- 1. (a) (2 points). What is the minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q} ? x^3-2
 - (b) (10 points). Let $u = (\sqrt[3]{2})^2 + \sqrt[3]{2}$. What is the minimal polynomial of u over \mathbb{Q} ? $x^3 - 6x - 6$
 - (c) (3 points). Is $\mathbb{Q}(u) = \mathbb{Q}(\sqrt[3]{2})$? Explain. Yes: The degree of $\mathbb{Q}(\sqrt[3]{2})$ over \mathbb{Q} is a prime number, so by the product formula, any subfield $\neq \mathbb{Q}$ can only be $\mathbb{Q}(\sqrt[3]{2})$.
 - (d) (5 points). Do there exist $a_0, a_1, a_2 \in \mathbb{Q}$ for which $\sqrt[3]{2} = a_0 + a_1u + a_2u^2$? Yes because every element of $\mathbb{Q}(u)$ is of this form, and $\sqrt[3]{2} \in \mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q}(u)$ (that last equation is the previous exercise).
- 2. (a) (5 points). Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Write down a basis of K as a vector space over \mathbb{Q} (it suffices to give just the answer, no proof is necessary). A basis is $\sqrt{2}^i \sqrt{3}^j \sqrt{5}^k$ for all $i, j, k \in \{0, 1\}$ (so this basis has $2^3 = 8$ elements).
 - (b) (2 points). What is $[K : \mathbb{Q}]$? 8
 - (c) (2 points). What is $[K : \mathbb{Q}(\sqrt{2})]$? We can use the product formula to find that this equals 8/2 = 4.
 - (d) (2 points). What is [K:K]? That's always 1.
 - (e) (4 points). Let $u = 2\cos(\frac{2\pi}{9})$. The minimal polynomial over \mathbb{Q} is $x^3 3x + 1$. Use this information to explain why $u \notin K$. If $u \in K$ then $\mathbb{Q}(u) \subseteq K$ but then the degree of $\mathbb{Q}(u)$ (which is 3) would, by the product formula, divide the degree of K (which is 8).
 - (f) (5 points). Can you write $\frac{1}{u} = a_0 + a_1 u + a_2 u^2$ for some $a_0, a_1, a_2 \in \mathbb{Q}$? Yes because all elements of $\mathbb{Q}(u)$ are of this form, and $1/u \in \mathbb{Q}(u)$ since in a field we can divide by non-zero elements.
- Suppose F ⊂ K ⊂ L are fields, and suppose that 1, α, α² is a basis of K as a vector space over F. Suppose also that 1, β is a basis of L as a vector space over K. Then write down (no proofs are necessary here) a basis of L as a vector space over F. αⁱβ^j with i ∈ {0, 1, 2} and j ∈ {0, 1}.
- 4. Compute the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{R} . $x \sqrt{2} \sqrt{3}$.
- 5. Compute the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over $\mathbb{Q}(\sqrt{3})$. $(x \sqrt{3})^2 2$ (it is OK if you expand this but it is not necessary).
- 6. Compute the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} . $x^4 10x^2 + 1$.

- 7. If $u = \sqrt{2} + \sqrt{3}$ then what is $[\mathbb{Q}(u) : \mathbb{Q}]$? This is 4 by the previous exercise. Now prove or disprove $\mathbb{Q}(u) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. The left side is a subfield of the right side, but both have the same degree, namely 4, so they are equal.
- 8. Let α be a root of the irreducible polynomial $x^4 + x^3 + x^2 + x + 1 \in \mathbb{Q}[x]$. What is $[\mathbb{Q}(\alpha) : \mathbb{Q}]$? Answer: 4. Simplify α^4 and α^5 to elements of the form $\sum_{i=0}^{3} a_i \alpha^i$ for some $a_i \in \mathbb{Q}$. $-\alpha^3 - \alpha^2 - \alpha - 1$ and 1. Now let $\beta = \alpha + \alpha^4$. Compute $1, \beta, \beta^2$ and simplify them to the form $\sum_{i=0}^{3} a_i \alpha^i$. $1, -1 - \alpha^2 - \alpha^3, 2 + \alpha^2 + \alpha^3$ Now find the minimal polynomial of β over \mathbb{Q} . $x^2 + x - 1$.
- 9. If $F \subseteq K \subseteq L$ are fields and if [F:L] = 7 (there was a typo here in the original handout) then prove that K is either F or L. It follows from the product rule that $[F:K] \cdot [K:L] = 7$ and thus either [F:K] = 1 (then F = K) or [K:L] = 1 (then K = L).
- 10. (a) (5 points). Let K = Q(⁶√-3). Write down a basis of K as a vector space over Q (it suffices to give just the answer, no proof is necessary).
 If α = ⁶√-3 then this basis is 1, α,..., α⁵.
 - (b) (3 points). What is $[K:\mathbb{Q}]$? 6
 - (c) (3 points). What is $[K : \mathbb{Q}(\sqrt{-3})]$? 6/2 = 3. Note: $\sqrt{-3} \in K$ because it is the cube of $\sqrt[6]{-3}$ which is in K.
 - (d) (3 points). What is [K:K]? 1
 - (e) (3 points). What is the minimal polynomial of $\sqrt[6]{-3}$ over \mathbb{Q} ? $x^6 + 3$
 - (f) (3 points). What is the minimal polynomial of $\sqrt[6]{-3}$ over $\mathbb{Q}(\sqrt{-3})$? $x^3 - \sqrt{-3}$
 - (g) (5 points). Let f(x) ∈ Q[x] be an irreducible polynomial of degree
 4. Explain why f(x) = 0 has no solutions in K.

If u is a root of f then $\mathbb{Q}(u)$ has degree 4, which does not divide 6, the degree of K, so $\mathbb{Q}(u)$ can not be contained in K, so u can not be in K.

(h) (5 points). Is K a normal extension of \mathbb{Q} ? Explain. Yes, because all roots of $x^6 + 3$ are in K. Namely, let $\zeta_6 = (1 + \sqrt{-3})/2 \in K$ then the 6 roots are powers of ζ_6 times $\sqrt[6]{-3}$.

- 11. True or false? If true, give some explanation, if false, give a counter example.
 - (a) If f(x) and g(x) have the same splitting field, must f(x) and g(x) then have the same roots?
 No, for instance, take f = x² 2 and g = x² 8, they have the same splitting field but not the same roots.
 - (b) If f(x) ∈ ℝ[x] then the splitting field of f(x) over ℝ can only be ℝ or ℂ.
 That is true.
- 12. Let u be some number for which $u^3 3u + 1 = 0$.
 - (a) What is the minimal polynomial of u^2 over \mathbb{Q} ? $x^3 - 6x^2 + 9x - 1$
 - (b) u and $u^2 2$ are two of the three solutions of $x^3 3x + 1 = 0$. Use this information to factor $x^3 - 3x + 1$ over $\mathbb{Q}(u)$ (i.e. factor $x^3 - 3x + 1$ in $\mathbb{Q}(u)[x]$). $(x - u)(x - u^2 + 2)(x + u^2 + u - 2)$ To find that third factor, divide the first two away (there is a quicker way that I'll explain in class).
 - (c) The splitting field of $x^3 3x + 1$ over \mathbb{Q} has degree ... over \mathbb{Q} . Degree 3 because $\mathbb{Q}(u)$ contains all three roots.
- 13. (a) Suppose that u is a number with minimal polynomial $x^3 x 1$ over \mathbb{Q} . Let $v = u^2$. What is the minimal polynomial of v over \mathbb{Q} ?
 - (b) Is $\mathbb{Q}(u)$ equal to $\mathbb{Q}(v)$? Explain.
 - (c) Let w be a solution of the polynomial $x^3 x 2$. Now $[\mathbb{Q}(u) : \mathbb{Q}] = 3$ and $[\mathbb{Q}(w) : \mathbb{Q}] = 3$. It turns out that $x^3 x 1$ (the minimal polynomial of u) has no solutions in $\mathbb{Q}(w)$. Show that this implies that $\mathbb{Q}(u)$ can not be isomorphic to $\mathbb{Q}(w)$. (showing the weaker statement that $\mathbb{Q}(u)$ can not be equal to $\mathbb{Q}(w)$ is enough to get full credit. Hint: You have to somehow

 $\mathbb{Q}(w)$ is enough to get full credit. Hint: You have to somehow use the information that $x^3 - x - 1 = 0$ has no solutions in $\mathbb{Q}(w)$ because without this information you can not prove what is asked).

(d) (5 bonus). Explain that the above information implies that $x^3 - x - 2$ (the minimal polynomial of w) can not have solutions in $\mathbb{Q}(u)$. You may use the fact that $\mathbb{Q}(u)$ and $\mathbb{Q}(w)$ both have degree

3 over \mathbb{Q} but are not isomorphic (even if you did not prove this fact).

- 14. (a) True or false: If the minimal polynomial of u over \mathbb{Q} has degree n then $[\mathbb{Q}(u):\mathbb{Q}]$ must be equal to n.
 - (b) What is the splitting field of $x^5 1$ over \mathbb{Q} ? What is the degree of this splitting field over \mathbb{Q} ? (hint: the irreducible factors of $x^5 - 1$ are x - 1 and $x^4 + x^3 + x^2 + x + 1$).
 - (c) Let ζ denote a root of $x^4 + x^3 + x^2 + x + 1$. Let $u = \zeta + \zeta^4$. We have $[\mathbb{Q}(\zeta) : \mathbb{Q}] = 4$, $\zeta \notin \mathbb{R}$, $u \in \mathbb{R}$ and $u \notin \mathbb{Q}$. Use this information to prove that $[\mathbb{Q}(u) : \mathbb{Q}] = 2$.
 - (d) Compute the minimal polynomial of u over \mathbb{Q} .
 - (e) What is the splitting field of $x^5 2$ over \mathbb{Q} ? What is the degree of this splitting field over \mathbb{Q} ?
- 15. (a) (5 bonus). Prove that if F is a field, and if S is the set of solutions of the equation $x^4 = 1$ in F, that then $ab \in S$ for every $a, b \in S$.
 - (b) (5 bonus). Must such S always be a group under multiplication? Explain.
 - (c) (10 points). Compute all solutions of the equation $x^4 = 1$ in \mathbb{Z}_{13} (so compute S for the case $F = \mathbb{Z}_{13}$).
- 16. Find a polynomial with integer coefficients that has $2 + \sqrt{3}$ as a root.