1. (a) (2 points). What is the minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q} ? $x^{3}-2$
(b) (10 points). Let $u=(\sqrt[3]{2})^{2}+\sqrt[3]{2}$.

What is the minimal polynomial of u over $\mathbb{Q} ? x^{3}-6 x-6$
(c) (3 points). Is $\mathbb{Q}(u)=\mathbb{Q}(\sqrt[3]{2})$? Explain. Yes: The degree of $\mathbb{Q}(\sqrt[3]{2})$ over \mathbb{Q} is a prime number, so by the product formula, any subfield $\neq \mathbb{Q}$ can only be $\mathbb{Q}(\sqrt[3]{2})$.
(d) (5 points). Do there exist $a_{0}, a_{1}, a_{2} \in \mathbb{Q}$ for which $\sqrt[3]{2}=a_{0}+$ $a_{1} u+a_{2} u^{2}$? Yes because every element of $\mathbb{Q}(u)$ is of this form, and $\sqrt[3]{2} \in \mathbb{Q}(\sqrt[3]{2})=\mathbb{Q}(u)$ (that last equation is the previous exercise).
2. (a) (5 points). Let $K=\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Write down a basis of K as a vector space over \mathbb{Q} (it suffices to give just the answer, no proof is necessary). A basis is $\sqrt{2}^{i} \sqrt{3}^{j} \sqrt{5}^{k}$ for all $i, j, k \in\{0,1\}$ (so this basis has $2^{3}=8$ elements).
(b) (2 points). What is $[K: \mathbb{Q}]$? 8
(c) (2 points). What is $[K: \mathbb{Q}(\sqrt{2})]$? We can use the product formula to find that this equals $8 / 2=4$.
(d) (2 points). What is $[K: K]$? That's always 1 .
(e) (4 points). Let $u=2 \cos \left(\frac{2 \pi}{9}\right)$. The minimal polynomial over \mathbb{Q} is $x^{3}-3 x+1$. Use this information to explain why $u \notin K$. If $u \in K$ then $\mathbb{Q}(u) \subseteq K$ but then the degree of $\mathbb{Q}(u)$ (which is 3) would, by the product formula, divide the degree of K (which is 8).
(f) (5 points). Can you write $\frac{1}{u}=a_{0}+a_{1} u+a_{2} u^{2}$ for some $a_{0}, a_{1}, a_{2} \in$ \mathbb{Q} ? Yes because all elements of $\mathbb{Q}(u)$ are of this form, and $1 / u \in$ $\mathbb{Q}(u)$ since in a field we can divide by non-zero elements.
3. Suppose $F \subset K \subset L$ are fields, and suppose that $1, \alpha, \alpha^{2}$ is a basis of K as a vector space over F. Suppose also that $1, \beta$ is a basis of L as a vector space over K. Then write down (no proofs are necessary here) a basis of L as a vector space over F.
$\alpha^{i} \beta^{j}$ with $i \in\{0,1,2\}$ and $j \in\{0,1\}$.
4. Compute the minimal polynomial of $\sqrt{2}+\sqrt{3}$ over $\mathbb{R} . x-\sqrt{2}-\sqrt{3}$.
5. Compute the minimal polynomial of $\sqrt{2}+\sqrt{3}$ over $\mathbb{Q}(\sqrt{3}) .(x-\sqrt{3})^{2}-2$ (it is OK if you expand this but it is not necessary).
6. Compute the minimal polynomial of $\sqrt{2}+\sqrt{3}$ over $\mathbb{Q} . x^{4}-10 x^{2}+1$.
7. If $u=\sqrt{2}+\sqrt{3}$ then what is $[\mathbb{Q}(u): \mathbb{Q}]$? This is 4 by the previous exercise. Now prove or disprove $\mathbb{Q}(u)=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. The left side is a subfield of the right side, but both have the same degree, namely 4 , so they are equal.
8. Let α be a root of the irreducible polynomial $x^{4}+x^{3}+x^{2}+x+1 \in \mathbb{Q}[x]$. What is $[\mathbb{Q}(\alpha): \mathbb{Q}]$? Answer: 4 . Simplify α^{4} and α^{5} to elements of the form $\sum_{i=0}^{3} a_{i} \alpha^{i}$ for some $a_{i} \in \mathbb{Q}$. $-\alpha^{3}-\alpha^{2}-\alpha-1$ and 1 .
Now let $\beta=\alpha+\alpha^{4}$. Compute $1, \beta, \beta^{2}$ and simplify them to the form $\sum_{i=0}^{3} a_{i} \alpha^{i}$.
$1,-1-\alpha^{2}-\alpha^{3}, 2+\alpha^{2}+\alpha^{3}$
Now find the minimal polynomial of β over \mathbb{Q}.
$x^{2}+x-1$.
9. If $F \subseteq K \subseteq L$ are fields and if $[F: L]=7$ (there was a typo here in the original handout) then prove that K is either F or L.
It follows from the product rule that $[F: K] \cdot[K: L]=7$ and thus either $[F: K]=1$ (then $F=K$) or $[K: L]=1($ then $K=L)$.
10. (a) (5 points). Let $K=\mathbb{Q}(\sqrt[6]{-3})$. Write down a basis of K as a vector space over \mathbb{Q} (it suffices to give just the answer, no proof is necessary).
If $\alpha=\sqrt[6]{-3}$ then this basis is $1, \alpha, \ldots, \alpha^{5}$.
(b) (3 points). What is $[K: \mathbb{Q}] ? 6$
(c) (3 points). What is $[K: \mathbb{Q}(\sqrt{-3})] ? 6 / 2=3$.

Note: $\sqrt{-3} \in K$ because it is the cube of $\sqrt[6]{-3}$ which is in K.
(d) (3 points). What is $[K: K]$? 1
(e) (3 points). What is the minimal polynomial of $\sqrt[6]{-3}$ over \mathbb{Q} ? $x^{6}+3$
(f) (3 points). What is the minimal polynomial of $\sqrt[6]{-3}$ over $\mathbb{Q}(\sqrt{-3})$? $x^{3}-\sqrt{-3}$
(g) (5 points). Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 4. Explain why $f(x)=0$ has no solutions in K.

If u is a root of f then $\mathbb{Q}(u)$ has degree 4 , which does not divide 6 , the degree of K, so $\mathbb{Q}(u)$ can not be contained in K, so u can not be in K.
(h) (5 points). Is K a normal extension of \mathbb{Q} ? Explain.

Yes, because all roots of $x^{6}+3$ are in K. Namely, let $\zeta_{6}=$ $(1+\sqrt{-3}) / 2 \in K$ then the 6 roots are powers of ζ_{6} times $\sqrt[6]{-3}$.
11. True or false? If true, give some explanation, if false, give a counter example.
(a) If $f(x)$ and $g(x)$ have the same splitting field, must $f(x)$ and $g(x)$ then have the same roots?
No, for instance, take $f=x^{2}-2$ and $g=x^{2}-8$, they have the same splitting field but not the same roots.
(b) If $f(x) \in \mathbb{R}[x]$ then the splitting field of $f(x)$ over \mathbb{R} can only be \mathbb{R} or \mathbb{C}.
That is true.
12. Let u be some number for which $u^{3}-3 u+1=0$.
(a) What is the minimal polynomial of u^{2} over \mathbb{Q} ?
$x^{3}-6 x^{2}+9 x-1$
(b) u and $u^{2}-2$ are two of the three solutions of $x^{3}-3 x+1=0$. Use this information to factor $x^{3}-3 x+1$ over $\mathbb{Q}(u)$ (i.e. factor $x^{3}-3 x+1$ in $\left.\mathbb{Q}(u)[x]\right)$.
$(x-u)\left(x-u^{2}+2\right)\left(x+u^{2}+u-2\right)$ To find that third factor, divide the first two away (there is a quicker way that I'll explain in class).
(c) The splitting field of $x^{3}-3 x+1$ over \mathbb{Q} has degree \ldots over \mathbb{Q}. Degree 3 because $\mathbb{Q}(u)$ contains all three roots.
13. (a) Suppose that u is a number with minimal polynomial $x^{3}-x-1$ over \mathbb{Q}. Let $v=u^{2}$. What is the minimal polynomial of v over \mathbb{Q} ?
(b) Is $\mathbb{Q}(u)$ equal to $\mathbb{Q}(v)$? Explain.
(c) Let w be a solution of the polynomial $x^{3}-x-2$. Now $[\mathbb{Q}(u)$: $\mathbb{Q}]=3$ and $[\mathbb{Q}(w): \mathbb{Q}]=3$. It turns out that $x^{3}-x-1$ (the minimal polynomial of u) has no solutions in $\mathbb{Q}(w)$. Show that this implies that $\mathbb{Q}(u)$ can not be isomorphic to $\mathbb{Q}(w)$.
(showing the weaker statement that $\mathbb{Q}(u)$ can not be equal to $\mathbb{Q}(w)$ is enough to get full credit. Hint: You have to somehow use the information that $x^{3}-x-1=0$ has no solutions in $\mathbb{Q}(w)$ because without this information you can not prove what is asked).
(d) (5 bonus). Explain that the above information implies that $x^{3}-$ $x-2$ (the minimal polynomial of w) can not have solutions in $\mathbb{Q}(u)$. You may use the fact that $\mathbb{Q}(u)$ and $\mathbb{Q}(w)$ both have degree

3 over \mathbb{Q} but are not isomorphic (even if you did not prove this fact).
14. (a) True or false: If the minimal polynomial of u over \mathbb{Q} has degree n then $[\mathbb{Q}(u): \mathbb{Q}]$ must be equal to n.
(b) What is the splitting field of $x^{5}-1$ over \mathbb{Q} ?

What is the degree of this splitting field over \mathbb{Q} ? (hint: the irreducible factors of $x^{5}-1$ are $x-1$ and $\left.x^{4}+x^{3}+x^{2}+x+1\right)$.
(c) Let ζ denote a root of $x^{4}+x^{3}+x^{2}+x+1$. Let $u=\zeta+\zeta^{4}$. We have $[\mathbb{Q}(\zeta): \mathbb{Q}]=4, \zeta \notin \mathbb{R}, u \in \mathbb{R}$ and $u \notin \mathbb{Q}$. Use this information to prove that $[\mathbb{Q}(u): \mathbb{Q}]=2$.
(d) Compute the minimal polynomial of u over \mathbb{Q}.
(e) What is the splitting field of $x^{5}-2$ over \mathbb{Q} ? What is the degree of this splitting field over \mathbb{Q} ?
15. (a) (5 bonus). Prove that if F is a field, and if S is the set of solutions of the equation $x^{4}=1$ in F, that then $a b \in S$ for every $a, b \in S$.
(b) (5 bonus). Must such S always be a group under multiplication? Explain.
(c) (10 points). Compute all solutions of the equation $x^{4}=1$ in \mathbb{Z}_{13} (so compute S for the case $F=\mathbb{Z}_{13}$).
16. Find a polynomial with integer coefficients that has $2+\sqrt{3}$ as a root.

