Sample questions

- 1. Find (use the Euclidean algorithm) two integers s,t for which 145s+121t=1.
- 2. Explain why there do not exist integers s, t for which 35s + 45t = 1.
- 3. Find a complex number z = a + bi whose square is $z^2 = 2i$ (note: there are two correct answers, it suffices to give just one of them).
- 4. Write i in polar coordinates: $i = re^{i\alpha}$ where $r = \dots$ and $\alpha = \dots$
- 5. Find a complex number written in polar coordinates $z = re^{i\alpha}$ for which $z^4 = i$ (again, it suffices to give just one such z).
- 6. What is the real part of the complex number $e^{i\pi/5}$?
- 7. Which field axiom(s) is/are not satisfied by the dual numbers (the dual numbers are of the form $a + b\epsilon$ where a, b are real numbers, and ϵ satisfies the relation $\epsilon^2 = 0$).
- 8. In the dual numbers, find the multiplicative inverse of $2 + \epsilon$.
- 9. In the quaternions, find the multiplicative inverse of 1+i+j.
- 10. Make a sketch of all z in the complex plane for which Re(z) = Im(z).
- 11. Make a sketch of all z in the complex plane for which |z-1|=1.
- 12. Let $\alpha = \sqrt[3]{2}$. Find a polynomial with integer coefficients that has $\alpha^2 \alpha$ as a root.
- 13. The set of all even integers $E = \{..., -4, -2, 0, 2, 4, ...\}$, which of the field axiom(s) does this set not satisfy?
- 14. $e^{i\pi/6} = \frac{1}{2}\sqrt{3} + \frac{1}{2}i$ Use this fact to compute the following: Let v be the vector $\begin{pmatrix} 3\\4 \end{pmatrix}$. Rotate this vector by an angle $\pi/6$ (counter clockwise). What is the result?
- 15. If z is a non-zero complex number, and if \overline{z} happens to be equal to z^{-1} , then the absolute value of z must be:
- 16. Compute the quaternion $(i + j k) \cdot (1 i j)$.