MAS 3301 Modern Algebra Homework Set 3

http://www.math.fsu.edu/ hoeij/MAS3301

Definitions. A set \mathbf{F} is a *ring* if addition and multiplication operations are defined on \mathbf{F} that satisfy all the field axioms except that multiplicative inverses are not required to exist for every element of \mathbf{F} . The standard example is the ring of integers \mathbf{Z} . A nonzero element a of \mathbf{F} is a zero divisor if there is a nonzero element b for which ab = 0. The ring of integers has no zero divisors. Exercise 2 below gives an example of a ring that does have zero divisors.

- 1. Let \mathbf{F} be a ring.
 - (i) Show that if a is a zero divisor of **F**, then a fails to have a multiplicative inverse.
 - (ii) Show that a field has no zero divisors.
- 2. The split-complex numbers are exactly like the complex numbers except that $i^2 = 1$. These numbers satisfy all the field axioms except that multiplicative inverses sometimes fail to exist. The multiplicative identity for the split-complex numbers is, as for the complex numbers, 1 = 1 + 0i. The split-complex numbers do form a ring but not a field. It is helpful to denote split-complex numbers using the notation i_1 instead of notation i, to prevent mixing them up with the usual complex numbers.
 - (i) Find the multiplicative inverse of $1 + 2i_1$ (which does exist), and show that $1 + i_1$ does not have a multiplicative inverse (Hint: for the second assertion use exercise 1(i)).
 - (ii) Characterize those split-complex numbers $a + bi_1$ that do have a multiplicative inverse, ie, find conditions on a and b that determine whether or not $(a + bi_1)^{-1}$ exists.
 - (iii) Find a general formula for $(a + bi_1)^{-1}$ when it exists.
- 3. The dual numbers are defined exactly like the complex and split-complex numbers except that $i^2 = 0$. Again, 1 = 1 + 0i is the multiplicative identity. We will denote dual numbers using the notation ϵ instead of notation i. This helps to prevent mixing them up with the complex numbers.
 - (i) Find the multiplicative inverses of $1 + 2\epsilon$ and $1 + \epsilon$ (both exist). Show that ϵ^{-1} fails to exist.
 - (ii) Characterize those dual numbers $a + b\epsilon$ that do have a multiplicative inverse, ie, find conditions on a and b that determine whether or not $(a + b\epsilon)^{-1}$ exists.
 - (iii) Find a general formula for $(a + b\epsilon)^{-1}$ when it exists.
- 4. Let $\mathbf{D} = \{(a,b): a,b \in \mathbf{R}\}\$ with (a,b)+(c,d) = (a+c,b+d) and $(a,b)\times(c,d) = (ac^2,bd^2)$.
 - (i) Is \times commutative? associative?
 - (ii) The element I of \mathbf{D} is a right identity if $z \times I = z$ for all z in \mathbf{D} and a left identity if $I \times z = z$ for every z in \mathbf{D} . Find all the right identities in \mathbf{D} (there are several).
 - (iii) Are there any left identities in **D**? Why or why not?