Linear algebra, final

April 27, 2001

1. Let

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{array}\right)$$

Compute the following:

- (a) (3 points). The reduced row echelon form of A.
- (b) (2 points). The rank of A.
- (c) (5 points). A basis for the column space $\mathcal{CS}(A)$ of A.
- (d) (4 points). A matrix B whose nullspace is the column space of A, i.e. $\mathcal{NS}(B) = \mathcal{CS}(A)$.
- (e) (6 points). A basis for the null space $\mathcal{NS}(A)$ of A.
- (f) (6 points). An orthonormal basis for the null space $\mathcal{NS}(A)$ of A.
- (g) (3 points). The characteristic polynomial.
- (h) (4 points). The eigenvalues. Verify your answer by checking that the trace of A is the sum of the eigenvalues and that the determinant of A is the product of the eigenvalues.
- (i) (4 points). Compute the eigenvector(s) for each eigenvalue. Verify your answer by multiplying A with these eigenvectors.
- (j) (3 points). Compute (if it exists) an invertible matrix P for which $D=P^{-1}AP$ is a diagonal matrix. Give this diagonal matrix D as well.

- 2. Let V be the set of all solutions of the differential equation f''(x) + f(x) = 0. Let $B = \{\sin x, \cos x\}$ be a basis for V. Let $T: V \to V$ be the linear map such that T(f) = f'.
 - (a) (1 point). Compute the image of each basis element under T, i.e. compute the derivative of $\sin x$ and of $\cos x$.
 - (b) (4 points). Compute the coordinate vectors $[T(\sin x)]_B$ and $[T(\cos x)]_B$.
 - (c) (4 points). Compute the matrix $A = [T]_{BB}$.
 - (d) (3 points). $T^4(f) = f''''$. Compute $T^4(f)$ for each f in B. As a result of this computation, can you predict without doing matrix multiplications what the matrix A^4 is? (to collect the points you need to include some explanation, one or two short sentences can be enough).
- 3. Let V be the set of all polynomials of degree at most 2. Let $B = \{1, x, x^2\}$ be a basis of V. Let $T: V \to V$ be the linear map $T(f) = (x^2 1)f' 2(x + 1)f$. If $f = ax^2 + bx + c$ then $T(f) = (x^2 1)f' 2(x + 1)f = (x^2 1)(2ax + b) 2(x + 1)(ax^2 + bx + c) = (-2a b)x^2 + (-2a 2b 2c)x b 2c$.
 - (a) (2 points). Compute T(f) for each f in B.
 - (b) (5 points). Compute $[T]_{BB}$.
 - (c) (2 points). Suppose $f \in V$ and suppose that $[f]_B = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$. Compute $[T(f)]_B$ using the matrix $[T]_{BB}$ that you computed above.
 - (d) (2 points). Let $B' = \{x^2 1, x^2 x + 1, x^2 + x + 1\}$ be another basis of V. Compute T(f) for each f in B'.
 - (e) (2 points). Notice that every f in B' is an eigenvector of T. For each of these eigenvectors f in B', what is the corresponding eigenvalue?
 - (f) (2 points). Use the previous question to find $[T]_{B'B'}$. Note: do not spend a lot of time on a question that is only worth a few points.

4. Let $B = \{u_1, u_2\}$ and $B' = \{v_1, v_2\}$ where

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, u_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, v_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

(a) (3 points). Let

$$V = NS(1 - 1 1) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix}, x - y + z = 0 \right\}$$

Show that B is a basis of V.

- (b) (2 points). Show that B' is a basis of V.
- (c) (2 points). Is SPAN(B) equal to SPAN(B')? If so, why? If not, why not?
- (d) (2 points). Compute $[u_1]_{B'}$ and $[u_2]_{B'}$.
- (e) (2 points). Compute $[v_1]_B$ and $[v_2]_B$.
- (f) (3 points). Compute matrix P, the B to B' change of basis matrix.
- (g) (2 points). Compute matrix P^{-1} .
- (h) (2 points). Let $w = 3v_1 + 5v_2$. Compute $[w]_{B'}$.
- (i) (3 points). Compute $[w]_B$ using a change of basis matrix. Which change of basis matrix should we use, P or P^{-1} ?
- (j) (10 points). Let $T: V \to V$ be a linear map given by

$$T\left(\begin{array}{c} x\\y\\z\end{array}\right) = \left(\begin{array}{c} y\\x\\-z\end{array}\right)$$

Compute $A = [T]_{BB}$ and $A' = [T]_{B'B'}$. Hint: these must be 2 by 2 matrices. Neither one needs to be diagonal.

To check correctness of your answer, compute the trace of A and A' (i.e. the sum of the diagonal, which is also equal to the sum of the eigenvalues).

- (k) (3 points). Can you think of any reason why these two matrices should have the same trace?
- (l) (3 points). Looking at the linear map T, can you think of any reason why A should be equal to A^{-1} ?

Good luck!