1. (a) (2 points). What is the minimal polynomial of \(\sqrt[3]{2} \) over \(\mathbb{Q} \)? \(x^3 - 2 \)

(b) (10 points). Let \(u = (\sqrt[3]{2})^2 + \sqrt[3]{2} \).
What is the minimal polynomial of \(u \) over \(\mathbb{Q} \)? \(x^3 - 6x - 6 \)

(c) (3 points). Is \(\mathbb{Q}(u) = \mathbb{Q}(\sqrt[3]{2}) \)? Explain. Yes: The degree of \(\mathbb{Q}(\sqrt[3]{2}) \) over \(\mathbb{Q} \) is a prime number, so by the product formula, any subfield \(\neq \mathbb{Q} \) can only be \(\mathbb{Q}(\sqrt[3]{2}) \).

(d) (5 points). Do there exist \(a_0, a_1, a_2 \in \mathbb{Q} \) for which \(\sqrt[3]{2} = a_0 + a_1u + a_2u^2 \)? Yes because every element of \(\mathbb{Q}(u) \) is of this form, and \(\sqrt[3]{2} \in \mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q}(u) \) (that last equation is the previous exercise).

2. (a) (5 points). Let \(K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) \). Write down a basis of \(K \) as a vector space over \(\mathbb{Q} \) (it suffices to give just the answer, no proof is necessary). A basis is \(\sqrt{2}^i \sqrt{3}^j \sqrt{5}^k \) for all \(i, j, k \in \{0, 1\} \) (so this basis has \(2^3 = 8 \) elements).

(b) (2 points). What is \([K : \mathbb{Q}] \)? 8

(c) (2 points). What is \([K : \mathbb{Q}(\sqrt{2})] \)? We can use the product formula to find that this equals \(8/2 = 4 \).

(d) (2 points). What is \([K : K] \)? That’s always 1.

(e) (4 points). Let \(u = 2\cos(\frac{2\pi}{9}) \). The minimal polynomial over \(\mathbb{Q} \) is \(x^3 - 3x + 1 \). Use this information to explain why \(u \not\in K \). If \(u \in K \) then \(\mathbb{Q}(u) \subseteq K \) but then the degree of \(\mathbb{Q}(u) \) (which is 3) would, by the product formula, divide the degree of \(K \) (which is 8).

(f) (5 points). Can you write \(\frac{1}{u} = a_0 + a_1u + a_2u^2 \) for some \(a_0, a_1, a_2 \in \mathbb{Q} \)? Yes because all elements of \(\mathbb{Q}(u) \) are of this form, and \(1/u \in \mathbb{Q}(u) \) since in a field we can divide by non-zero elements.

3. Suppose \(F \subset K \subset L \) are fields, and suppose that \(1, \alpha, \alpha^2 \) is a basis of \(K \) as a vector space over \(F \). Suppose also that \(1, \beta \) is a basis of \(L \) as a vector space over \(K \). Then write down (no proofs are necessary here) a basis of \(L \) as a vector space over \(F \).

\(\alpha^i\beta^j \) with \(i \in \{0, 1, 2\} \) and \(j \in \{0, 1\} \).

4. Compute the minimal polynomial of \(\sqrt{2} + \sqrt{3} \) over \(\mathbb{R} \). \(x - \sqrt{2} - \sqrt{3} \).

5. Compute the minimal polynomial of \(\sqrt[3]{2} + \sqrt[3]{3} \) over \(\mathbb{Q}(\sqrt[3]{3}) \). \((x - \sqrt[3]{3})^2 - 2 \) (it is OK if you expand this but it is not necessary).

6. Compute the minimal polynomial of \(\sqrt{2} + \sqrt{3} \) over \(\mathbb{Q} \). \(x^4 - 10x^2 + 1 \).
7. If \(u = \sqrt{2} + \sqrt{3} \) then what is \([\mathbb{Q}(u) : \mathbb{Q}] \)? This is 4 by the previous exercise. Now prove or disprove \(\mathbb{Q}(u) = \mathbb{Q}(\sqrt{2}, \sqrt{3}) \). The left side is a subfield of the right side, but both have the same degree, namely 4, so they are equal.

8. Let \(\alpha \) be a root of the irreducible polynomial \(x^4 + x^3 + x^2 + x + 1 \in \mathbb{Q}[x] \). What is \([\mathbb{Q}(\alpha) : \mathbb{Q}] \)? Answer: 4. Simplify \(\alpha^4 \) and \(\alpha^5 \) to elements of the form \(\sum_{i=0}^{3} a_i \alpha^i \) for some \(a_i \in \mathbb{Q} \).

\(\alpha^3 - \alpha^2 - \alpha - 1 \) and 1.

Now let \(\beta = \alpha + \alpha^4 \). Compute \(1, \beta, \beta^2 \) and simplify them to the form \(\sum_{i=0}^{3} a_i \alpha^i \).

\(1, -1 - \alpha^2 - \alpha^3, 2 + \alpha^2 + \alpha^3 \)

Now find the minimal polynomial of \(\beta \) over \(\mathbb{Q} \).

\[x^2 + x - 1. \]

9. If \(F \subseteq K \subseteq L \) are fields and if \([F : L] = 7 \) (there was a typo here in the original handout) then prove that \(K \) is either \(F \) or \(L \). It follows from the product rule that \([F : K] \cdot [K : L] = 7 \) and thus either \([F : K] = 1 \) (then \(F = K \)) or \([K : L] = 1 \) (then \(K = L \)).

10. (a) (5 points). Let \(K = \mathbb{Q}(\sqrt[6]{-3}) \). Write down a basis of \(K \) as a vector space over \(\mathbb{Q} \) (it suffices to give just the answer, no proof is necessary).

If \(\alpha = \sqrt[6]{-3} \) then this basis is \(1, \alpha, \ldots, \alpha^5 \).

(b) (3 points). What is \([K : \mathbb{Q}] \)? 6

(c) (3 points). What is \([K : \mathbb{Q}(\sqrt[6]{3})] \)? \(6/2 = 3 \).

Note: \(\sqrt[6]{-3} \in K \) because it is the cube of \(\sqrt[6]{3} \) which is in \(K \).

(d) (3 points). What is \([K : K] \)? 1

(e) (3 points). What is the minimal polynomial of \(\sqrt[6]{-3} \) over \(\mathbb{Q} \)?

\[x^6 + 3 \]

(f) (3 points). What is the minimal polynomial of \(\sqrt[6]{-3} \) over \(\mathbb{Q}(\sqrt[6]{-3}) \)?

\[x^3 - \sqrt[6]{-3} \]

(g) (5 points). Let \(f(x) \in \mathbb{Q}[x] \) be an irreducible polynomial of degree 4. Explain why \(f(x) = 0 \) has no solutions in \(K \).

If \(u \) is a root of \(f \) then \(\mathbb{Q}(u) \) has degree 4, which does not divide 6, the degree of \(K \), so \(\mathbb{Q}(u) \) can not be contained in \(K \), so \(u \) can not be in \(K \).

(h) (5 points). Is \(K \) a normal extension of \(\mathbb{Q} \)? Explain.

Yes, because all roots of \(x^6 + 3 \) are in \(K \). Namely, let \(\zeta_6 = (1 + \sqrt[6]{-3})/2 \in K \) then the 6 roots are powers of \(\zeta_6 \) times \(\sqrt[6]{-3} \).
11. True or false? If true, give some explanation, if false, give a counter example.

(a) If \(f(x) \) and \(g(x) \) have the same splitting field, must \(f(x) \) and \(g(x) \) then have the same roots?

\[\text{No, for instance, take } f = x^2 - 2 \text{ and } g = x^2 - 8, \text{ they have the same splitting field but not the same roots.} \]

(b) If \(f(x) \in \mathbb{R}[x] \) then the splitting field of \(f(x) \) over \(\mathbb{R} \) can only be \(\mathbb{R} \) or \(\mathbb{C} \).

That is true.

12. Let \(u \) be some number for which \(u^3 - 3u + 1 = 0 \).

(a) What is the minimal polynomial of \(u^2 \) over \(\mathbb{Q} \)?

\[x^3 - 6x^2 + 9x - 1 \]

(b) \(u \) and \(u^2 - 2 \) are two of the three solutions of \(x^3 - 3x + 1 = 0 \).

Use this information to factor \(x^3 - 3x + 1 \) over \(\mathbb{Q}(u) \) (i.e. factor \(x^3 - 3x + 1 \) in \(\mathbb{Q}(u)[x] \)).

\[(x - u)(x - u^2 + 2)(x + u^2 - u - 2) \]

To find that third factor, divide the first two away (there is a quicker way that I’ll explain in class).

(c) The splitting field of \(x^3 - 3x + 1 \) over \(\mathbb{Q} \) has degree \(\ldots \) over \(\mathbb{Q} \).

Degree 3 because \(\mathbb{Q}(u) \) contains all three roots.

13. (a) Suppose that \(u \) is a number with minimal polynomial \(x^3 - x - 1 \) over \(\mathbb{Q} \). Let \(v = u^2 \). What is the minimal polynomial of \(v \) over \(\mathbb{Q} \)?

(b) Is \(\mathbb{Q}(u) \) equal to \(\mathbb{Q}(v) \)? Explain.

(c) Let \(w \) be a solution of the polynomial \(x^3 - x - 2 \). Now \([\mathbb{Q}(u) : \mathbb{Q}] = 3 \) and \([\mathbb{Q}(w) : \mathbb{Q}] = 3 \). It turns out that \(x^3 - x - 1 \) (the minimal polynomial of \(u \)) has no solutions in \(\mathbb{Q}(w) \). Show that this implies that \(\mathbb{Q}(u) \) can not be isomorphic to \(\mathbb{Q}(w) \).

(showing the weaker statement that \(\mathbb{Q}(u) \) can not be equal to \(\mathbb{Q}(w) \) is enough to get full credit. Hint: You have to somehow use the information that \(x^3 - x - 1 = 0 \) has no solutions in \(\mathbb{Q}(w) \) because without this information you can not prove what is asked).

(d) (5 bonus). Explain that the above information implies that \(x^3 - x - 2 \) (the minimal polynomial of \(w \)) can not have solutions in \(\mathbb{Q}(u) \). You may use the fact that \(\mathbb{Q}(u) \) and \(\mathbb{Q}(w) \) both have degree
3 over \(\mathbb{Q} \) but are not isomorphic (even if you did not prove this fact).

14. (a) True or false: If the minimal polynomial of \(u \) over \(\mathbb{Q} \) has degree \(n \) then \([\mathbb{Q}(u) : \mathbb{Q}]\) must be equal to \(n \).

(b) What is the splitting field of \(x^5 - 1 \) over \(\mathbb{Q} \)?
What is the degree of this splitting field over \(\mathbb{Q} \)? (hint: the irreducible factors of \(x^5 - 1 \) are \(x - 1 \) and \(x^4 + x^3 + x^2 + x + 1 \)).

(c) Let \(\zeta \) denote a root of \(x^4 + x^3 + x^2 + x + 1 \). Let \(u = \zeta + \zeta^4 \).
We have \([\mathbb{Q}(\zeta) : \mathbb{Q}] = 4\), \(\zeta \not\in \mathbb{R} \), \(u \in \mathbb{R} \) and \(u \not\in \mathbb{Q} \). Use this information to prove that \([\mathbb{Q}(u) : \mathbb{Q}] = 2\).

(d) Compute the minimal polynomial of \(u \) over \(\mathbb{Q} \).

(e) What is the splitting field of \(x^5 - 2 \) over \(\mathbb{Q} \)?
What is the degree of this splitting field over \(\mathbb{Q} \)?

15. (a) (5 bonus). Prove that if \(F \) is a field, and if \(S \) is the set of solutions of the equation \(x^4 = 1 \) in \(F \), that then \(ab \in S \) for every \(a, b \in S \).

(b) (5 bonus). Must such \(S \) always be a group under multiplication? Explain.

(c) (10 points). Compute all solutions of the equation \(x^4 = 1 \) in \(\mathbb{Z}_{13} \) (so compute \(S \) for the case \(F = \mathbb{Z}_{13} \)).

16. Find a polynomial with integer coefficients that has \(2 + \sqrt{3} \) as a root.