1. Let R be a commutative ring with $1 \neq 0$.

(a) Let e be an idempotent in R, which means that $e^2 = e$. Prove that the intersection of the ideals (e) and $(1 - e)$ is 0. 1 is also an idempotent: $(1 - e)^2 = 1 - 2e + e^2 = 1 - e$. If $a \in (e)$, then $a = ae$ (write $a = re$ for some r and use $e^2 = e$). Likewise, if $a \in (1 - e)$ then $a = a(1 - e)$. Plugging the first into the second equation gives $a = a(1 - e) = ae(1 - e) = a(e - e^2) = 0$.

(b) Let e be an idempotent in R. Prove that R is isomorphic (as a ring) to $R/(e) \times R/(1 - e)$.

1 is an R-linear combination of $1 - e$ and e, in other words, $R = (1 - e) + (e)$. Exercise (a) says that this sum is direct. Then it suffices to show that $(1 - e)$ resp. (e) is isomorphic (as a ring) to $R/(e)$ resp. $R/(1 - e)$. This can be proven quickly: There is a natural homomorphism $R \to (e)$ sending r to re. It is onto, its kernel is $(1 - e)$, and hence $R/(1 - e) \cong (e)$. Likewise $R/(e) \cong (1 - e)$.

There are other ways to prove this too: There is a natural homomorphism from R to $R/(e) \times R/(1 - e)$, sending r to $(r + (e), r + (1 - e))$, and it is injective by exercise (a). Showing that it is surjective can be done in the same way as in the proof of the next exercise.

(c) If M is an R-module, prove that $M \cong eM \oplus (1 - e)M$.

The natural homomorphism $\phi : M \to eM \oplus (1 - e)M$ sends m to $(em, (1 - e)m)$. It is injective because if em and $(1 - e)m = m - em$ are both zero then m is zero. To show that ϕ is surjective, take an element of $eM \oplus (1 - e)M$, and write it of the form $(em_1, (1 - e)m_2)$ for some $m_1, m_2 \in M$. Now observe that this element equals $\phi(em_1 + (1 - e)m_2)$.

Remark: You may wonder: how would someone guess a formula like $em_1 + (1 - e)m_2$? The answer is that the map “multiplying by e” is a projection (i.e. a map that equals its own square), and likewise “multiplying by $1 - e$” is a projection as well. So we view the multiplication by e resp. $1 - e$ as projections on subspaces/submodules/subrings/etc and we can use these two projections to write our ring (in ex (b)) or our module (in ex (c)) as a direct sum with two components. Whenever you want to end up in one of these two components, you just have to apply the correct projection (either multiply by e or by $1 - e$). If you apply this principle then the proof comes quickly.

(d) Suppose that R is a finite ring, and suppose that every element $e \in R$ satisfies the equation $e^2 = e$. Prove that R is isomorphic to $(\mathbb{Z}/(2))^r$ for some r. 1
If R has one resp. two elements, then we’re done (with $r = 0$ resp. $r = 1$). If R has more than 2 elements, then $R \setminus \{0, 1\}$ is not empty, so take e in there. This e is an idempotent, so $R \cong R/(e) \times R/(1-e)$, and since $e \notin \{0, 1\}$ it follows that each of $R/(e)$ and $R/(1-e)$ has strictly fewer elements than R. Now the result follows by induction.

2. Let V be a vector space of dimension 3 over $\mathbb{Z}/(3)$. How many bases b_1, b_2, b_3 does V have?

We can pick b_1 to be any element of $V - \text{SPAN}({})$ giving $3^3 - 1$ choices.
We can pick b_2 to be any element of $V - \text{SPAN}(b_1)$ giving $3^3 - 3$ choices.
We can pick b_3 to be any element of $V - \text{SPAN}(b_1, b_2)$ giving $3^3 - 3^2$ choices.

Answer: $(3^3 - 1)(3^3 - 3)(3^3 - 3^2)$ distinct bases.

3. Let V be a vector space of dimension 4, and let $\phi : V \rightarrow V$ be a linear map. A vector $v \in V$ is called a cyclic vector if $v, \phi(v), \phi^2(v), \phi^3(v)$ is a basis of V. Suppose that v is a cyclic vector, and let B be the basis $v, \phi(v), \phi^2(v), \phi^3(v)$. Write down the format of the matrix of ϕ with respect to the basis B. What is meant here is that of the 16 entries in the matrix, 12 entries can be determined from the information given in this exercise; write down those 12 entries. The remaining 4 entries, the ones whose value can not be determined from the data in this exercise, indicate each of those with a \ast.

Take the first basis element, apply ϕ, write it as a linear combination of our basis (weights will be: 0,1,0,0) and we have the first column of our matrix. Likewise, the second column has entries 0,0,1,0 and the third has 0,0,0,1. For the fourth column, we have to write $\phi(\phi^3(v))$ as a linear combination of our basis, but if we know nothing about ϕ then the weights will be unknown: \ast, \ast, \ast, \ast.

\[
\begin{pmatrix}
0 & 0 & 0 & \ast \\
1 & 0 & 0 & \ast \\
0 & 1 & 0 & \ast \\
0 & 0 & 1 & \ast \\
\end{pmatrix}
\]

4. If in addition to what was given in the previous question, if we also know that $\phi^4 + 3\phi^3 + 2\phi^2 + \phi = 0$, can you then fill in the \ast’s?

Now when we take the image of the last basis vector under ϕ, we can write it as a linear combination of our basis. Result:

\[
\begin{pmatrix}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & -3 \\
\end{pmatrix}
\]

Bonus: Can you explain if there is a relation between the definition of “cyclic vector” and the definition of “cyclic” in the context of modules?
7. Let $V = \mathbb{R}[x]_{< 5}$ be the set of all polynomials in $\mathbb{R}[x]$ of degree < 5 (TYING ERROR: the handout had 5 instead of < 5). Let $\Psi : V \to V$ be the map $\Psi(f) = f + f'$. Give the matrix of Ψ w.r.t. the standard basis $1, x, \ldots, x^4$. Explain why this matrix is not diagonalizable.

Example: d is a unit integer for which $\phi(d) = 5$. Explain why this matrix is not diagonalizable.

6. Do Ex 2 from 11.3.

Let b_0, \ldots, b_5 denote x^0, \ldots, x^5 and let d_0, \ldots, d_5 denote the corresponding dual basis (so $d_i(b_j) = \delta_{i,j}$).

(a) E sends b_i to 3^i and so $E = \sum_{i=0}^{5} 3^i d_i$.

(b) ϕ sends b_i to $1/(i + 1)$ and so it equals $\sum_{i=0}^{5} \frac{1}{i+1} d_i$.

(c) ϕ sends b_i to $1/(i + 3)$ and so it equals $\sum_{i=0}^{5} \frac{1}{i+3} d_i$.

(d) ϕ sends b_i to $i 5^{i-1}$ and so it equals $\sum_{i=0}^{5} i 5^{i-1} d_i$ (same as $\sum_{i=1}^{5} i 5^{i-1} d_i$).

If M were diagonalizable, then $M - I$ would be diagonalizable as well (because $P I P^{-1}$ is diagonal for any invertible matrix P), but $M - I$ is not diagonalizable because $(M - I)^5 = 0$ while $M - I \neq 0$ (if D is diagonal with entries in \mathbb{R}, then $D^5 = 0$ iff $D = 0$).

5. Let $V = \mathbb{R}[x]_{< 5}$ be the set of all polynomials in $\mathbb{R}[x]$ of degree < 5 (TYING ERROR: the handout had 5 instead of < 5). Let $\Psi : V \to V$ be the map $\Psi(f) = f + f'$. Give the matrix of Ψ w.r.t. the standard basis $1, x, \ldots, x^4$. Explain why this matrix is not diagonalizable.

Let Δ denote the basis elements as b_0, \ldots, b_4 (so $b_4 = x^4$). Now $b_i \mapsto 1 b_i + i b_{i-1}$ and that produces a 1 on the diagonal, with an i above it.

\[
M := \begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}.
\]

If M were diagonalizable, then $M - I$ would be diagonalizable as well (because $P I P^{-1}$ is diagonal for any invertible matrix P), but $M - I$ is not diagonalizable because $(M - I)^5 = 0$ while $M - I \neq 0$ (if D is diagonal with entries in \mathbb{R}, then $D^5 = 0$ iff $D = 0$).

7. Let M be an n by n matrix with integer entries, with non-zero determinant D, and let $M^{-1} \in \text{Mat}_{n,n}(\mathbb{Q})$ be its inverse. Let d be the smallest positive integer for which $d M^{-1} \in \text{Mat}_{n,n}(\mathbb{Z})$. Prove that $d | D$ and $D | d^n$. Give an example where D is not equal to $\pm d$.

Since $M \in \text{Mat}_{n,n}(\mathbb{Z})$, its cofactor matrix B will also be in $\text{Mat}_{n,n}(\mathbb{Z})$, and Theorem 30 tells us that $MB = BM = DI$. So $B = M^{-1}$. Now $D M^{-1}$ and $d M^{-1}$ are both in $\text{Mat}_{n,n}(\mathbb{Z})$, so any \mathbb{Z}-linear combination will be in $\text{Mat}_{n,n}(\mathbb{Z})$ as well. Using the fact that $\gcd(D, d)$ is a \mathbb{Z}-linear combination of D and d, we see that $\gcd(D, d) M^{-1}$ is an integer in $\text{Mat}_{n,n}(\mathbb{Z})$. By the minimality of d, we see $\gcd(D, d) = d$ and hence $d | D$.

If $d M^{-1}$ has integer entries, then its determinant is an integer, but its determinant is $\det(dI) \det(M^{-1}) = d^n / D$, so D divides d^n.

Example: $M = 2I$ with $n > 1$.

Remark: $d | D | d^n$ implies that d and D have the same set of prime-divisors. That can also be derived in another way, using the fact that M is a unit in $\text{Mat}_{n,n}(\mathbb{Z}/(p))$ if and only if $\det(M)$ is a unit in $\mathbb{Z}/(p)$.
8. Let $R = \mathbb{Q}[x, y]$ and $I = (x, y)$. Show that I is not a free R-module.

The module R has rank 1 as an R-module, and hence so does I. So if I were a free R-module, then it would have to be a principal ideal, $I = (f)$ for some f. Then $x = r_1 f$ and $y = r_2 f$ for some $r_1, r_2 \in R$. Then $0 = \deg_y(x) = \deg_y(r_1) + \deg_y(f)$ and $0 = \deg_x(y) = \deg_x(r_2) + \deg_x(f)$. So $\deg_x(f) \leq 0$ and $\deg_y(f) \leq 0$, hence f is a constant. If $f = 0$ then $(f) = (0)$ and if f is a non-zero constant, then $(f) = R$, but in either case, (f) is not I, and we have a contradiction.

9. Let M be a finitely generated R-module, and suppose that M is torsion (i.e. $M = \text{Tor}(M)$). Suppose that R is a PID. For $m \in M$, denote $\text{Ann}(m) = \{ r \in R | rm = 0 \}$ and $\text{Ann}(M) = \{ r \in R | \forall m \in M rm = 0 \}$. Prove that there exists $m \in M$ with $\text{Ann}(m) = \text{Ann}(M)$.

By the classification of finitely generated modules over a PID, M is isomorphic to a module of the form $R^r \oplus R/(a_1) \oplus \cdots \oplus R/(a_l)$, where r must be 0 since M is torsion, and $a_1 | a_2 | \cdots | a_l$. Then $(a_i) \subseteq \text{Ann}(M)$ since a_i vanishes in $R/(a_i)$ for each i. Now take $m = (0, 0, \ldots, 0, 1)$. Then $(a_l) \subseteq \text{Ann}(M) \subseteq \text{Ann}(m) = (a_l)$.