Factorization and hypergeometric
solutions of linear recurrence systems.
Manuel Bronstein Conference, July 13, 2006

Factorization. Three cases:
1. Factor in K[z] where K is a field.

2. Factor in C(x)[0] where 0 = d/dx
3. Factor in C(x)|7| where 7 is the shift operator.

The goal is an algorithm for case 3.



1. K|x]: For illustration during the talk.

2. C(x)|0]: Discuss Manuel’s ISSAC’1994 paper.
3. C(x)|7]: Was to become joint work. Ingredients:

e Manuel’s '94 paper also works for C(x)[7].

e To make this as efficient as possible we need a
direct algorithm for computing hypergeometric
solutions of systems. [ will discuss Manuel’s
(unpublished) ideas for this algorithm.



If f € K|x]| and you can factor f = fi fo then solving
f(z) = 0 reduces to solving equations f; and f> of
lower degree. So a factorization makes solving easier.

If L € C(x)[0] then L = a,0" + ...+ agd”
with a; € C(x) and L acts as follows:

L(y) = any™ + - -+ ary’ + agy
Corresponding differential equation L(y) = 0.

If L = LiLy then solutions of Ly(y) = 0 are also
solutions of L(y) = 0. So having a right-hand factor
of L makes it easier to find solutions of L(y) = 0.



An operator L = a,7" + ...+ aor’ € C(x)[r] acts
as follows:
If u = u(x) is a function then

L(u) = apu(x + 1) + - - - + aqu(z + 1) + apu(z)

If
u(z + 1)

u(z)
then wu is called a hypergeometric solution and
corresponds to a right-hand factor 7 — r of L
where

L(u) =0 and € C(z)

u(x +1)

T =



A hypergeometric solution © of L = a,7"+ - -+ a7’

can alvvays be written as

r)=c"P(x HFx—ozz

for some
ceC, Px)eClx|], o, €C, ¢; €Z
Write

A= H(x — ;)% and B = H(x — ;)@

;>0 e;<0

so that "
u(x) = ¢®P(x)Sol(T — E)



Petkovsek (1992) gave a criterium for A, B € C|x],
namely:

A divides ag(x)
B divides a,(x —n + 1)

This leaves only a finite (but exponential) number of
potential A, B in the hypergeometric solutions:

u(x) = ¢*P(x)Sol(T — %)

— "P(z) H M(z — o)



Petkovsek’s algorithm (1992):

For all possible combinations of:
e a monic factor A € Clz] of ay,
e a monic factor B of a,(x —n + 1),
e and c in some finite list

compute a recurrence Ly p . that has P(x) as a so-
lution, and solve it to find hypergeometric solutions:

¢ P(x)Sol(T — %)

Another algorithm was given by Cluzeau and v.H.



Computing hypergeometric solutions is equivalent to
computing first order factors. So:

e We can compute factors of order 1.

e How to use this to compute factors of higher or-
der?

Beke (1894) has shown that you can reduce finding
d’'th order factors of an n’th order operator to com-

puting first order factors of operators of order ( Z ) .

Manuel’s ISSAC’1994 paper gives significant practi-
cal improvements to this process.



L has order n. To compute: factors of order d. In
Beke’s approach, this means computing first order

tactors of operators of order ( Z ) .

To simplify notations, we take

n=4,d=2 so (3)26.

However, what follows also works for general n, d.



Reducing computing higher order factors to comput-
ing first order factors (Beke 1894).

If L = 0%+ azd® + a0 + a10 + ag in C(x)[] then
one can compute a 6’'th order differential operator L,
such that 9 + a is a right-hand factor of L, for every
right-hand factor 0% + a0 + b of L.

Potential b’s are obtained likewise (compute first or-
der factors of some operator Lj). Then by trying
combinations of the potential a’s and potential b’s,
one finds all second order right-hand factors of L.

Manuel significantly improved this (next slide).
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e Instead of solving two operators of order 6 (L,
and L;) we need to solve only one system of
order 6. So the problem of how to combine the
data from L, with that of L; disappears.

e This 6'th order system has much smaller coeth-
cients in C(z) than the operators L, and L.

This makes the algorithm much more elegant. More-
over, the smaller coefficient sizes in Manuel’s approach
can lead to significantly improved performance (recall
the combinatorial search in Petkovsek’s algorithm).
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To take advantage of the smaller coefficient sizes, one
must find hypergeometric solutions of a system of
order 6 instead of operators of order 6.

For this reason, Manuel and I had planned to write a
program for computing hypergeometric solutions of
a system directly (without reducing the system to an
operator because that increases coeflicient size, which
would eliminate the efficiency advantage).

Remaining slides:
Explain Manuel’s ISSAC’1994 paper and his ideas for
hypergeometric solutions of systems.
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Lets use the case K|x| to illustrate Manuel’s
[SSAC’1994 paper and do the case C(z)[7] later.

We take n = 4 and d = 2 (the general case works in
the same way).
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Suppose f = x* + azz® + axx® + a1z + ap € K|z).
Degree n = 4. Suppose we have an algorithm for
computing factors of degree 1 but not for degree 2.

f has four roots oy, . .., aq. If 22+ ax +bis a factor

of f then
—a = o; +a; and b= o;q;
for some 7, 7. So a is a root of

Fo=]]z+ai+aq
i<j

and b i1s a root of

Fy, = Haz — ;0.

i<j
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Beke (1894) described factoring in C(x)[0] but if we
applied the same idea to K|[z] then we’d compute
quadratic factors of £ + ax + b of f as follows:

1. Compute F,, Fp € K|z] (degrees are 6).
2. Compute linear factors of F, to find candidate a’s.
3. Same for Fj, to get the candidate b’s.

4. For each combination of some candidate a and b,
try if 2% + az + b divides f.

Manuel’s improvements are as follows:
e Only one degree 6 problem instead of two.
e Smaller coeflicient sizes.

e Combinatorial problem in item 4 above disappears.
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[lustration of Manuel’s ISSAC’94 paper to K|[z]. Let
f € Klz] have degree 4. Now M = Klz|/(f) is a
K |x]-module of K-dimension 4 and its second exte-
rior power A?M is a K[z]-module of K-dimension 6.

If g is a factor of f of degree 2 then N := Kxg+ Kg
is a submodule of M. Write w := xg A g. Then
A’N = Kw is a submodule of A2M.

The action of  on A?M is given by a 6 by 6 matrix,
and w must be an eigenvector of this matrix.

Thus, finding w and hence g reduces to an eigenvec-
tor computation of a system of dimension 6.
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If f=a%— asz® — ayx® — a1z — ap then the action
of multiplying by x on a basis of A>M is:

' ANzl — 2t A x?
' N z? — 2t A 2B
A3 — gt Azt =2t A (32 + ar® + apa)
o' A x? — 2? A x?
o' A x? — 22 A xt = 2% A (a32® + a1zt + apx?)
2 A .3 3 A d 3 2 1 0
T2 ANz’ =z’ Ax* = x° A (agx® + arx + apz’)
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This action can be described by the following matrix.

(OO—aOO 0 0 \
00 0 0 —ay O
00 0 0 0 —ag
10 a9 0—0,1 0
01 as 0 O —a1
\00 0 1 a5 —ap)

Now a 1-dimensional submodule of A2M corresponds
to an eigenvector of the (transpose) of this matrix.
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For C(z)[r] with L = 7* — a3m® — as7® — ay7 — ag
one finds the same matrix as on the previous slide.

Replacing K|z] modules by C(x)[d]-modules, and
computing the action of @ on A2M one finds the
same matrix in Manuel’s ISSAC'1994 paper. This
matrix looks slightly different because the action of
0 satisfies the Leibniz rule

daNb)=0(a)ANb + a AJ(b)

which introduces a few more terms.
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To find a factor of order 2 of an operator L of order
4, we must compute

o If L € K|z]: an eigenvector with eigenvalue in K.
o If L € C(x)[0]: an exponential solution.
o If L € C(x)|7]: a hypergeometric solution.

The advantage that the entries in the matrix are
small, in the K|x]-case this advantage disappears
when we compute the characteristic polynomial.

But for C(x)[0] or C(x)[r] we can benefit from this
advantage if we do not compute the analogue of the
characteristic polynomial (a cyclic vector operator).
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Soif L = 7% — asm® — as® — a7 — ag we need to

compute a hypergeometric solution of
00 —a 0 0 O \
0

00 0 0 —ag
00 0 0 0 —a
T(Y) a 10 a9 0 —ai 0 Y
01 as 0 O —Qaq

KOO 0 1 as _G/Q)

(again, 7 is the shift operator).
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So the system to solve looks like
yi(z + 1) yi(z)
: =M :
ys(z + 1) ys(T)
where M is a 6 by 6 matrix over C(x). The solution

we search for is hypergeometric, meaning that it can
be written as

1(z) Pi(z)
’ : =c" : Sol(7 — é)

yo(z) Py(z) B
where A, B, P, ..., Ps € Clz] and ¢ € C*.
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The goal: Find a solution
Py(x)

Y =¢" : Sol(T — g)
Ps(z)
of the system 7(Y') = MY . Once you have A, B and
¢, then you can compute P, ..., P; with software

that Manuel had already implemented. The question
is: How to find A, B? Manuel had found the answer:
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P1(£U> A
Y =¢" : Sol(1 — =)
Ps(z) B

Manuel’s idea for finding A, B:

We may assume that the ged of P, ..., Fsis 1. Now
look at

P(x+1)
A L A
7(Y) = =t : Sol(1 — E)
The denominator B in 7(Y') does not appear in Y,

and since 7(Y') = MY it follows that the denomina-
tor B must divide the denominator of M.

A similar argument shows that A divides the denom-
inator of M 1.

24



S50 Manuel’s idea shows how you can generalize Petkovsek’s
algorithm to systems: B has to divide denominator(M )
and A has to divide denominator(M 1),

)
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We started from an operator
L=a0"++ a0+ ag

for which we wanted to compute the factors of or-
der 2. One would expect that this should be harder
than computing factors of order 1.

The operator L lead (through the process from Manuel’s
ISSAC’1994 paper) to the matrix M. Now the de-
nominators of M resp. M ! are a4 resp. ay.

So A resp. B is a monic factor of ag resp. a4, the
same bound as in Petkovsek’s algorithm. That’s a
very nice and surprising result because it indicates
that computing second order factors is not intrinsi-
cally harder than computing first order factors.
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