Factorization and hypergeometric
solutions of linear recurrence systems.
Manuel Bronstein Conference, July 13, 2006

Factorization. Three cases:
1. Factor in K[z] where K is a field.

2. Factor in C(x)[0] where 0 = d/dx
3. Factor in C(x)|7| where 7 is the shift operator.

The goal is an algorithm for case 3.

1. K|x]: For illustration during the talk.

2. C(x)|0]: Discuss Manuel’s ISSAC’1994 paper.
3. C(x)|7]: Was to become joint work. Ingredients:

e Manuel’s '94 paper also works for C(x)[7].

e To make this as efficient as possible we need a
direct algorithm for computing hypergeometric
solutions of systems. [will discuss Manuel’s
(unpublished) ideas for this algorithm.

If f € K|x]| and you can factor f = fi fo then solving
f(z) = 0 reduces to solving equations f; and f> of
lower degree. So a factorization makes solving easier.

If L € C(x)[0] then L = a,0" + ...+ agd”
with a; € C(x) and L acts as follows:

L(y) = any™ + - -+ ary’ + agy
Corresponding differential equation L(y) = 0.

If L = LiLy then solutions of Ly(y) = 0 are also
solutions of L(y) = 0. So having a right-hand factor
of L makes it easier to find solutions of L(y) = 0.

An operator L = a,7" + ...+ aor’ € C(x)[r] acts
as follows:
If u = u(x) is a function then

L(u) = apu(x + 1) + - - - + aqu(z + 1) + apu(z)

If
u(z + 1)

u(z)
then wu is called a hypergeometric solution and
corresponds to a right-hand factor 7 — r of L
where

L(u) =0 and € C(z)

u(x +1)

T =

A hypergeometric solution © of L = a,7"+ - -+ a7’

can alvvays be written as

r)=c"P(x HFx—ozz

for some
ceC, Px)eClx|], o, €C, ¢; €Z
Write

A= H(x — ;)% and B = H(x — ;)@

;>0 e;<0

so that "
u(x) = ¢®P(x)Sol(T — E)

Petkovsek (1992) gave a criterium for A, B € C|x],
namely:

A divides ag(x)
B divides a,(x —n + 1)

This leaves only a finite (but exponential) number of
potential A, B in the hypergeometric solutions:

u(x) = ¢*P(x)Sol(T — %)

— "P(z) H M(z — o)

Petkovsek’s algorithm (1992):

For all possible combinations of:
e a monic factor A € Clz] of ay,
e a monic factor B of a,(x —n + 1),
e and c in some finite list

compute a recurrence Ly p . that has P(x) as a so-
lution, and solve it to find hypergeometric solutions:

¢ P(x)Sol(T — %)

Another algorithm was given by Cluzeau and v.H.

Computing hypergeometric solutions is equivalent to
computing first order factors. So:

e We can compute factors of order 1.

e How to use this to compute factors of higher or-
der?

Beke (1894) has shown that you can reduce finding
d’'th order factors of an n’th order operator to com-

puting first order factors of operators of order (Z) .

Manuel’s ISSAC’1994 paper gives significant practi-
cal improvements to this process.

L has order n. To compute: factors of order d. In
Beke’s approach, this means computing first order

tactors of operators of order (Z) .

To simplify notations, we take

n=4,d=2 so (3)26.

However, what follows also works for general n, d.

Reducing computing higher order factors to comput-
ing first order factors (Beke 1894).

If L = 0%+ azd® + a0 + a10 + ag in C(x)[] then
one can compute a 6’'th order differential operator L,
such that 9 + a is a right-hand factor of L, for every
right-hand factor 0% + a0 + b of L.

Potential b’s are obtained likewise (compute first or-
der factors of some operator Lj). Then by trying
combinations of the potential a’s and potential b’s,
one finds all second order right-hand factors of L.

Manuel significantly improved this (next slide).

10

e Instead of solving two operators of order 6 (L,
and L;) we need to solve only one system of
order 6. So the problem of how to combine the
data from L, with that of L; disappears.

e This 6'th order system has much smaller coeth-
cients in C(z) than the operators L, and L.

This makes the algorithm much more elegant. More-
over, the smaller coefficient sizes in Manuel’s approach
can lead to significantly improved performance (recall
the combinatorial search in Petkovsek’s algorithm).

11

To take advantage of the smaller coefficient sizes, one
must find hypergeometric solutions of a system of
order 6 instead of operators of order 6.

For this reason, Manuel and I had planned to write a
program for computing hypergeometric solutions of
a system directly (without reducing the system to an
operator because that increases coeflicient size, which
would eliminate the efficiency advantage).

Remaining slides:
Explain Manuel’s ISSAC’1994 paper and his ideas for
hypergeometric solutions of systems.

12

Lets use the case K|x| to illustrate Manuel’s
[SSAC’1994 paper and do the case C(z)[7] later.

We take n = 4 and d = 2 (the general case works in
the same way).

13

Suppose f = x* + azz® + axx® + a1z + ap € K|z).
Degree n = 4. Suppose we have an algorithm for
computing factors of degree 1 but not for degree 2.

f has four roots oy, . .., aq. If 22+ ax +bis a factor

of f then
—a = o; +a; and b= o;q;
for some 7, 7. So a is a root of

Fo=]]z+ai+aq
i<j

and b i1s a root of

Fy, = Haz — ;0.

i<j

14

Beke (1894) described factoring in C(x)[0] but if we
applied the same idea to K|[z] then we’d compute
quadratic factors of £ + ax + b of f as follows:

1. Compute F,, Fp € K|z] (degrees are 6).
2. Compute linear factors of F, to find candidate a’s.
3. Same for Fj, to get the candidate b’s.

4. For each combination of some candidate a and b,
try if 2% + az + b divides f.

Manuel’s improvements are as follows:
e Only one degree 6 problem instead of two.
e Smaller coeflicient sizes.

e Combinatorial problem in item 4 above disappears.

15

[lustration of Manuel’s ISSAC’94 paper to K|[z]. Let
f € Klz] have degree 4. Now M = Klz|/(f) is a
K |x]-module of K-dimension 4 and its second exte-
rior power A?M is a K[z]-module of K-dimension 6.

If g is a factor of f of degree 2 then N := Kxg+ Kg
is a submodule of M. Write w := xg A g. Then
A’N = Kw is a submodule of A2M.

The action of on A?M is given by a 6 by 6 matrix,
and w must be an eigenvector of this matrix.

Thus, finding w and hence g reduces to an eigenvec-
tor computation of a system of dimension 6.

16

If f=a%— asz® — ayx® — a1z — ap then the action
of multiplying by x on a basis of A>M is:

' ANzl — 2t A x?
' N z? — 2t A 2B
A3 — gt Azt =2t A (32 + ar® + apa)
o' A x? — 2? A x?
o' A x? — 22 A xt = 2% A (a32® + a1zt + apx?)
2 A .3 3 A d 3 2 1 0
T2 ANz’ =z’ Ax* = x° A (agx® + arx + apz’)

17

This action can be described by the following matrix.

(OO—aOO 0 0 \
00 0 0 —ay O
00 0 0 0 —ag
10 a9 0—0,1 0
01 as 0 O —a1
\00 0 1 a5 —ap)

Now a 1-dimensional submodule of A2M corresponds
to an eigenvector of the (transpose) of this matrix.

18

For C(z)[r] with L = 7* — a3m® — as7® — ay7 — ag
one finds the same matrix as on the previous slide.

Replacing K|z] modules by C(x)[d]-modules, and
computing the action of @ on A2M one finds the
same matrix in Manuel’s ISSAC'1994 paper. This
matrix looks slightly different because the action of
0 satisfies the Leibniz rule

daNb)=0(a)ANb + a AJ(b)

which introduces a few more terms.

19

To find a factor of order 2 of an operator L of order
4, we must compute

o If L € K|z]: an eigenvector with eigenvalue in K.
o If L € C(x)[0]: an exponential solution.
o If L € C(x)|7]: a hypergeometric solution.

The advantage that the entries in the matrix are
small, in the K|x]-case this advantage disappears
when we compute the characteristic polynomial.

But for C(x)[0] or C(x)[r] we can benefit from this
advantage if we do not compute the analogue of the
characteristic polynomial (a cyclic vector operator).

20

Soif L = 7% — asm® — as® — a7 — ag we need to

compute a hypergeometric solution of
00 —a 0 0 O \
0

00 0 0 —ag
00 0 0 0 —a
T(Y) a 10 a9 0 —ai 0 Y
01 as 0 O —Qaq

KOO 0 1 as _G/Q)

(again, 7 is the shift operator).

21

So the system to solve looks like
yi(z + 1) yi(z)
: =M :
ys(z + 1) ys(T)
where M is a 6 by 6 matrix over C(x). The solution

we search for is hypergeometric, meaning that it can
be written as

1(z) Pi(z)
’ : =c" : Sol(7 — é)

yo(z) Py(z) B
where A, B, P, ..., Ps € Clz] and ¢ € C*.

22

The goal: Find a solution
Py(x)

Y =¢" : Sol(T — g)
Ps(z)
of the system 7(Y') = MY . Once you have A, B and
¢, then you can compute P, ..., P; with software

that Manuel had already implemented. The question
is: How to find A, B? Manuel had found the answer:

23

P1(£U> A
Y =¢" : Sol(1 — =)
Ps(z) B

Manuel’s idea for finding A, B:

We may assume that the ged of P, ..., Fsis 1. Now
look at

P(x+1)
A L A
7(Y) = =t : Sol(1 — E)
The denominator B in 7(Y') does not appear in Y,

and since 7(Y') = MY it follows that the denomina-
tor B must divide the denominator of M.

A similar argument shows that A divides the denom-
inator of M 1.

24

S50 Manuel’s idea shows how you can generalize Petkovsek’s
algorithm to systems: B has to divide denominator(M)
and A has to divide denominator(M 1),

)

25

We started from an operator
L=a0"++ a0+ ag

for which we wanted to compute the factors of or-
der 2. One would expect that this should be harder
than computing factors of order 1.

The operator L lead (through the process from Manuel’s
ISSAC’1994 paper) to the matrix M. Now the de-
nominators of M resp. M ! are a4 resp. ay.

So A resp. B is a monic factor of ag resp. a4, the
same bound as in Petkovsek’s algorithm. That’s a
very nice and surprising result because it indicates
that computing second order factors is not intrinsi-
cally harder than computing first order factors.

26

