GRV II final.

1. Let R be an integral domain and let $r \in R$ be not zero and not a unit.
(a) Give definition of: p is prime.
(b) Give definition of: p is irreducible.
(c) Which one (prime or irreducible) implies the other one?
2. Let $f \in \mathbb{Q}[x]$ be monic and not constant. Suppose that $e^{2}=e$ has only two solutions in the ring $\mathbb{Q}[x] /(f)$. Show that $f=g^{d}$ for some $d \geq 1$ and some irreducible $g \in \mathbb{Q}[x]$.
3. Let p be a prime number.
(a) Up to isomorphism, how many \mathbb{Z}-modules exist with precisely p^{4} elements? List all.
(b) Up to isomorphism, how many $\mathbb{F}_{p}[x]$-modules exist with precisely p^{4} elements?
4. Let K be the splitting field of $x^{6}-2$ over \mathbb{Q}.
(a) What is $[K: \mathbb{Q}]$? Explain.
(b) How many subfields E does K have with $[E: \mathbb{Q}]=4$?
5. Let p be a prime number >2 and let $K=\mathbb{Q}\left(\zeta_{p}\right)$.
(a) Show that K has precisely one subfield F with $[K: F]=2$.
(b) Show that K has precisely one subfield E with $[E: \mathbb{Q}]=2$.
(c) Show that $E \subset \mathbb{R}$ if and only if $p \equiv 1 \bmod 4$.
6. Let K / \mathbb{Q} be Galois with group G and let $b \in K$ with $b \neq 0$. Show that there exists $\sigma \in G$ with $\sigma(b)=-b$ if and only if $b \notin \mathbb{Q}\left(b^{2}\right)$.
