Sample questions

1. Suppose that G is a simple group (which means: the only normal subgroups of G are the trivial subgroups $\{e\}$ and G). Suppose that $\phi : G \to H$ is a homomorphism. Show that ϕ is injective or trivial (meaning: $\phi(g) = e$ for all $g \in G$).

Let K be the kernel of ϕ. Then K is a normal subgroup of G. But if G is simple, then K is either $\{e\}$ (in which case ϕ is injective) or K is G (in which case ϕ is trivial).

2. Let G be a group of order n and H a group of order m, and let $\phi : G \to H$ be a homomorphism.

(a) Show that $\phi(G)$ is a subgroup of H.

The identity in H is in $\phi(G)$ because it equals $\phi(e)$. If we take two elements of $\phi(G)$, say $\phi(g_1)$ and $\phi(g_2)$, then the product is again in $\phi(G)$ because the product $\phi(g_1)\phi(g_2)$ equals $\phi(g_1g_2)$, and $g_1g_2 \in G$. Similarly, $\phi(G)$ is also closed under taking inverses.

(b) Show that the order of $\phi(G)$ divides m.

If $|H| = m$ then any subgroup of H has order dividing m. Part (a) showed that $\phi(G)$ is a subgroup of H.

(c) Show that the order of $\phi(G)$ divides n as well.

By the first isomorphism theorem, $\phi(G)$ is isomorphic to G/K where K is the kernel of ϕ. Thus the number of elements of $\phi(G)$ is $|G/K| = |G|/|K| = n/|K|$ which divides n.

3. List (up to isomorphism) all abelian groups of order ≤ 10. Don’t list the same one twice.

$\mathbb{Z}_1, \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_5, \mathbb{Z}_6, \mathbb{Z}_7, \mathbb{Z}_8, \mathbb{Z}_4 \times \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_9, \mathbb{Z}_3 \times \mathbb{Z}_3, \mathbb{Z}_{10}$.

4. Compute the elementary divisors and the invariant factors of $\mathbb{Z}_{10} \oplus \mathbb{Z}_{15} \oplus \mathbb{Z}_{20} \oplus \mathbb{Z}_{25}$.

First, split up as much as possible using the rule $\mathbb{Z}_{nm} \cong \mathbb{Z}_n \times \mathbb{Z}_m$ whenever $\gcd(n, m) = 1$. Note that this allows us to split up \mathbb{Z}_N as a product of smaller groups whenever N is not a prime-power.

Then we get $\mathbb{Z}_2 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_{25}$

so the elementary divisors are 2, 5, 3, 5, 4, 5, 25 and if we sort them by prime-power we get 2, 4, 3, 5, 5, 5, 25.

1
Next, to get the invariant factors, you need to combine the highest p-powers, then combine the next highest p-powers, etc. The highest 2-power is 4, the highest 3-power is 3, and the highest 5-power is 25. Combine them (multiply) to get 300. The next highest 2-power is 2, the next highest 3-power is 1 (there is no 3-power left), and the next highest 5-power is 5. Combine them, and you get 10. After that, what remains are two more 5’s. Result:
invariant factors: 300, 10, 5, 5

5. Compute the elementary divisors and the invariant factors of $\mathbb{Z}_4 \oplus \mathbb{Z}_6 \oplus \mathbb{Z}_8 \oplus \mathbb{Z}_{12}$.

Elementary divisors: 4, 2, 3, 8, 3, 4. Collected by prime-power:
Elementary divisors: 2, 4, 4, 8, 3, 3.
Invariant factors: 24, 12, 4, 2.

6. For each of the following, indicate if it is a group or not. If it is a group, then no further explanation is needed. If it is not a group, then indicate the group axiom(s) that fail. Recall that the 4 axioms are:

#1 = “Closure under the group operation” (applying the group operation to two elements in that set gives again an element of that set)
#2 = Associativity
#3 = “There is an identity”
#4 = “Every element has an inverse”

(a) The set {..., −4, −2, 0, 2, 4, ...} of all even integers with operation +
Group.

(b) The set {1, 2, 4, $\frac{1}{2}$, $\frac{1}{4}$} with operation ·
Fails #1

(c) The set {1, i, −1, $-i$} with operation ·
Group.

(d) {0, 2, 4}, + where {0, 2, 4} ⊂ Z$_6$ which means work modulo 6.
Group.

(e) {0, 2, 4}, · where {0, 2, 4} ⊂ Z$_6$.
Fails #3 because 0 has no multiplicative inverse.

(f) {1, 3, 9}, · where {1, 3, 9} ⊂ Z$_{13}$ which means work modulo 13.
That’s a group: \(< \mathbb{Z} >\).

7. True or false? For parts (d) and (e) give some explanation.

(a) Is a UFD always a PID? False.
(b) Is a PID always a UFD? True.
(c) Is a Euclidean Domain always a PID? True.
(d) If \(u \in \mathbb{C}\) is the solution of some non-zero polynomial \(f(x) \in \mathbb{Q}[x]\), must \(u\) then also be a solution of some \textit{irreducible} non-zero polynomial in \(\mathbb{Q}[x]\)? Yes (the minpoly of \(u\)).
(e) If \([K : \mathbb{Q}] = 5\) and \(u \in K\) and \(u \not\in \mathbb{Q}\) must then the degree of the minimal polynomial of \(u\) over \(\mathbb{Q}\) always be 5? Yes, because \(5 = [K : \mathbb{Q}] = [K : \mathbb{Q}(u)] : [\mathbb{Q}(u) : \mathbb{Q}]\) so the number \(d := [\mathbb{Q}(u) : \mathbb{Q}]\) (this is always the degree of the minpoly of \(u\) over \(\mathbb{Q}\)) divides 5, so \(d\) is 1 or 5, but it is not 1 since \(u \not\in \mathbb{Q}\) so \(d = 5\).