## Linear algebra, sample questions

## April 7, 2003

1. Let

$$A = \left( \begin{array}{rrr} -2 & 1 & 0 \\ -2 & 1 & 0 \\ -3 & 1 & 1 \end{array} \right)$$

Compute the eigenvalues of this matrix. For each eigenvalue, compute an eigenvector.

2. Let  $T: \mathbb{R}^2 \to \mathbb{R}^2$  be the linear map given by

$$T\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 2x + y \\ x + 2y \end{array}\right)$$

Let  $B = \{e_1, e_2\}$  and  $B' = \{v_1, v_2\}$  where

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

- (a) Give the B to B' change-of-basis matrix and the B' to B change-of-basis matrix.
- (b) Compute the following
  - i.  $[T]_B$
  - ii.  $[T]_{B'}$

3. Let

$$A = \left(\begin{array}{cc} 8 & -10 \\ 5 & -7 \end{array}\right).$$

- (a) Compute the eigenvalues of A and for each eigenvalue compute one corresponding eigenvector.
- (b) Compute a matrix P such that  $P^{-1}AP$  is a diagonal matrix.

4. Let 
$$B = \{u_1, u_2\}$$
 where  $u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$  and  $u_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ .  
Let  $v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$  and  $v_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ , and let  $B' = \{v_1, v_2\}$ . Let  $T$  be a linear map from  $\mathbb{R}^2$  to  $\mathbb{R}^2$ , and  $T(v_1) = 2v_1$ ,  $T(v_2) = 3v_2$ .

- (a) Compute  $[u_1]_{B'}$  and  $[u_2]_{B'}$ .
- (b) Compute  $T(u_1)$  and  $T(u_2)$ .
- (c) Compute  $A = [T]_B$ .
- (d) Find  $A' = [T]_{B'}$  and the eigenvalues of A.
- 5. Let

$$A = \left(\begin{array}{rrr} 2 & 1 & 1 \\ -1 & 0 & -1 \\ 1 & 2 & 3 \end{array}\right)$$

and let  $T: \mathbb{R}^3 \to \mathbb{R}^3$  be the linear map given by A:

$$T\left(\begin{array}{c} x\\y\\z\end{array}\right) = A \cdot \left(\begin{array}{c} x\\y\\z\end{array}\right).$$

Let  $B = \{e_1, e_2, e_3\}$  be the standard basis of  $\mathbb{R}^3$  and let  $B' = \{u_1, u_2, u_3\}$  where

$$u_1 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \quad u_3 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.$$

- (a) Is B' a basis for  $\mathbb{R}^3$ ?
- (b) Compute the change of basis matrix from B (old basis) to B' (new basis) and the change of basis matrix from B' to B'.
- (c) Use the change of basis matrix to compute

$$\left[ \left( \begin{array}{c} 0 \\ 1 \\ -1 \end{array} \right) \right]_{B'}, \quad \left[ \left( \begin{array}{c} 2 \\ -2 \\ 2 \end{array} \right) \right]_{B'}, \quad \text{and} \quad \left[ \left( \begin{array}{c} -1 \\ 1 \\ 1 \end{array} \right) \right]_{B'}$$

- (d) Compute  $[T]_{B'}$ . Hint: if you made no computation errors the result should be an upper triangular matrix.
- (e) What are the eigenvalues of A?
- 6. Consider the following subspace V of  $\mathbb{R}^3$   $V = \text{SPAN}(v_1, v_2, v_3)$  where

$$v_1 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$
  $v_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$   $v_3 = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$ .

- (a) Show that  $B = \{v_1, v_2\}$  is a basis of V, and compute  $[v_3]_B$ .
- (b) For which real number x is the following vector w an element of V?

$$w = \begin{pmatrix} 2 \\ x \\ x - 1 \end{pmatrix}$$

Write w as a linear combination of  $\{v_1, v_2\}$ .

(c) Let  $T: V \to V$  be a linear map defined by

$$T\left(\begin{array}{c} x\\y\\z\end{array}\right)=\left(\begin{array}{c} x-y\\0\\z-y\end{array}\right).$$

Give the matrix  $[T]_B$  of the linear map T with respect to the basis B of V. Hint:  $\dim(V) = 2$  so this must be a 2 by 2 matrix.

(d) Compute: the rank of T, the dimension of the Nullspace of T, and compute  $[T^2]_B$ .