Test 1, Feb 13 2005, MAS3301

- 1. (10 points). Use the Euclidean algorithm to find two integers s,t for which 129s+160t=1.
- 2. (10 points). Find the two complex solutions $a \pm bi$ of the equation $x^2 + x + 1 = 0$.
- 3. (10 points). Write 1+i in polar coordinates: $1+i=re^{i\alpha}$ where the real numbers r, α are $r=\ldots$ and $\alpha=\ldots$
- 4. (10 points). Find a complex number written in polar coordinates $z = re^{i\alpha}$ for which $z^8 = -1$ (it is enough to give just one such z).
- 5. (10 points). Which field axiom(s) is/are not satisfied by the quaternions?
- 6. (10 points). Make a sketch of all z in the complex plane for which $\overline{z} = z i$.
- 7. (10 points). Find a polynomial with integer coefficients that has $3 + 2\sqrt{2}$ as a root.
- 8. (10 points). The set of non-negative rational numbers $\{a \in \mathbf{Q} \mid a \geq 0\}$, is this a field? If not, which field axiom(s) does this set not satisfy?
- 9. (10 points). $e^{i\pi/4} = \frac{1}{2}\sqrt{2} + \frac{1}{2}\sqrt{2}i$ Use this fact to compute the following: Let v be the vector $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Rotate this vector by an angle $\pi/4$ (counter clockwise). What is the result?
- 10. Let z be the quaternion 1 + i + j + k.
 - (a) (2 points). What is the absolute value of z?
 - (b) (2 points). What is the conjugate of z?
 - (c) (2 points). Compute z^{-1} , the multiplicative inverse of z.
 - (d) (2 points). Compute the product zi.
 - (e) (2 points). Compute ziz^{-1} .