Second try at Test 1, Feb 22 2005, MAS3301

1. Use the Euclidean algorithm to find two integers \(s, t \) for which
\[101s + 150t = 1. \]

2. Find the two complex solutions \(a \pm bi \) of the equation \(x^2 + 4x + 8 = 0 \).

3. Write \(\sqrt{3} - i \) in polar coordinates: \(\sqrt{3} - i = re^{i\alpha} \) where the real numbers \(r, \alpha \) are:

4. Which field axiom(s) is/are not satisfied by the set \(\{0, 1, -1\} \)?

5. Compute all complex number(s) \(z \) for which \(\overline{z} + 3z = 4 + 4i \).

6. Find a polynomial with integer coefficients that has
\(3^{2/3} - 3^{1/3} \) as a root.

7. Let \(z \) be the quaternion \(1 + i + j \).
 (a) What is the absolute value of \(z \)?
 (b) What is the conjugate of \(z \)?
 (c) Compute \(z^{-1} \), the multiplicative inverse of \(z \).
 (d) Explain why \(zuz^{-1} \) has the same absolute value as \(u \) for any quaternion \(u \).

8. Let \(u = 3 + i + j \) and \(v = 3 + 3i + j \).
 (a) Compute the norm of \(u \) and the norm of \(v \) (hint: the norm of \(u \)
is the square of the absolute value of \(u \)).
 (b) Compute \(uv \).
 (c) Write 209 as a sum of four squares.