Linear algebra, sample questions.
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(a) Write A as a product of elementary matrices.
(b) Compute A~!
(c¢) Suppose that AX = ( i ) What is X?
2.
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(a) Compute an LU factorization of A.
(b) Use the LU decomposition to solve the following
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(a) If A is row equivalent to B then the following two systems have the same solutions:
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(a) Compute the inverse of A.
(b) Find a 3 by 2 matrix B such that

4. True or false?
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(b) If A is a square matrix and if A? is the zero matrix (all entries are zero) then A is also the zero
matrix.



(¢) If A is a square matrix then A is row equivalent to the identity matrix if and only if

0
AX =

has only one solution (the trivial solution).
(d) If A and B are square matrices, and if AB is invertible, then A, B are both invertible.
(e) If T is a one-to-one linear map from R™ to R™ then T is also onto.

(f) If T is a linear map from R® to R® then T is not one-to-one.

5. Let
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(a) Let A= (u v). Compute a matrix B such that the null space of B is the column space of A.

(b) For which values of = and y is the vector
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an element of SPAN({u,v})?
6. Let
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Compute the following:

(a) The reduced row echelon form of A.
(b) The rank of A.
(¢) A basis for the column space of A.
(d) A basis for the null space of A.
(e) Are the columns of A linearly dependent? If so, then give a linear relation.
7. Let
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(a) Compute the reduced row echelon form of B = (u1 us uz ug us Ug)-
(b) Compute a basis of the null space, a basis of the row space and a basis of the column space of B.

(¢) Give a basis for each of the following vector spaces:
SPAN({u1}), SPAN({u1,u2}), SPAN({u1,u2,u3}), SPAN({u1,uz,us,us}), SPAN({u1,uz,us,us, us})
) SPAN({Ul,’LI/z,U3,U4,U5,U6}).



(d) Whenever SPAN ({u1,u2,...,un}) = SPAN({u1,u2,...,Un, Unt1}) €Xpress u,41 as a linear com-
bination of w1, us,. .., uy,.

8. Let A be a 5 by 7 matrix for which the rank is 4. Compute the following:

e The dimension of the null space of A.

e The dimension of the column space of A.

e The dimension of the row space of A.

e The dimension of the null space of AT.

e The dimension of the column space of AT.

e The dimension of the row space of AT.

e Are the columns of A linearly dependent or independent?

e Are the columns of AT linearly dependent or independent?



