MAS 3301 Modern Algebra Homework Set 6

1. Identify the following elements of ${\bf F}_4$ as one of 0,1,a,b.

	(i) -1	(ii) $(1+a)^{-1}$	(iii) \sqrt{b}	(iv) $\sqrt[4]{a}$	$(v) \frac{a-1}{\sqrt[3]{b}}$
2.	In any field ${\bf F}$, given a positive integer n and a field element $a\in {\bf F}$, let na denote the sum of n a 's, ie, $na=a+a+\cdots+a \qquad n \text{summands}.$				
	Also, let $0a = 0$, where 0 is the integer zero and 0 is the additive identity in the field \mathbf{F} . The characteristic of the field \mathbf{F} , denoted $\chi(\mathbf{F})$, is the smallest value of $n \in \mathbf{N}$ such that $n1 = 1 + 1 + \cdots + 1 = 0$, where we are using the symbol 1 to denote the multiplicative identity in \mathbf{F} . If no such n exists, we say that \mathbf{F} has characteristic zero What is the characteristic of \mathbf{Z}/p if p is prime? What is the characteristic of \mathbf{F}_4 ? What is the characteristic of \mathbf{Q} ? of \mathbf{R} ? of \mathbf{C} ?				
3.	3. Let F be a field of characteristic p . Explain why $pa = 0$ for every field element a in F .				
4. Let F be any field.					
	(i) Let p be a positive integer and suppose there is a nonzero field element a such that $pa = 0$. Show that $p1 = 0$.				
	(ii) Prove that if $p = \chi(\mathbf{F})$, then p is prime.				
5.	. Use the Euclidean Algorithm to find the gcd of the following pairs of integers.				
	(i) 91, 110 (i) Ans=1	(ii) 3630, 3822 (ii) Ans=6	, ,	66,7150 Ans=22	(iv) 1950, 22638 (iv) Ans=6
6.	For each pair in the form $gcd(a,$	Problem 5, write t $b) = ma + nb.$	he gcd as an inte	ger combination	n of the pair, ie, in

(i) Ans: m = -29, n = 24 (iv) Ans: m = -1010, n = 87

7. Find the relatively prime pairs among the following.

(i) 252, 539 (ii) 360, 539 (iii) 360, 1309 (iv) 520, 539 (v) 520, 693

8. Find $\overline{252}^{-1}$ in $\mathbf{Z}/539$, if it exists.

9. Find $\overline{360}^{-1}$ in $\mathbf{Z}/539$, if it exists.

10. Find $\overline{360}^{-1}$ in $\mathbb{Z}/1309$, if it exists.