Test 2, March 27, 2006

- 1. Compute the following in \mathbb{Z}_7 if it exists (bring the end result in the range $0, \ldots, 6$. If there are multiple correct answers then it is enough to give just one answer)
 - (a) -2
 - (b) 3^{-1}
 - (c) -2/3
 - (d) $\sqrt{2}$
 - (e) $\sqrt{-3}$
 - $(f) 3^{48}$
- 2. Which of the following rings are fields: $\mathbb{Z}_2 \mathbb{Z}_3$, \mathbb{Z}_4 , \mathbb{Z}_5 , \mathbb{Z}_6 (no computation is necessary here, it is enough to write down the answer).
- 3. In the following questions, give all solutions (not just one) (if there are no solutions, indicate that too).
 - (a) Solve $x^3 + 2x + 2 = 0$ in \mathbb{Z}_7 .
 - (b) Solve $x^2 + x + 1 = 0$ in \mathbb{F}_4 .
 - (c) Solve $x^2 + x + 1 = 0$ in \mathbb{Z}_7 .
 - (d) Solve 3x + 2 = 0 in \mathbb{Z}_7 .
- 4. (a) Write down Fermat's little theorem. Let p be a prime number and let a Then
 - (b) How do we use Fermat's little theorem to test if a number n is prime or not?
- 5. Compute 333^{-1} in \mathbb{Z}_{1003} . Show your steps.
- 6. (a) Let n = 55. Let e = 17 and let m = 13. Compute m^e in \mathbb{Z}_n . Show your computation.
 - (b) If we use $n = 5 \cdot 11 = 55$ and e = 17 in RSA, then what is the decryption exponent d?
 - (c) If the encrypted message is c = 8 (this is not the same as in part (a)) then the decrypted message is $m = \dots$