Linear Algebra, Final, Thursday May 1, 2003, 12:30 - 2:30 WRITE DOWN YOUR NAME:

- 1. Let A be a 7 by 8 matrix for which the rank is 5.
 - (1 point). What is the dimension of the Null Space of A.
 - (1 point). What is the dimension of the Column Space of A.
 - (1 point). Are the columns of A linearly dependent or independent?
 - (1 point). Is the linear map given by A one-to-one? (yes/no).
 - (1 point). Is the linear map given by A onto? (yes/no).
- 2. (5 points). Write $A = \begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix}$ as a product of elementary matrices.

3. (10 points). Take the following basis $B = f_1, f_2, f_3$ of the vector space V of all polynomials of degree ≤ 2 , where $f_1 = 1, f_2 = 1 + x$, and $f_3 = 1 + x + x^2$. Let $T: V \to V$ be the linear map given by differentiation. What is $[T]_B$?

4. Let
$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 and compute:

- (a) (2 points). The reduced row echelon form of A.
- (b) (2 points). The rank of A.
- (c) (2 points). A basis for the column space of A.
- (d) (2 points). A basis for the null space of A.
- (e) (2 points). Can matrix A be written as a product of elementary matrices? (yes/no).
- (f) (10 points). The characteristic polynomial is $\lambda^2(\lambda-2)$. For each

eigenvalue, compute corresponding eigenvectors, and give a matrix
$$P \text{ such that } P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

5. (10 points). Let V be a vector space with the following basis:

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \qquad u_2 = \begin{pmatrix} 0 \\ 2 \\ 2 \\ 0 \end{pmatrix} \qquad u_3 = \begin{pmatrix} 0 \\ 0 \\ 3 \\ 3 \end{pmatrix}.$$

Apply Gram Schmidt to obtain an orthogonal basis v_1, v_2, v_3 of V.

6. Let $V = \{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} | x_1 + x_2 + x_3 = 0 \}$. Let $T: V \to V$ be given by

$$T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5x_2 - 7x_3 \\ 3x_1 + 7x_3 \\ -3x_1 - 5x_2 \end{pmatrix}$$

Problem: Find a basis C of V such that $[T]_C$ is diagonal.

Before answering this Problem, first do the following questions

- (a) (2 points). Explain why V has dimension 2.
- (b) (1 point). Write down a vector in \mathbb{R}^3 such that: Not all three entries are 0, and the sum of the entries is 0.

Then write down another vector in \mathbb{R}^3 , again, not all entries 0 and the sum of the entries must be 0, but this vector must not be a scalar multiple of the previous one.

Then let B be the these two vectors.

(c)	(2 points).	Explain	why B	must l	be a	${\bf basis}$	of V ,	for	every	possible
	choice you	could hav		e in the	e pre	vious	questi	on.		

- (d) (2 points). Apply T to the elements of your basis B. To check for computation errors, check if your result is actually in V.
- (e) (4 points). Compute matrix $[T]_B$.
- (f) (5 points). Compute the eigenvalues of matrix $[T]_B$. Hint: If you get square roots then first double-check your answer on the previous two questions and then on this question.
- (g) (5 points). For each eigenvalue compute an eigenvector of $[T]_B$.
- (h) (4 points). Use those eigenvectors to find eigenvectors of T.
- (i) (1 point). Give an answer to the Problem.

- 7. Suppose $B = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ is the basis of some vector space V (so V is a two-dimensional subspace of \mathbb{R}^3).
 - (a) (4 points). Let $u \in V$ and suppose $[u]_B = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$. What is u?
 - (b) (4 points). Let $v = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$. Compute $[v]_B$.
 - (c) (4 points). Suppose that C is another basis, and that the B to C change of basis matrix is

$$C \stackrel{P}{\leftarrow} B = \left(\begin{array}{cc} 1 & 2 \\ 2 & 3 \end{array}\right)$$

What is $[v]_C$?

- (d) (4 points). Compute the matrix $B \overset{P}{\leftarrow} C$.
- (e) (4 points). If $w \in V$ and $[w]_C = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Then what is $[w]_B$ and what is w?
- (f) (4 points). What is basis C?