Linear algebra, sample questions.

February 24, 2003

1.

$$A = \left(\begin{array}{cc} -1 & 2\\ 2 & -5 \end{array}\right)$$

- (a) Write A as a product of elementary matrices.
- (b) Compute A^{-1}
- (c) Suppose that $AX = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. What is X?

2.

$$A = \left(\begin{array}{rrr} 1 & 2 & 2 \\ 2 & 3 & -2 \\ -1 & 0 & 1 \end{array}\right)$$

- (a) Compute an LU factorization of A.
- (b) Use the LU decomposition to solve the following

$$AX = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

3. Let

$$A = \left(\begin{array}{ccc} 1 & -2 & 2\\ 2 & 3 & -2\\ 0 & 1 & -1 \end{array}\right)$$

- (a) Compute the inverse of A.
- (b) Find a 3 by 2 matrix B such that

$$AB = \left(\begin{array}{cc} 0 & 1\\ 1 & 0\\ 0 & 1 \end{array}\right)$$

- 4. True or false?
 - (a) If A is row equivalent to B then the following two systems have the same solutions:

$$AX = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}, \qquad BX = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}.$$

(b) If A is a square matrix and if A^2 is the zero matrix (all entries are zero) then A is also the zero matrix.

(c) If A is a square matrix then A is row equivalent to the identity matrix if and only if

$$AX = \left(\begin{array}{c} 0\\ \vdots\\ 0 \end{array}\right)$$

has only one solution (the trivial solution).

- (d) If A and B are square matrices, and if AB is invertible, then A, B are both invertible.
- (e) If T is a one-to-one linear map from \mathbb{R}^n to \mathbb{R}^n then T is also onto.
- (f) If T is a linear map from \mathbb{R}^3 to \mathbb{R}^5 then T is not one-to-one.
- 5. Let

$$u = \begin{pmatrix} 1\\1\\2\\2 \end{pmatrix} \quad \text{and} \quad v = \begin{pmatrix} 1\\2\\1\\2 \end{pmatrix}$$

- (a) Let $A = (u \ v)$. Compute a matrix B such that the null space of B is the column space of A.
- (b) For which values of x and y is the vector

$$w = \left(\begin{array}{c} x+1\\x\\y\\-y\end{array}\right)$$

an element of $SPAN(\{u, v\})$?

6. Let

$$A = \left(\begin{array}{cccc} 1 & 3 & 4 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \\ 4 & 6 & 7 \end{array}\right)$$

Compute the following:

- (a) The reduced row echelon form of A.
- (b) The rank of A.
- (c) A basis for the column space of A.
- (d) A basis for the null space of A.
- (e) Are the columns of A linearly dependent? If so, then give a linear relation.
- 7. Let

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}, \quad u_4 = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix}, \quad u_5 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \quad u_6 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

- (a) Compute the reduced row echelon form of $B = (u_1 \ u_2 \ u_3 \ u_4 \ u_5 \ u_6)$.
- (b) Compute a basis of the null space, a basis of the row space and a basis of the column space of B.
- (c) Give a basis for each of the following vector spaces: SPAN($\{u_1\}$), SPAN($\{u_1,u_2\}$), SPAN($\{u_1,u_2,u_3\}$), SPAN($\{u_1,u_2,u_3,u_4\}$), SPAN($\{u_1,u_2,u_3,u_4,u_5\}$), SPAN($\{u_1,u_2,u_3,u_4,u_5,u_6\}$).

- (d) Whenever SPAN($\{u_1, u_2, \dots, u_n\}$) = SPAN($\{u_1, u_2, \dots, u_n, u_{n+1}\}$) express u_{n+1} as a linear combination of u_1, u_2, \dots, u_n .
- 8. Let A be a 5 by 7 matrix for which the rank is 4. Compute the following:
 - The dimension of the null space of A.
 - The dimension of the column space of A.
 - The dimension of the row space of A.
 - The dimension of the null space of A^T .
 - The dimension of the column space of A^T .
 - The dimension of the row space of A^T .
 - Are the columns of A linearly dependent or independent?
 - Are the columns of A^T linearly dependent or independent?