Linear algebra, sample questions

April 7, 2003

1. Let

\[
A = \begin{pmatrix}
-2 & 1 & 0 \\
-2 & 1 & 0 \\
-3 & 1 & 1
\end{pmatrix}
\]

Compute the eigenvalues of this matrix. For each eigenvalue, compute an eigenvector.

2. Let \(T: \mathbb{R}^2 \to \mathbb{R}^2 \) be the linear map given by

\[
T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + y \\ x + 2y \end{pmatrix}
\]

Let \(B = \{e_1, e_2\} \) and \(B' = \{v_1, v_2\} \) where

\[
e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.
\]

(a) Give the \(B \) to \(B' \) change-of-basis matrix and the \(B' \) to \(B \) change-of-basis matrix.

(b) Compute the following

i. \([T]_B\)

ii. \([T]_{B'}\)

3. Let

\[
A = \begin{pmatrix}
8 & -10 \\
5 & -7
\end{pmatrix}.
\]

(a) Compute the eigenvalues of \(A \) and for each eigenvalue compute one corresponding eigenvector.

(b) Compute a matrix \(P \) such that \(P^{-1}AP \) is a diagonal matrix.
4. Let $B = \{u_1, u_2\}$ where $u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $u_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Let $v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, and let $B' = \{v_1, v_2\}$. Let T be a linear map from \mathbb{R}^2 to \mathbb{R}^2, and $T(v_1) = 2v_1$, $T(v_2) = 3v_2$.

(a) Compute $[u_1]_{B'}$ and $[u_2]_{B'}$.
(b) Compute $T(u_1)$ and $T(u_2)$.
(c) Compute $A = [T]_{B'}$.
(d) Find $A' = [T]_{B'}$ and the eigenvalues of A.

5. Let

$$A = \begin{pmatrix} 2 & 1 & 1 \\ -1 & 0 & -1 \\ 1 & 2 & 3 \end{pmatrix}$$

and let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map given by A:

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = A \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Let $B = \{e_1, e_2, e_3\}$ be the standard basis of \mathbb{R}^3 and let $B' = \{u_1, u_2, u_3\}$ where

$$u_1 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \quad u_3 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.$$

(a) Is B' a basis for \mathbb{R}^3?
(b) Compute the change of basis matrix from B (old basis) to B' (new basis) and the change of basis matrix from B' to B'.
(c) Use the change of basis matrix to compute

$$\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}_{B'}, \quad \begin{pmatrix} -2 \\ 2 \end{pmatrix}_{B'}, \quad \text{and} \quad \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}_{B'}.$$

(d) Compute $[T]_{B'}$. Hint: if you made no computation errors the result should be an upper triangular matrix.
(e) What are the eigenvalues of A?

6. Consider the following subspace V of \mathbb{R}^3

$V = \text{SPAN}(v_1, v_2, v_3)$ where

$$v_1 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}.$$
(a) Show that \(B = \{v_1, v_2\} \) is a basis of \(V \), and compute \([v_3]_B\).

(b) For which real number \(x \) is the following vector \(w \) an element of \(V \)?

\[
 w = \begin{pmatrix}
 2 \\
 x \\
 x - 1
 \end{pmatrix}
\]

Write \(w \) as a linear combination of \(\{v_1, v_2\} \).

(c) Let \(T : V \to V \) be a linear map defined by

\[
 T \begin{pmatrix}
 x \\
 y \\
 z
 \end{pmatrix} = \begin{pmatrix}
 x - y \\
 0 \\
 z - y
 \end{pmatrix}.
\]

Give the matrix \([T]_B\) of the linear map \(T \) with respect to the basis \(B \) of \(V \). Hint: \(\dim(V) = 2 \) so this must be a 2 by 2 matrix.

(d) Compute: the rank of \(T \), the dimension of the Nullspace of \(T \), and compute \([T^2]_B\).