## Linear algebra, test 4

Write down your name and SSN. The number of points add up to 105, so there are 5 bonus points.

1.

$$u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 2 \end{pmatrix}, \quad u_2 = \begin{pmatrix} -3 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 5 \end{pmatrix}.$$

Let  $V = SPAN(\{u_1, u_2, u_3\}).$ 

- (a) (4 points). Compute a matrix B such that the Null space of B equals  $V\,.$
- (b) (2 points). Compute a non-zero vector that is orthogonal to every vector in V.
- (c) (2 points). What is the dimension of V?
- (d) (2 points). Compute: the projection of  $u_2$  on  $u_1$ , and the projection of  $u_3$  on  $u_1$ .
- (e) (8 points). Give an orthonormal basis B of V.
- (f) (6 points). Compute the coordinate vectors of  $u_1$ ,  $u_2$ ,  $u_3$  with respect to B;  $[u_1]_B$ ,  $[u_2]_B$ ,  $[u_3]_B$ .
- (g) (4 points). Which of the following are in V (hint: use matrix B).

$$w_1 = \begin{pmatrix} -1 \\ 2 \\ -1 \\ 1 \end{pmatrix}, w_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ -1 \end{pmatrix}, w_3 = \begin{pmatrix} -1 \\ 1 \\ -1 \\ 2 \end{pmatrix}.$$

2. Let

$$A = \left(\begin{array}{ccc} 1 & 3 & 4 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \\ 4 & 6 & 7 \end{array}\right)$$

Compute the following:

- (a) (4 points). The reduced row echelon form of A.
- (b) (2 points). The rank of A.
- (c) (2 points). A basis for the column space  $\mathcal{CS}(A)$  of A.
- (d) (4 points). An orthonormal basis for the column space.
- (e) (2 points). A basis for the null space  $\mathcal{NS}(A)$  of A.
- (f) (2 points). A basis for the row space  $\mathcal{RS}(A)$  of A.
- (g) (3 points). Are the columns of A linearly dependent? If so, then give a linear relation.
- (h) (3 points). Are the rows of A linearly dependent? If so, then give a linear relation.
- 3. Let

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}, \ u_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \ u_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}, \ u_4 = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix}, \ u_5 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \ u_6 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

- (a) (4 points). Compute the reduced row echelon form of  $B = (u_1 \ u_2 \ u_3 \ u_4 \ u_5 \ u_6)$ .
- (b) (10 points). Compute a basis of the null space, a basis of the row space and a basis of the column space of B.
- (c) (6 points). Give a basis for each of the following vector spaces: SPAN( $\{u_1\}$ ), SPAN( $\{u_1,u_2\}$ ), SPAN( $\{u_1,u_2,u_3\}$ ), SPAN( $\{u_1,u_2,u_3,u_4,u_5\}$ ), SPAN( $\{u_1,u_2,u_3,u_4,u_5,u_6\}$ ).
- (d) (5 points). Whenever SPAN( $\{u_1, u_2, \dots, u_n\}$ ) = SPAN( $\{u_1, u_2, \dots, u_n, u_{n+1}\}$ ) express  $u_{n+1}$  as a linear combination of  $u_1, u_2, \dots, u_n$ .
- 4. Let  $u_1 = x^3 4x$ ,  $u_2 = x^2 x 2$ ,  $u_3 = x^3 x^2 x 2$ ,  $u_4 = x^2 4$ . Let  $v_1 = x - 2$ ,  $v_2 = x^2 - 2x$ ,  $v_3 = x^3 - 2x^2$ .

Let 
$$V = SPAN(\{u_1, u_2, u_3, u_4\}).$$

- (a) (6 points) V is a subspace of  $P_3$  and the polynomials  $u_1$ ,  $u_2$ ,  $u_3$ ,  $u_4$ ,  $v_1$ ,  $v_2$ ,  $v_3$  are elements of  $P_3$ . Give the coordinate vectors of these polynomials with respect to the basis  $\{1, x, x^2, x^3\}$  of  $P_3$ .
- (b) (10 points). Show that  $B = \{v_1, v_2, v_3\}$  is a basis for V and compute  $[u_1]_B$ ,  $[u_2]_B$ ,  $[u_3]_B$  and  $[u_4]_B$ .
- (c) (3 points). Are  $u_1, u_2, u_3, u_4$  linearly dependent or independent?
- (d) (3 points). Is  $\{f \in P_3 | f(2) = 0\}$  a subspace of  $P_3$ ? If so, can you find a basis for it?
- 5. (8 points). Let A be a 5 by 7 matrix for which the rank is 4. Compute the following:

- The dimension of the null space of A.
- The dimension of the column space of A.
- The dimension of the row space of A.
- The dimension of the null space of  $A^T$ .
- The dimension of the column space of  $A^T$ .
- The dimension of the row space of  $A^T$ .
- Are the rows of A linearly dependent or independent?
- Are the columns of A linearly dependent or independent?

Good luck!