f1 . . . fd} be the Galois orbit of f with f = f1.

Step 1) Write g as g = ∑ci fi. We first prove that ci 6= 0 for all i. Since g 6= 0, cn 6= 0 for some n.
Also, g is fixed by the action of Gal(L/Q) since its coefficients are rational. Let k be an integer in
[1,d] and let σ ∈ Gal(L/Q) be such that σ(fn) = fk. Then σ(g) = g = ∑i 6=n σ(ci fi)+ σ(cn fn) =
∑i′ 6=k ci′ fi′+σ(cn) fk. If ck were 0, then cn = σ−1(ck) would be too. Thus all weights ci are nonzero.

Step 2) Let t be some element of T⊗C with distinct eigenvalues, and for any i as above, denote by
λ fi t’s eigenvalue corresponding to fi. Then define τi ∈ T⊗C by τi = ∏k 6=i(t−λ fk). Then the set
{τ1(g) . . .τd(g)} forms a basis for Ḡ f . This concludes the proof.

Corollary 1. Let {t1 . . . td} be any basis of matrices with rational entries for T|G f with respect to
some rational basis {g1 . . .gd} for G f . Keeping j : 1 ≤ j ≤ d fixed, the j-th rows of these ti are
linearly independent. In particular, the first rows of these ti are linearly independent.

Proof. Suppose the corollary didn’t hold, then the dimension of the T⊗C orbit of g j would be less
than d. This concludes the proof.

18

The above theorem shows that if we can compute matrices for the Hecke operators T1 . . .TB with
respect to some basis of T|G f , then we can take the first row of each to construct a q-expansion basis
for G f to precision B. The next section addresses in detail how to compute the matrices Tn in T|G f .
We end the introduction with a second corollary to Theorem 5.

Corollary 2. The spaces Ḡ f and G f are T-simple.

Proof. That Ḡ f is T-simple follows directly from the theorem. That G f is T-simple follows since it
is the image of Ḡ f under the T compatible isomorphism described in Section 1.1.2.

3.2 Matrices for Operators on Invariant Subspaces
Let M be a Q vector space of dimension m and let T be a space of operators acting on M. Let

G ⊆ M be a subspace of dimension d << m that is invariant under the action of T and suppose
T|G is also of dimension d. Suppose M has a basis {α1 . . .αm}. Suppose the action of any given
operator t ∈ T on an element of M can only be determined by t’s action on these basis elements.
The subspace G has a basis whose elements are of the form β = ∑a jα j, thus computing the action
of t on a general element in G requires approximately m times more computation than computing
t’s action on a basis element α j.

Suppose that we want matrices for the action of operators t only on a basis of G, as opposed to all
of M. Since G is smaller, is there a way to compute matrices for t on G that is less computationally
costly than computing the matrix for t on M and then restricting to G?

The naive approach of recording t’s action on the basis for G and building the matrix accordingly
would be a very inefficient method. Since t’s action on a linear combination is determined by its
action on the summands, this method would be no less costly than building a matrix for t over all of
M. Below we describe an approach for determining t by its action on fewer basis elements α j.

Suppose that we can somehow efficiently compute a basis {t1 . . . td} for T|G. Then if we could
then compute t(β) for enough β ∈ G, we could solve the system equations of the form ∑citi(β) =
t(β) and get t as a linear combination of ti. So then what would be ideal is if there were several β in
G that were either themselves basis elements α j or linear combinations of very few of the α j, since
the action of t on such β would be easier to compute. This is highly unlikely because d << m.

However, it may be possible to find a subset Ω of the basis elements α j such that t is specified
by its action on the elements of Ω. If we could compute projGti(α j) for all ti in the basis for T|G
and all α j ∈Ω and solve the system ∑ciprojGti(α j) = projGt(α j) for the weights ci, then we would
have t = ∑citi. The observatation is that because G is invariant under the action of t, projGt(α) =
t(projG(α)), where the term on the left is easy to compute and the term on the right is hard to
compute.

3.2.1 Example: Matrices for Hecke Operators on the New Subspace when the Old
and Eisenstein Subspaces Dominate

Now let M be the space of modular symbols fixed under involution for Γ0(N) and let N be the
new subspace of M. Denote by π the projection map from M onto N. (Most intuitively, if d denotes
a degeneracy map from a lower level and d′ denotes its inverse, the map π on a symbol s could be
computed as π : s 7→ s−∑d|N d(d′(s)) (read as: “s minus any old part”), but we describe in the next
section another approach that suffices.)

19

In this example, consider N = 500. We compute T1511 for some basis of S2(Γ0(500),Q). At
level 500, m = 78; n = 8. Clearly the Eisenstein and old subspaces dominate M. T3|N has distinct
eigenvalues, so T 0

3 . . .T 7
3 generate T|N. So to compute a matrix for T1511, we find several basis Manin

symbos with nonzero projections onto N- in this case (1,0),(1,100) and (4,131) suffice- and set up
the matrix

A =

 π(T 0
3 ((1,0))) π(T 2

3 ((1,0))) . . . π(T 7
3 ((1,0)))

π(T 0
3 ((1,100))) π(T 2

3 ((1,100)) . . . π(T 7
3 ((1,100)))

π(T 0
3 ((4,131))) π(T 2

3 ((4,131))) . . . π(T 7
3 ((4,131)))

and the vector

b =

 π(T1511((1,0)))
π(T1511((1,100)))
π(T1511((4,131)))

 .

Note that the matrix A has 21 rows and 7 columns, because each entry in the expression above rep-
resents a vector of length 7. The solution to Ax = b is c = [110/3,0,−677/6,0,295/6,0,−23/6,0].
We compute T1511 as ∑ciT i

3 and find

T1511|N =

10 −71/2 129/10 −99/20 −47/5 −11/5 177/5 −53/5
−2 101/2 −261/10 281/20 23/5 29/5 97/5 −168/5
10 −23/2 23/2 −3/4 −13 15 5 12
0 −8 0 52 0 −8 8 −8
−9 −23/2 −1/10 1091/20 118/5 −196/5 82/5 −148/5
4 −47/2 229/10 −189/20 −27/5 94/5 −133/5 222/5
−2 49/2 −333/10 1203/20 9/5 −58/5 341/5 −359/5
−4 51/2 −301/10 1271/20 13/5 −41/5 237/5 −273/5

One could of course compute the matrix above by taking the approach of [13], [18], and [19] to

compute T1511 acting on the full basis for M and restricting to the basis of N. However, this requires
78 computations of T1511 acting on a Manin symbol whereas the approach above only required 3
such computations (after our matrix A has been computed).

3.2.2 Restricting to Irreducible T-Invariant Subspaces G f

The restriction to N in Example 2.1 is useful if the old and Eisenstien subspaces dominate the
space of modular symbols, but it will offer no real improvement at, for instance, prime levels -
where the space is almost entirely new already. But the newspace can be further decomposed into
subspaces G f .

Determining Matrices t in T|G f . In Example 3.2.1, the matrix A had 21 rows and only 7
columns, so the system Ax = b is over-determined. This was because N in the example was not
an irreducible T-simple subspace, so the action of Tp on a single Manin symbol in M may not
completely determine its matrix on a rational basis of N (see the remark below Proposition 6).
However, when we restrict to G f , it is only necessary to know the action of Tp on a single Manin
symbol.

Proposition 6. Suppose the Manin symbol s has nonzero projection onto G| f . An operator t in
T|G f ⊗Q is completely determined by t’s action on s.

20

Proof. Let B be a T|G f ⊗C-diagonalizing basis for G f ⊗C. Since G f is T-simple, it contains no
nonzero proper T submodules. It follows that the C valued coordinate vector for s with respect B
must contain either all zero entries or no zero entries because otherwise, the T orbit of s would be a
nonzero proper T submodule of G f .

Now suppose t(s) = 0. If t is diagonalized with respect to B and s is given as a coordinate vector
with respect to B, then t(s) = 0 implies that t acts as 0 on each element of B. Thus t := 0. This
concludes the proof.

(Remark: More generally, operators t ∈ T|N will also be determined by their actions on a single
Manin symbol as long as the symbol’s projection onto each invariant subspace G f is nonzero. In
the worst case, t must be determined by its action on #({G f }) symbols, where #({G f)} denotes the
number of irreducible T-simple subspaces of N.

Although it would have been impossible to know without computing projections onto the irre-
ducible T-simple subspaces, the symbol (4,131) was not needed in Example 3.2.1 since the sum
(1,100)+(1,300) has nonzero projections onto all subspaces G f)

Computing Projections π f : M → G f . In order to carry out the method in Example 3.2.1
on smaller spaces G f , we also need projection maps π f : M → G f . The following method was
implied in [18] and described in limited detail in [19] . Here we describe the idea again and add
some context. Algorithm 7.17 in Chapter 7 of [18] shows how to decompose a vector space into
t-simple spaces, where t is an operator acting on the space. In our context, if the Hecke operator t
has distinct eigenvalues, then in view of Corollary 2 and the remark above Theorem 5, the algorithm
will decompose the newspace N into ⊕ f G f . Call MG f the matrix whose rows are basis elements
for G f in terms of basis elements for M. And call MO and ME matrices whose rows are basis
elements for the old and Eisenstein spaces respectively. The matrix mat whose columns are the
MG f augmented together, along with MO and ME on the right gives a map mat : ⊕ f G f ⊕O⊕E →
M where O and E are the old space and Eisenstein spaces respectively. So mat−1 gives a map
mat−1 : M→⊕ f G f ⊕O⊕E. Then taking the rows in mat−1 corresponding to G f gives a projection
π f : M→ G f .

Revisiting the example above at level 500, we compute a block diagonal form of T1511 by solving
for its blocks at each invariant subspace G f .

There are 3 irreducible T-simple subspaces G f of N. Call these G f1 ,G f2 ,G f3 . The symbol
(1,100) has nonzero projection onto G f1 and G f3 , and (1,300) has nonzero projection onto G f2 .
The subspace G f1 has dimension 2, thus T3

0
|G f1

and T3
1
|G f1

generate its Hecke algebra. We set up the
matrix

A =
[

π f1(T3
0(1,100))) π f1(T3

1(1,100)))
]

and the vector
b =

[
π f1(T1511(1,100)))

]
And solve Ax = b for c = [3,4] and compute T1511G f1

= 3∗T3
0
|G f1

+4∗T3
1
|G f1

=
[
−5 −4
20 15

]
Again, this is the exact matrix that could be computed as the matrix for T1511 over a basis for

M restricted to G f1 , but this approach would require knowing T1511’s action on 78 Manin symbols
whereas in our example we only needed T1511’s action on a single Manin symbol. Carrying through
the same way with G f2 and G f3 we compute block diagonal matrix of T1511|N as

21

T1511|N =

−5 −4 0 0 0 0 0 0
20 15 0 0 0 0 0 0
0 0 −5 −12 0 0 0 0
0 0 20/3 15 0 0 0 0
0 0 0 0 36 −32 8 32
0 0 0 0 0 28 0 0
0 0 0 0 8 −32 44 0
0 0 0 0 0 −8 0 52

3.2.3 The Algorithm

Since for each f , G f has a basis of forms with rational coefficients, in order to get a basis of such
forms for N, one can compute projections π f : M→G f for each newform f ∈N and then set up the
system Ax = b as in the example above and solve for enough matrices Tp|G f

to get a q-expansion
basis for G f for every f and simply append all of these together for a q-expansion basis for N. If
one wants a q-expansion basis for S, simply do as above at each level dividing the level of S and
level lift through upward degeneracy maps.

Remark: If G f is one-dimensional, we prefer to compute prime-index coefficients of f by
counting points on the associated elliptic curve over prime fields. This can be done in polyno-
mial time with the Schoof-Elkies-Atkin algorithm, but is in practice done with the Shanks-Mestre
baby-step/giant-step method or an explicit formula based on Cornacchia’s algorithm as described
in [16]. Not only is this approach faster, but it also may lower the total number of modular symbols
needed for the computation (if, for instance, the symbols used to set up equations on other Galois
orbits all have zero projections onto f).

This discussion leads to:

Algorithm 3. In order to compute a q-expansion basis for the new subspace of S2(Γ0(N),Q) up to
precision B,

1. Search for t ∈ T such that t|N has distinct eigenvalues as described in Section A.1 of the
appendix.

2. As described in Section 3.2.2 above, decompose the N into subspaces that are t-simple, i.e.,
decompose N as ⊕G f as f ranges over newforms in N.

3. As described in Section 3.2.2, compute projection maps π f onto all t-simple subspaces G f

computed in Step (2) that have dimension greater than 1.

4. For each t-simple subspace G f in Step (2):

(a) For i ∈ [0,d−1] where d = dim(G f), compute the restrictions of t i onto G f and save as
a basis for T|G f .

(b) Find a symbol s f with nonzero projection onto G f .

(c) Set up the matrix AG f =
[

π f (t0(s f)) π f (t1(s f)) . . . π f (td−1(s f))
]

5. At all primes p up to B:

22

(a) For each t-simple subspace G f :

i. Compute the vector bG f ,p =
[

π f (Tp(s f))
]

ii. Solve the system AG f x = bG f ,p for weights c0 . . .cd−1 and compute the matrix Tp|G f
=

∑cit i.

6. Compute the matrices for Tn for composite n using the multiplicative formulas for Hecke
operators given in Section 1.1.1.

7. For each index i ∈ [1,B], concatinate the first rows of the matrices Ti|G f as f ranges over con-
jugacy classes of newforms with dim(G f)> 1 and save as a list Ci of length r = ∑G f |dim(G f)>1 dim(G f).

8. For each 1-dimensional subspace G f , compute the coefficients an for n≤ B in the L-function
of the elliptic curve associated to f and construct the corresponding q-expansions.

9. Output the q-expansions from Step (8) along with all q-expansions ∑i (Ci) jq
i as j varies over

1 . . .r.

Remark: Step (6) in the description above occurs on matrices of size d×d, where d = dim(G f).
This means that aside from reducing the cost of computing prime-index Hecke matrices over G
from m computations of Tp acting on a Manin symbols to at most #({G f }), we also reduce the
cost of matrix multiplication from O(mγ) to O(#({G f })max(dim(G f))γ) where γ depends on the
multiplication algorithm used. The memory cost of storing the matrix also reduces from O(n2) to
O(#({G f })max(dim(G f))2). In many cases, this allows for successful executions of computations
that would otherwise fail because of memory exhaustion.

Given q-expansion bases for new subspaces at levels dividing N, it is not involved to compute a
full q-expansion basis for all cusp forms at level N.

Algorithm 4. In order to compute a q-expansion basis for S2(Γ0(N),Q),

1. For every divisor D of N:

(a) Compute a q-expansion for the new subspace at level D as in Algorithm 3 above

(b) Map the q-expansions computed in step (a) by the appropriate upward degeneracy maps
to S2(Γ0(N))

2. Output all degeneracy images computed in step (b) above

Table 3.1: Tests at composite levels.

Level B Using SAGE’s _q_expansion_module_rational() Using Algorithm 4
250 3000 357.809 38.60
500 3000 1557.542 77.315
1000 3000 No answer produced; memory exhausted after 2100 s 188.3

23

Table 3.2: Tests at prime levels.

Level B Using SAGE’s _q_expansion_module_rational() Using Algorithm 4
211 3000 94.196 21.618
601 3000 514.524 98.6
809 3000 No answer produced; memory exhausted after 600 s 289.9

Remark: At prime levels, the method we describe is not as significant of an improvement in
general. The cuspidal subspace at prime levels will often decompose into very large orbits where
solving the corresponding systems becomes costly, and we no longer enjoy the advantage of throw-
ing out the old subspace when we restrict.

Table 3.3: Tests at levels where newforms with integer coefficients dominate the new subspace and
we compute a large portion of coefficients by counting points on the associated elliptic curves mod
p.

Level B Using SAGE’s _q_expansion_module_rational() Using Algorithm 4
100 3000 89.328 1.044
200 3000 286.483 2.166
550 3000 No answer produced; memory exhausted after 1620 s 70.753
702 3000 No answer produced; memory exhausted after 3420 s 56.944
960 3000 No answer produced; memory exhausted after 2160 s 51.358

3.3 Local Saturation

In this section, we address the problem of finding a basis for S2(Γ0(N),Z) given a basis for
S2(Γ0(N),Q).

Definition 13. For any Z module M ⊂ Zn, we denote by sat(M) the submodule sat(M) = {v ∈
Zn|d · v ∈M for some d > 0} and call it the saturation of M. For a prime p, we denote by satp(M)
the submodule satp(M) = {v∈Zn|pa ·v∈M for some a≥ 0} and call it the local saturation of M at
p. For a prime p, we denote by partsatp(M) the submodule partsatp(M) = {v ∈ Zn|p · v ∈M} and
call it the partial local saturation of M at p. We also extend these definitions to integer matrices M,
so that sat(M), satp(M), and partsatp(M) are matrices that generate the corresponding Z modules
related to the rowspace of M, which we denote rs(M).

Clearing denominators in a rational q-expansion basis gives a submodule M of S2(Γ0(N),Z)
whose saturation is the entire module. It was observed in [19] that composite operation ◦pi(satpi(M))
over all primes pi dividing [M : sat(M)] produces sat(M). However, this method has not been used

24

in practice because saturating locally was not efficient enough to outcompete saturation over Z. In
the rest of this section, we describe a more efficient method for saturating locally that makes finding
the full Z saturation through combining local saturations feasible.

Let M be an integer matrix. Since rs(M) ⊆ rs(partsatp(M)) ⊆ rs(satp(M)), with rs(M) =
rs(satp(M)) only if rs(M) = rs(partsatp(M)), the local saturation satp(M) can be computed as the
recursive limit of partial local saturations partsatp(M).

Definition 14. Let M be a matrix in Mat(Z), and let p be a prime. Let M denote the image of M in
Mat(Z/pZ). Let K be the reduced echelon form of a left-kernel of M, that is- let K be the matrix in
reduced echelon form whose columns form a basis of the kernel of KT . We define the mod p kernel
of M to be the unique matrix with entries in (− p

2 , p
2] formed by lifting K to Mat(Z) and we denote

it as K.

By definition rs(partsatp(M)) 6= rs(M) only if there exist w ∈ rs(partsatp(M)) such that w /∈
rs(M) while p ·w ∈ rs(M). Let W be the Z-span of all such w, then we proceed to compute
rs(partsatp(M)) as rs(M)∪W .

Since all w in a basis for W are of the form KiM/p, we have:

Proposition 7. Let M be a matrix with entries in Z with mod p kernel K. Let be l(Ki) the index of
the leading 1 in K’s i-th row. Let M′ be the matrix M with its l-th row is replaced by w = KiM/p if
l(Ki) = l. Then M′ is a partial local saturation at p.

Proof. It’s obvious by construction that W ⊆ rs(M′). That rs(M) ⊆ rs(M′) follows from the fol-
lowing. (Recall that K was defined to be in reduced echelon form; otherwise the following does
not work.) If Mi is a row in M that remains a row in M′ then clearly Mi lies in the rowspace of
M′. On the other hand, if Ml is a row in M with l = l(Ki) for some i, then Ml = M′l −∑ j 6=l KiM j =
M′l −∑ j 6=l KiM′j.

This discussion leads to:

Algorithm 5. In order to compute the local saturation of a matrix M at the prime p:

1. Compute the mod p kernel matrix K of M.

2. If rank(K) > 0, compute partsatp(M) by:

(a) For each row Ki in K:

i. Compute l(Ki), the position of Ki’s leading 1.

ii. Replace Ml with KiM/p

3. To compute satp(M), return to step (1).

4. Output the matrix M

25

Example. Let M =

5 6 7
4 3 2
1 0 2

 . The vectors [6,6,6] and [6,6,9] lie in rs(sat3(M)) but do

not lie in rs(M). Thus M 6= partsat3(M). In order to compute partsat3(M), we find the mod 3

echelonized kernel matrix of M
[

1 0 1
0 1 2

]
∈ M2(Z/3Z). and lift the elements to Z to get K =[

1 0 1
0 1 −1

]
∈ M2(Z). Since K1M = [6,6,9] and l(K1 = 1, we replace the first row of M with

[6,6,9]/3. Likewise, since K2(M) = [3,3,0] and l(K2 = 2, we replace the second row of M with

[3,3,0]/3. We have M′ =

2 2 3
1 1 0
1 0 2

 . Since the mod 3 kernel of M′ is of rank 0, M′ is the local

saturation of M at 3.

Computing sat(M). Given a method for computing a local saturation satp(M) like the one
above, it is not involved to compute the full saturation.

Algorithm 6. To compute the full saturation of a matrix M:

1. Compute a multiplicative bound Ω for [M : sat(M)] as described in Section A.2 of the ap-
pendix.

2. For a prime p|Ω:

(a) Replace M by satp(M).

3. Repeat step (2) until all primes dividing Ω have been exhausted.

Table 3.4: Saturating a Q basis for S2(Γ0(N),Q) to compute a basis for S2(Γ0(N),Z) at levels 500
and 1000 at varying precisions.

Level B Using SAGE’s saturation() Using Algorithm 6
500 200 7.466 2.026
500 1000 14.11 8.013
500 3000 32.576 26.083
1000 200 6449.512 26.046
1000 1000 6319.492 74.981
1000 3000 6563.078 211.521

Remark: SAGE’s saturation() strongly favors modules that are already highly saturated. The
tests above are perfomred on q-expansion bases produced by Algorith 4 described in Section 2 of
this chapter, and that algorithm tends to produce bases that are highly saturated- especially when the
cuspidal space is dominated by 1-dimensional Galois orbits or degeneracy images of them, since
our method already saturates these subspaces. The following table illustrates this pre-conditioning
advantage of Algorithm.

26

Table 3.5: Saturating Q bases for S2(Γ0(N),Q) computed with SAGE’s saturation() and using Al-
gorithm 6

Basis for S2(Γ0(211) Computed Using B Using SAGE’s saturation() Using Algorithm 6
Algorithm 4 1000 3.888 2.732

_q_expansion_module_rational() 1000 379.715 1.491

3.3.1 Computing Integral Bases of q-Expansions

Using Algorithm 6 on the output of Algorithm 4 produces an integral basis of q-Expansions for
S2(Γ0(N,Z)).

Algorithm 7. To compute an integral basis of q-expansions for S2(Γ0(N,Z)):

1. Compute a rational basis of q-expansions for S2(Γ0(N,Z)).

2. Clear denominators in the output from step (1) and saturate using Algorithm 6.

3. Output saturated basis

Table 3.6: Computing an integral basis for S2(Γ0(N))

Level B Using Sagee’s _q_expansion_module_integral() Using Algorithm 7
211 1000 511.61 9.30
211 2000 3344.63 19.97
500 1000 505.60 38.92
500 2000 1013.32 72.86
1000 1000 2601.09 155.07
1000 2000 memory exhausted 282.30

3.4 Applications

In this section, we discuss a couple of applications of the algorithms in sections (2) and (3) and
present experimental data for congruence primes and elliptic curves that give evidence for Agashe’s
conjectures [aga] about cancellations in the conjectural Birch and Swinnerton-Dyer formula.

3.4.1 Computing Congruence Primes

Throughout this section, let X and Y be subspaces of S2(Γ0(N)). Recall that we call a prime
p a congruence prime between X and Y if there exists some cusp forms f in X and g in Y with
integer Fourier coefficients such that an(f)≡ an(g) mod p for all n, (in which case, we write f ≡ g
mod p). Congruence primes play an important role in number theory. For instance, they were used
extensively in the work of Ribet [15] and Wiles [22], among others, leading to the proof of Fermat’s
Last Theorem.

27

Deciding if a Given Prime is a Congruence Prime. Here we give a criterion for deciding if
a given prime p is a congruence prime between X and Y .

Let

B =
⌊

[SL2(Z) : Γ0(N)]
6

− [SL2(Z) : Γ0(N)]−1
N

⌋
. (3.4.1)

The following is a consequence of Theorem 1 in [20].

Theorem 6 (Sturm). Let h and g be two cusp forms in S2(Γ0(N)) and let p be a prime. If an(h)≡
an(g) mod p for all n up to B then an(h)≡ an(g) mod p for all n.

The integer B above is called the Sturm bound of Γ0(N). If g is a cusp form, then let v(g)
denote the row vector whose components are the first B coefficients of g. Let {g1, . . . ,gr} be a set
of cusp forms with integer Fourier coefficients whose Z-span is X ∩S2(Γ0(N),Z)). (Such a set will
necessarily exist by Proposition 1 as long since X is of the form .) Let MX be the integer matrix
whose i-th row is v(gi) for i=1, . . . , r. Let MY be defined analogously with X replaced by Y in the
above. Let MXY denote the vertical concantination of MX and MY with MX stacked on top of MY

Denote by rankp(M), the mod p rank of a matrix.

Proposition 8. There exists mod p congruence linking the spaces X and Y if and only if rankp(MXY)<
rankp(MX)+ rankp(MY).

Proof. A decrease in rank implies a row in X is a mod p linear combination of the rows in Y , i.e.
the two rows are congruent mod p.

In the event that Y is of rank 1 (e.g. a newform f with integer coefficients), there is an easy way
to find all congruence primes between the newform Y = f and X .

Let E be the elliptic curve over Q associated to f . Consider the map φ : X0(N)→ J0(N) given
by φ : P 7→ (P)− (∞). The map φ induces a surjective morphism

X0(N)→ J0(N)→ E.

The degree of this composite morphism is called the modular degree of E.

The following is Theorem 3.11 in [3].

Proposition 9 (Agashe, Ribet, Stein). Suppose f is a newform of level N with associated elliptic
curve E, and f is congruent modulo p to a cusp form in its orthogonal complement in S2(Γ0(N)).
Then either p divides the modular degree of E or p2|N.

The modular degree can be computed very efficiently. For a history of computational approaches
of calculating the modular degree, see the introduction in [21]. In SAGE, Watkins’s algorithm [21]
for computing the modular degree of an elliptic curve is called by modular_degree().

Proposition 8 provides an efficient test to check if a prime is a congruence prime between f and
the X , while Proposition 9 gives a finite list of candidate primes that contains all congruence primes.
Together, we have

Algorithm 8. Given a newform f with integer coefficients and a spanning set for X of forms with
integer coefficients, this algorithm computes all congruence primes between f and X.

1. Compute the matrix MX f as described above.

28

2. Compute the modular degree and generate finite list of primes {p1...pn} such that pi divides
the modular degree or p2

i |N. (Recall that by Proposition 9, these are the only primes that
could be congruence primes between f and X.)

3. For each pi, check if the v(f) is in the row space of M modulo pi.

4. Output the list of primes for which the answer in step three is yes.

3.4.2 Cancellations in the Conjectural Birch and Swinnerton-Dyer Formula

Let E/Q be a modular elliptic curve associated to the newform f of level N. Recall the conjec-
tural Birch and Swinnerton-Dyer Formula:

Lr(E/Q,1)
r! Ω

=
|X(E/Q)| · R(E/Q) · ∏p cp

|Etors(Q)|2
. (3.4.2)

The right hand side of equation 3.4.2 has been studied extensively (see the introduction in [11]).
In particular, in regard to the relationship between the Tamagawa product Πpcp and the order of
Etors(Q), M. Emerton [8] showed that when N is prime, Πpcp = |Etors(Q)|.

When N is not prime, |Etors(Q)| need not equal Πpcp. In fact, this first occurs when N = 42.
D. Lorenzini [11] has shown that if ` > 3 is a prime number, then the order of the `-primary part of
Etors(Q) divides Πpcp.

In the other direction, Agashe [1] has shown that:

Proposition 10. Let ` be an odd prime such that either ` - N or for all primes r that divide N,
` - (r−1). If ` divides the order of the geometric component group of E at p for some prime p||N,
then either E[`] is reducible or the newform f is congruent to a newform of level dividig N/p (for
all Fourier coefficients whose indices are coprime to N`) modulo a prime ideal over ` in a number
field containing the Fourier coefficients of both newforms.

In fact, in [1] the author conjectures more specifically that:

Conjecture 4 (Agashe). If an odd prime ` divides cp for some prime p, then either ` divides the
order of Etors(Q) or the newform f is congruent modulo ` to a form in the subspace generated by
degeneracy map images of newforms of levels dividing N/p.

Agashe was able to test Conjecture 4 through the first 2463 optimal elliptic curves (up to con-
ductor 1000), before computations became too slow to be feasible. Using Algorithms 7 and 8 we
tested Conjecture 4 through the first 9515 optimal elliptic curves (up to conductor 3000).

Theorem 7. Conjecture 4 holds for all optimal elliptic curves with conductor less than or equal to
3000.

.1 Finding an element of T|N with distinct eigenvalues
Our approach is only heuristic, but has never in practice failed to work. We test T2 through T13

to see if any of these matrices have distinct eigenvalues. If one of these do have distinct eigenvalues,
then we’re done. If not, then we take ∑1/nTn. Heuristically, one should expect this approach to fail
only if two newforms have the same first 13 coefficients.

29

.2 Computing a multiplicative bound Ω for [sat(M) : M]

A prime divides [sat(M) : M] only if it divides the determinant of a submatrix M′ of M. This
follows from the fact that p|[sat(M) : M] implies that there is a p-linear dependence between the
rows of M which restricts to the submatrix M′, thus the determinant of M′ is 0 modulo p. A naive
approach then is to compute Ω by taking the gcd of determinants of several submatrices. However,
in practice, these determinants may often be 0 because M′ may be very sparce. What can be done
instead is to construct a matrix M̄ whose columns are random linear combinations of columns of
M. This makes sparcity of M̄ less likely, so that det(M̄) is more likely to be nonzero. The gcd of
several determinants of matrices M̄ constructed thusly suffices as a bound Ω.

.3 Code

.3.1 Algorithms 1 and 2

Generating the T⊗Q Basis.

def Basis_For_TQ(N,g):

##N=S.ambient().cuspidal_submodule()

B=[N.T(2).matrix()]

_B=[N.T(2)]

length=1

n=3

entries=[[ZZ.random_element(g),ZZ.random_element(g)]]

rows=[[B[0][entries[0][0]][entries[0][1]]]]

added_new_row=true

while len(B)<g:

_C=N.T(n)

C=_C.matrix()

newest_entry=[ZZ.random_element(g),ZZ.random_element(g)]

if added_new_row:

entries.append(newest_entry)

for i in range(0,len(B)):

rows[i].append(B[i][newest_entry[0]][newest_entry[1]])

last_row=[]

##note that this is enough since this will only produce false negatives

for j in range(0, len(entries)):

##this is for the candidate matrix

last_row.append(C[entries[j][0]][entries[j][1]])

rows.append(last_row)

if Matrix(GF(7),rows).determinant()!=0:

B.append(C)

_B.append(_C)

added_new_row=true

else:

rows.pop()

30

added_new_row=false

entries.pop()

entries.append(newest_entry)

n=n+1

print n

return [B,_B]

Generating the Basis Transformation Matrix.

def Find_Basis_Transformation(N,X,g):

first_term_list=[]

basis=N.basis()

Transformation=[]

for i in range(0,len(X.basis())):

column=[]

for j in range(0,g):

column.append(0)

Transformation.append(column)

for i in range(0,len(basis)):

s=str(basis[i])

first_term_list.append(s[0:s.find(')')]+')')

for i in range(0,len(X.basis())):

s=str(X.basis()[i])

for j in range(0,len(first_term_list)):

if first_term_list[j] not in s:

entry=0

else:

upper=s.find(first_term_list[j])

if upper==0:

entry=1

else:

lower=s[0:upper].rfind(' ')

if lower==-1:

entry=Rational(s[0:upper-1])

else:

if s[lower+1:upper-1]=='':

entry=1

if s[lower-1]=='-':

entry=(-1)*entry

else:

entry=Rational(s[lower+1:upper-1])

if s[lower-1]=='-':

entry=(-1)*entry

Transformation[i][j]=entry

return Matrix(Transformation)

31

Solving for Linear Combinations for Annihilator Ideal Elements.

def vectorize(rows):

row=[]

for i in range(0,len(rows)):

row.extend(rows[i])

return row

def Form_Big_Matrix(N,S,g,Hecke_Basis):

Transformation=Find_Basis_Transformation(N,S,g)

rows=[vectorize((Transformation*Hecke_Basis[0]).rows())]

for i in range(1,g):

rows.append(vectorize((Transformation*Hecke_Basis[i]).rows()))

print i

return Matrix(rows)

Building the Relation Matrix.

def Clear_Denoms(matrix):

denom=1

for i in range(0,matrix.nrows()):

for j in range(0,matrix.ncols()):

if not matrix[i][j].denominator().divides(denom):

denom=denom*matrix[i][j].denominator()

return denom*matrix

def Relation_Matrix(Hecke_Basis,kernel_matrix):

N=kernel_matrix

Relation_Matrix=Matrix(ZZ,N.ncols(),0)

for i in range(0,N.nrows()):

sum=0

for j in range(0,N.ncols()):

c=N[i][j]

if c!=0:

sum=sum+c*Hecke_Basis[j]

Relation_Matrix=Relation_Matrix.augment(Clear_Denoms(sum).transpose())

return Relation_Matrix

Finding Torsion Orders.

def graborder(matrix):

order=1;

divs=matrix.elementary_divisors();

for i in range(0,len(divs)):

if divs[i]>1:

order=order*divs[i];

return order;

32

Algorithms 1 and 2.

def Main(X,Y):

N=X.ambient().cuspidal_submodule()

time=cputime()

g=Gamma0(N.level()).genus()

hecks=Basis_For_TQ(N,g)

N1=Form_Big_Matrix(N,X,g,hecks[0])

N2=Form_Big_Matrix(N,Y,g,hecks[0])

K1=N1.kernel().matrix()

K2=N2.kernel().matrix()

BottomMatrix1=Relation_Matrix(hecks[0],K1)

BottomMatrix2=Relation_Matrix(hecks[0],K2)

TopMatrix=BottomMatrix1.augment(BottomMatrix2)

Numerator=graborder(TopMatrix)

denom1=graborder(BottomMatrix1)

denom2=graborder(BottomMatrix2)

return Numerator/(denom2*denom1)

def Main(X,Y,p):

N=X.ambient().cuspidal_submodule()

g=Gamma0(N.level()).genus()

hecks=Basis_For_TQ(N,g)

N1=Form_Big_Matrix(N,X,g,hecks[0])

N2=Form_Big_Matrix(N,Y,g,hecks[0])

K1=N1.kernel().matrix()

K2=N2.kernel().matrix()

BottomMatrix1=Relation_Matrix(hecks[0],K1)

BottomMatrix2=Relation_Matrix(hecks[0],K2)

TopMatrix=BottomMatrix1.augment(BottomMatrix2)

TopMatrix=Matrix(GF(p),TopMatrix)

BottomMatrix1=Matrix(GF(p),BottomMatrix1)

BottomMatrix2=Matrix(GF(p),BottomMatrix2)

TopMatrix=Matrix(ZZ,TopMatrix)

BottomMatrix1=Matrix(ZZ,BottomMatrix1)

BottomMatrix2=Matrix(ZZ,BottomMatrix2)

Numerator=graborder(TopMatrix)

denom1=graborder(BottomMatrix1)

denom2=graborder(BottomMatrix2)

return Numerator/(denom2*denom1)

.3.2 Algorithms 3 and 4

Decomposing N and Computing Projection Maps.

33

def Find_power_generator(N):

found=false

i=1

sum=0

while not found:

i=i+1

t=N.T(i).matrix()

f=t.charpoly()

g=f.derivative()

if GCD(f,g).is_constant():

found=true

t_in_ambient=N.ambient().T(i)

sum=sum+(1/i)*N.ambient().T(i)

if i==13:

t_in_ambient=sum

t=t_in_ambient.matrix().restrict(N.module())

found=true

f=t.charpoly()

if not GCD(f,f.derivative()).is_constant():

1/0

return t,t_in_ambient

def Decompose(N,t):

V=N.module().matrix()

f=t.minpoly()

factorlist=f.factor()

factors=[]

for i in range(0,len(factorlist)):

factors.append(factorlist[i][0])

structures_of_simple_spaces=[]

for i in range(0,len(factors)):

mat=factors[i](t).kernel().matrix()*V

structures_of_simple_spaces.append(mat)

exception_raiser=[]

for structure in structures_of_simple_spaces:

if structure.rank()>1:

exception_raiser.append(structure)

exception_raiser=exception_raiser[0]

return structures_of_simple_spaces

34

def Get_projections_if_degree_is_bigger_than_one(N,structures):

projections=[]

O=N.ambient().cuspidal_submodule().old_submodule().module().matrix()

E=N.ambient().eisenstein_subspace().module().matrix()

other=O.stack(E).transpose()

lengths=[structures[0].rank()]

mat=structures[0].transpose()

for i in range(1, len(structures)):

lengths.append(structures[i].rank())

mat=mat.augment(structures[i].transpose())

mat=mat.augment(other)

mat=mat.inverse()

count=0

for i in range(0,len(lengths)):

rows=[]

for j in range(count,count+lengths[i]):

rows.append(mat[j])

count=count+1

this_proj=matrix(rows)

if this_proj.rank()>1:

projections.append(this_proj)

return projections

Building the Matrices AG f .

def get_this_Galois_orbits_Hecke_basis(N,space_structure,t_in_ambient):

rows=[]

for row in space_structure:

rows.append(row.list())

t=t_in_ambient.matrix().restrict(N.module().subspace(rows))

basis=[]

for i in range(0,len(rows)):

basis.append(t^i)

return basis

def get_list_of_hecke_bases(N,structures_of_simple_spaces,t_in_ambient):

list_of_hecke_bases=[]

for structure in structures_of_simple_spaces:

if structure.rank()>1:

list_of_hecke_bases.append(get_this_Galois_orbits_Hecke_basis(N,structure,t_in_ambient))

return list_of_hecke_bases

35

def Get_symbols_with_nonzero_projections_on_each_orbit(projections,N):

Bases_of_test_symbols=[]

for i in range(0,len(projections)):

Bases_of_test_symbols.append([])

for i in range(0,len(Bases_of_test_symbols)):

j=0

found=false

while not found:

s=vector(N.ambient().basis()[j].list())

if not (projections[i]*s).is_zero():

Bases_of_test_symbols[i].append(j)

found=true

j=j+1

return Bases_of_test_symbols

def Build_A(this_orbits_basis_of_symbols,symbols_to_needed_powers,N,proj_matrix):

top_power=proj_matrix.nrows()

M=N.ambient()

columns=[]

for i in range(0,top_power):

columns.append([])

for i in this_orbits_basis_of_symbols:

for list in symbols_to_needed_powers:

if M.basis()[i]==list[0]:

for j in range(0,top_power):

y=vector(list[j].list())

proj=(proj_matrix*y).list()

columns[j].extend(proj)

return matrix(QQ,columns).transpose()

def get_symbols_to_needed_powers(t_in_ambient,N,Bases_of_test_symbols,sizes):

M=N.ambient()

all_indices_of_importance=[]

for b in Bases_of_test_symbols:

all_indices_of_importance.extend(b)

all_indices_of_importance=list(set(all_indices_of_importance))

symbols_to_needed_powers=[]

for i in all_indices_of_importance:

this_symbols_images_under_powers=[]

max_power_for_this_symbol=0

36

for j in range(0,len(Bases_of_test_symbols)):

if (i in Bases_of_test_symbols[j] and (sizes[j]-1)>max_power_for_this_symbol):

max_power_for_this_symbol=sizes[j]-1

this_symbols_images_under_powers.append(M.basis()[i])

for j in range(0,max_power_for_this_symbol):

this_symbols_images_under_powers.append(t_in_ambient(this_symbols_images_under_powers[j]))

symbols_to_needed_powers.append(this_symbols_images_under_powers)

return symbols_to_needed_powers

def Build_Af_for_each_orbit(t_in_ambient,Bases_of_test_symbols,N,projections):

sizes=[]

for mat in projections:

sizes.append(mat.nrows())

symbols_to_needed_powers=get_symbols_to_needed_powers(t_in_ambient,N,Bases_of_test_symbols,sizes)

Af_matrices=[]

for i in range(0,len(Bases_of_test_symbols)):

Af_matrices.append(Build_A(Bases_of_test_symbols[i],symbols_to_needed_powers,N,projections[i]))

return Af_matrices

Computing bG f .

def Build_bf_for_each_orbit(Bases_of_test_symbols,N,projections,p):

all_indices_of_importance=[]

bfs=[]

M=N.ambient()

for i in range(0,len(Bases_of_test_symbols)):

bfs.append([])

for b in Bases_of_test_symbols:

all_indices_of_importance.extend(b)

all_indices_of_importance=list(set(all_indices_of_importance))

for i in all_indices_of_importance:

y=M._compute_hecke_matrix_prime(p,rows=[i]).transpose()

for j in range(0,len(Bases_of_test_symbols)):

if i in Bases_of_test_symbols[j]:

bfs[j].extend(projections[j]*y)

for i in range(0,len(bfs)):

change_back_to_vector=[]

for j in range(0,len(bfs[i])):

change_back_to_vector.append(bfs[i][j][0])

bfs[i]=vector(change_back_to_vector)

return bfs

Computing the Jordan Cannonical Form of Tp|N.

37

def get_matrix_for_T_acting_on_only_this_Galois_orbit(basis,A,b):

c=A.solve_right(b)

sum=0

for i in range(0,len(c)):

sum=sum+c[i]*basis[i]

return sum

def get_list_of_Tp_on_all_Galois_orbits(list_of_hecke_bases,Af_matrices,bfs):

list_of_Tp_on_orbits=[]

for i in range(0,len(bfs)):

list_of_Tp_on_orbits.append(get_matrix_for_T_acting_on_only_this_Galois_orbit(list_of_hecke_bases[i],Af_matrices[i],bfs[i]))

return list_of_Tp_on_orbits

Filling in the Array T .

def Get_primes(N,prec):

Tns=[]

for i in range(0,prec):

Tns.append([])

d=N.character()

time=cputime()

pair=Find_power_generator(N)

print('power generator' + ' ' + str(cputime()-time))

t=pair[0]

index=pair[1]

time=cputime()

structs=Decompose(N,t)

print('decomposition' + ' ' + str(cputime()-time))

time=cputime()

projs=Get_projections_if_degree_is_bigger_than_one(N,structs)

print('projections' + ' ' + str(cputime()-time))

time=cputime()

hecks=get_list_of_hecke_bases(N,structs,index)

print('hecks'+' ' + str(cputime()-time))

time=cputime()

symbas=Get_symbols_with_nonzero_projections_on_each_orbit(projs,N)

print('symbas'+ ' ' + str(cputime()-time))

time=cputime()

Af_matrices=Build_Af_for_each_orbit(index,symbas,N,projs)

print('Af_matrices'+ ' ' + str(cputime()-time))

time=cputime()

for p in prime_range(2,prec+1):

print(p)

38

bfs=Build_bf_for_each_orbit(symbas,N,projs,p)

Tps=get_list_of_Tp_on_all_Galois_orbits(hecks,Af_matrices,bfs)

Tns[p]=Tps

print('ran loop' +' ' + str(cputime()-time))

return [Tns,d]

def get_prime_powers(Tns,d):

B=len(Tns)

orbits=len(Tns[3])

for p in prime_range(1,floor(sqrt(B))+1):

i=2

while p^i<B:

if i==2:

for j in range(0,orbits):

Tns[p^i].append(Tns[p][j]*Tns[p^(i-1)][j]-d(p)*p*identity_matrix(QQ,Tns[p][j].ncols()))

else:

for j in range(0,orbits):

Tns[p^i].append(Tns[p][j]*Tns[p^(i-1)][j]-d(p)*p*Tns[p^(i-2)][j])

i=i+1

return Tns

def hecke_general_product(Tns):

i=2

B=len(Tns)

orbits=len(Tns[3])

while i<B:

if not i.is_prime_power():

for j in range(0,orbits):

prod=identity_matrix(QQ,Tns[3][j].ncols())

for prime,power in factor(i):

prod=prod*Tns[prime^power][j]

Tns[i].append(prod)

i=i+1

return(Tns)

Including Degree One Subspaces.

def Include_degree_one_spaces(N,bound):

conductor=N.level()

basis_for_integer_newforms=[]

for E in cremona_optimal_curves(srange(conductor,conductor+1)):

39

basis_for_integer_newforms.append(E.newform().coefficients(bound-1))

return matrix(basis_for_integer_newforms)

Algorithm 3.

def Get_new_space(level,prec):

N=ModularSymbols(level,sign=1).cuspidal_subspace().new_subspace()

curves=Include_degree_one_spaces(N,prec)

try:

tns=Get_primes(N,prec)

except:

return curves

tns=get_prime_powers(tns[0],tns[1])

tns=hecke_general_product(tns)

for j in range(0,len(tns[2])):

tns[1].append(identity_matrix(QQ,tns[2][j].ncols()))

cols=[]

for i in range(1,prec):

this_column=[]

for tn in tns[i]:

this_column.extend(tn[0].list())

cols.append(this_column)

q_expansion_matrix=matrix(cols).transpose()

if curves.rank()>0:

q_expansion_matrix=q_expansion_matrix.stack(curves)

return q_expansion_matrix

Degeneracy Maps.

def degenerate(row,div):

image=[]

for i in range(0,len(row)):

if div.divides(i+1):

r=int((i+1)/div)-1

image.append(row[r])

else:

image.append(0)

return image

Algorithm 4.

40

def Get_space_at(N,B):

space=[]

for d in divisors(N):

lower_level=int(N/d)

rows=[]

mat=Get_new_space(lower_level,B)

for row in mat:

rows.append(row.list())

for row in rows:

for div in d.divisors():

space.append(degenerate(row,div))

return space

Algorithm 5.

def Lift_to_Z(B):

Bs=[]

for i in range(0,len(B)):

lift_big_entries=vector(ZZ,vector(GF(p),Ech_Form[i]))

lift_small_entries=[]

for j in range(0,len(lift_big_entries)):

if lift_big_entries[j]<=p/2:

lift_small_entries.append(reduced_vector_without_abs_value_condition[j])

else:

lift_small_entries.append(-(p-reduced_vector_without_abs_value_condition[j]))

Bs.append(lift_small_entries)

return Bs

def p_saturation(L,p):

print('starting')

n=len(L)

N=len(L[0])

if N<n:

raise IndexError, "vectors contain too few entries"

Us=[]

for i in range(0,n):

this_row=[]

for j in range(0,N):

this_row.append(L[i][j] % p)

Us.append(vector(this_row))

B=matrix(GF(p),Us).kernel().basis()

if len(B)==0:

return L

41

Ech_Form=matrix(GF(p),B).echelon_form()

Bs=Lift_to_Z(B)

Vs=[]

for i in range(0,n):

Vs.append(L[i])

for i in range(0,len(Bs)):

##find leading 1 position and call it l

l=0

while Bs[i][l]==0:

l=l+1

p_times_W=0

for j in range(0,n):

p_times_W=p_times_W+Bs[i][j]*vector(ZZ,L[j])

W=p_times_W/p

try:

Vs[l]=vector(ZZ,W)

except TypeError:

print('W not coercible to ZZ')

return p_saturation(Vs,p)

Algorithm 6.

def sat(M):

gcd=0

count=0

exception_raiser=0

N=M.ncols()

n=M.nrows()

import sage.matrix.matrix_integer_dense_saturation as s

while count<3:

cols=[]

for i in range(0,n):

sum=0

for col in s.random_sublist_of_size(N,10):

sum=sum+randint(-10,10)*M.column(col)

cols.append(sum)

det=matrix(cols).determinant()

if det>0:

gcd=GCD(gcd,det)

count=count+1

exception_raiser=exception_raiser+1

if exception_raiser>100:

1/0

42

rows=M.rows()

for p in gcd.prime_divisors():

print('starting saturaton at' + ' ' + str(p))

rows=p_saturation(rows,p)

return matrix(rows)

Algorithm 7.

def intbas(N,B):

mat=matrix(Get_space_at(N,B))._clear_denom()[0]

return sat(mat)

.3.3 Algorithm 8

Checking if a Prime is a Congruence Prime.

def is_congruent(E,rows,p,sb):

b=false

E=E.newform().coefficients(sb)

q=Matrix(GF(p),rows).row_space().dimension()

rows.append(E)

if Matrix(GF(p),rows).row_space().dimension()<q+1:

b=true

rows.pop()

return b

Listing All Congruence Primes.

def congruence_primes(E,rows,sb):

con_primes=[]

potentials=E.modular_degree().prime_divisors()

level=E.conductor()

if not is_squarefree(level):

pds=level.prime_divisors()

for i in range(0,len(pds)):

if pds[i].divides(level/pds[i]):

if not pds[i] in potentials:

potentials.append(pds[i])

for i in range(0,len(potentials)):

if is_congruent(E,rows,potentials[i],sb):

con_primes.append(potentials[i])

if con_primes==[]:

con_primes.append(1)

return con_primes

43

REFERENCES

[1] Amod Agashe. Unpublished manuscript.

[2] Amod Agashe. A visible factor of the special L-value. J. Reine Angew. Math., 644:159–187,
2010.

[3] Amod Agashe, Kenneth Ribet, and William A. Stein. The Manin constant. Pure Appl. Math.
Q., 2(2, part 2):617–636, 2006.

[4] Amod Agashe and William Stein. Visible evidence for the Birch and Swinnerton-Dyer con-
jecture for modular abelian varieties of analytic rank zero. Math. Comp., 74(249):455–484,
2005. With an appendix by J. Cremona and B. Mazur.

[5] A. O. L. Atkin and J. Lehner. Hecke operators on Γ0(m). Math. Ann., 185:134–160, 1970.

[6] Henri Darmon, Fred Diamond, and Richard Taylor. Fermat’s last theorem. In Current devel-
opments in mathematics, 1995 (Cambridge, MA), pages 1–154. Int. Press, Cambridge, MA,
1994.

[7] Fred Diamond and Jerry Shurman. A first course in modular forms, volume 228 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 2005.

[8] Matthew Emerton. Optimal quotients of modular Jacobians. Math. Ann., 327(3):429–458,
2003.

[9] Benedict H. Gross and Don B. Zagier. Heegner points and derivatives of L-series. Invent.
Math., 84(2):225–320, 1986.

[10] Haruzo Hida. Congruence of cusp forms and special values of their zeta functions. Invent.
Math., 63(2):225–261, 1981.

[11] Dino Lorenzini. Torsion and tamagawa numbers (preprint).

[12] B. Mazur. Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math.,
(47):33–186 (1978), 1977.

[13] Loïc Merel. Universal Fourier expansions of modular forms. In On Artin’s conjecture for
odd 2-dimensional representations, volume 1585 of Lecture Notes in Math., pages 59–94.
Springer, Berlin, 1994.

[14] Kenneth A. Ribet. Mod p Hecke operators and congruences between modular forms. Invent.
Math., 71(1):193–205, 1983.

44

[15] K. A. Ribet. On modular representations of Gal(Q/Q) arising from modular forms. Invent.
Math., 100(2):431–476, 1990.

[16] René Schoof. Counting points on elliptic curves over finite fields. J. Théor. Nombres Bordeaux,
7(1):219–254, 1995. Les Dix-huitièmes Journées Arithmétiques (Bordeaux, 1993).

[17] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1986.

[18] William Stein. Modular forms, a computational approach, volume 79 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, 2007. With an appendix by
Paul E. Gunnells.

[19] W. A. Stein et al. Sage Mathematics Software (Version 4.6.2). The Sage Development Team,
2011. http://www.sagemath.org.

[20] J. Sturm. On the congruence of modular forms. In Number theory (New York, 1984–1985),
pages 275–280. Springer, Berlin, 1987.

[21] Mark Watkins. Computing the modular degree of an elliptic curve. Experiment. Math.,
11(4):487–502 (2003), 2002.

[22] Andrew Wiles. Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2),
141(3):443–551, 1995.

45

BIOGRAPHICAL SKETCH

Randy Heaton grew up in Perry, Georgia and later Panama City Beach, Florida. He graduated from
Georgia Tech and began graduate school at Florida State University in 2006.

46

	Title Page
	Table of Contents
	List of Tables
	Abstract
	1 Introduction: Modular Forms, Primes of Congruence, and the Birch and Swinnerton-Dyer Conjecture
	1.1 Modular Forms
	1.1.1 Hecke Operators and the structure of S2(0(N))
	1.1.2 Computing with Modular Forms
	1.1.3 Modular Elliptic Curves
	1.1.4 Congruence Primes

	1.2 The Birch and Swinnerton-Dyer Conjecture
	1.3 Motivation for this Thesis: Cancellations in the Conjectural Birch and Swinnerton-Dyer Formula

	2 Intersection Numbers Between Spaces of Cuspidal Modular Forms
	2.1 Introduction
	2.2 Proof of Theorem 1
	2.3 The Algorithm
	2.3.1 Computing a Basis for TQ
	2.3.2 Solving the Linear System

	3 Computing a q-Expansion Basis for S2(0(N)) to high precision
	3.1 Introduction
	3.2 Matrices for Operators on Invariant Subspaces
	3.2.1 Example: Matrices for Hecke Operators on the New Subspace when the Old and Eisenstein Subspaces Dominate
	3.2.2 Restricting to Irreducible T-Invariant Subspaces Gf
	3.2.3 The Algorithm

	3.3 Local Saturation
	3.3.1 Computing Integral Bases of q-Expansions

	3.4 Applications
	3.4.1 Computing Congruence Primes
	3.4.2 Cancellations in the Conjectural Birch and Swinnerton-Dyer Formula

	.1 Finding an element of T|N with distinct eigenvalues
	.2 Computing a multiplicative bound for [sat(M):M]
	.3 Code
	.3.1 Algorithms 1 and 2
	.3.2 Algorithms 3 and 4
	.3.3 Algorithm 8

	References
	Biographical Sketch

